-	Утверждено Начальник ВПО Союзполипернаци ИН Докучаев 1979 г. — 1979 г.
<u> УДК 63-408</u> 8.	Группа ГОО
Отраслевой сг	тандарт
Шероховатость поверхно-	<i>0CT</i>
стей в зависимости от	26 20 635 20
классов точности (квалитетов	
мазначения и методов получения	востен ОСТ 26-09-625-7
Приказом (распоряжением) ВП	10 "Союзполимермац"
om 19.11.79r N 106	срок введения установлен
	c 01,07.80
Несоблюдение стандарта	преследуется по закону.
тость поверхностей издо отрасли полимерного ма	•
1. Характеристика шерох	оватости принимается па-
pamempom Ra no FOCT 2785	9-73 u CT C38 638-77, 4UCAOBWE
3M048MUR KOMOPOZO CAROGHO G 2,5; (2,5; 0,63; 0,32; 0,160; 0,080; 0	ujue: 320;160; 80; 40; 20; 10,0; 50;
The Manhadianocom panahada	значения параметра Rz в коменвуется пользоваться сле-
320 160 80 40 20 10 5 25 12 1250 630 320 160 80 40 20 10 63	5 963 032 0160 0080 0040 0020 0010
дание официальное	Перепечатка воспрещена

значения которого 2,5; (25; Q63; 032; Q160; При необходитости значение параметра дующим свотношением Ra= 320 160 80 40 20 10 Rz = 1/250 630 320 160 80 **Издание** официальное

٥m

- 2. Стандарт устанавливает: а) величины параметров шероховатости поверхностей изделий для стандартных полей допусков квалитетов 6,7,8,9,11,12,14,16. по СТ СЭВ 144-75 и степеней точности от ₹ do № по ГОСТ 10.356-63:
- б) Соотношения тежду допускати разтера, форты, рагположения и шераковатостью поверхностей;

в) величины паратетров шероховатости в зависитости от назначения поверхностей деталей;

г) величины параметров шероховатости при различных тетодах обработки поверхностей;

д) данные о притенении посадох и степеней точности в забисимости от назначения и условий работы изделий

3. Обозначение шероховатости поверхностей и правила нанесения их на чертежах изделий должно соответствовать ГОСТ 2.309 - 73.

4. Требования к шероховатости должны быть обоснованными и устанавливаться исходя из функционального назначения поверхности.

Величины параметров шероховатости ва не должны превышать рекомендуемые, приведенные в таба. 1

5. При назначении паратетров шероковатости следует проверить возтожность их достижения в связи с рациональными методами обработки деталей (табл. 2-6).

51. В табл. 2 приведены рекотендуетые значения параметров шероковатости, точность разнеров и формы обрабатыва еных поверхностей в зависимости от методов обработки резанием при обеспечении жесткости системы СПИД.

5.2. Точность разперов и шероховатость поверхности зубьев зубчатых колес при различных тетодах воработки приведены в таблице 3.

5.3. Точность резьб и шероховатость поверхности нарезки при различных методах обработки приведены в таблице 4.

OCT 26-09-625-19 cmp 3

- 5.4. Точность разтеров и шероховатость поверхностей отливах, изготовленных различными спосовати, представлены в таблице 5.
- 5.5. Данные по точности и шероховатости поверкностей заготовок, полученных обработкой вавлениет, приведены в таблице 6.
 - 6. При назначении точностных требований на размер детали необходимо учесть соответствие шероходатости намеченной посадке и степени точности формы детали (табл. 7)
- 61. Шероховатость поверхности должна быть не грубее указанной в таблице 7 для соответствующих полей допусков, квалитетов и относительной геотетрической
 точности по форме (сокращенно "допуски геотетрии")
 Допускается ограничивать шероховатость боле е
 жесткими требованиями, если это необходимо для
 обеспечения функционального назначения детали.
- 62. Для обеспечения взаитозатеняености деталей и сборочных единиц ташин с учетом возможностей достижения точности при различных тетодах обработки рекотендуется посадки, а также степени геометрической точности назначать по аналогии с ранее спроектированными изделиями, сходными по условиям работы.
- 62.1 Рекомендуетые посадки при размерах от 1 до 500 им и от 500 до 3150 км в системе итверстия представлены в приложении 1.
- 6.2.2. Рекомендуетые степени геотетрической точности по ГОСТ 40356-63, характерные для поверхностей различного назначения, и способы обработки для их достижения приведены в приложении 2

Рекомендуемые величины параметров шероховатости ва по ГОСТ 2789-73 в зависимости от функционального назначения поверхностей деталей.

Tabauya 1

Ποδδι	MHHIE	cm	b/KU			Подвижные, стыки							
Поверхности		Скорост	Henac	rexoen	n NOCMb, r	IKM HO I	onn d	MADI					
направляющих		10cm 11/c c8 10 do 25 c8 25 do 40 c8 40					c8 40 8	080					
соединений	2/100				pu wer								
Поверхности, определяющи	CKOA6-	800,5	42	5	2,	5	5						
направление и траекто-	MEHUR	c8. Q.5	0,6			2.5	2,5						
ARU U 43.00 MQUUNNU UN BROWNERUE	Kave-	0095	96	3		25	2,5						
взаинные расположение	HUR	cs. q5	0,3	2		:3	1,25						
a. a.	j					mb M							
Поверхности	Ynnon	RUNGHE	80 3			c8.3 de		B. 5					
00e0 U 80.008			Παραν	emp	ы шеро	co Bamoc	nu,Ra,	MKM					
под уплотнения	Pesun	oboe	(25/leaupe	ober.		as 3 Reaug	ور دوله	apobany					
Паверхности мест пасадки шарико-и	Воύло			4	5 Meninola	2							
ромикоподшиннико в	Лабиринтное Жировые канавки		[3	<u>]</u>									
Beex munob		70HO-	MU NODU		OA!	MANHAU I							
		вание по- верхности Посадочная по- ерхность внут- еннего кольца подшинника	ract	roct	0000	4803025							
Примечания:13а нони-			520-55	520-1	11 Парал	етры шер	14060TDET	, Ra, mem					
нальный диатетр подшит			НυП	0	125	1.25	2,5	2,5					
ника принимается диаметр посадочной поверхности,	POHHESO		811, B,A8	645	963	963	1,25	125					
евответственно наружной	Ποςαδονί		A, CA	-		+	 	1,63					
или внутренней,	BEPIHOCH	76 MQ-	НυП	0	963	125	1,25	2,5					
2.30 номинальный дид.	HO LOGIN	UNHUAD	BR BAB, A, CA	6u	5 0,32	0,32	9,65	0,65					
метр упорного подшинника принимаем внутренний	TOPL	HOCMB	НиЛ	0		2,	5	<u> </u>					
дийтетр Свободного кольца, выраженный в целых т.т	nogwuni Ko'n e u	4	BN, B, AB, A, C A	6u 5	5	1,25							
Посадочные	60.4		НиП	0	1, 25	É	5	-					
	валы		811, 8, A8, A. CA	6u	5 0,63	1.	25	_					
поверхности	Отверстия		НυП	0	125	í	3,5	_					
валов и отверстий	rophycob		A, CA	60	5 963	1,	25	-					
корпусов подшипников	Торчы чи ко в	запле- ва -	НиП	0	2,5	1,	25	_					
	лов и ка		B17, B, AB, A, C.A	6u!	5 125	1,	25	_					

<u>ОСТ 26-09-625-19 стр. 5</u> Продолжение табл. 1

Ποσ	Вижные	CMP	IKU				
Поверхности				Паз ва	10	Паз в	mysku
соединений с	Поверх	ность	Парател	пры шер	oxo b	amocn	nu, Ra, mxm
направляющей шпонкой	Рабоч	ΩA	25125		<u> </u>	e, s	
	Нерабо	4 Q A	10	2	v	. 10	
Паверхности	Поверкн	iocm b	Парамел	пры шер	oxol	Bamocn	ou, Ra , man
Зубьев зубчатых	BINDOUN	ibi Cmu A		2,5 1.	25		
(WAUYEBNX) COEDU-	Jyou v	010		23 1	(25		
нений подвижных	уентру- ручу <u>н</u> ей	Отверств		183	1,63		
	HOEMU	80.4		25) (
	Heyenmpu- Pungueu nobepx-	Difference		<u> </u>			
	מפנחט	Ban		5 .			
Поверхности	Cmen		346401		neca		Червяки
зубьев зубчатых	KOJEC		CHANNE -	KOHU- YECKUE		OBRY-	repund
колес и черваков	10CT 1643		Парамет	рышеро	x08a	ארושטרוו	I Ra, MKM
	7			1,25		1	
	8		5				2,5
	9		10 -				
Лаверхнасти	Поверхн	10cmb	Параметры шероховатости, Ка, ткп				OU, RO, MKM
зувьев звездочки для приводных	Προφυ	16	5				
yeneú	Впадин	10					
	60 × 0 8 0	A	10		:		
0.4.	KAQCC A	novnoc-	Ходо вые	BUHMA	xo	COUR BOBUX	60mm08
Поверхности нарезки ходовых	roct 9562		Параметры шероховатости, Ка, тя				
BUHMOB U ZAEK	3			16			

OCT 26-09-625-79 Cmp 6

Проволжение тавл. [

Неподвиж	HUIE I	CMNIKU					
Привалочные	Haur	שטעאו	Точность расположения, ткт				MKM
naockocmu	ρα	smep,	đo 10		25		0 63
карпусных деталей и прокладок, определя-	L	M M	Параметры	ı wepa	xobam	oemu A	a, mkm
HOW DOCHO ADMENUA B	,	00	Q 63		1,25		2,5
собранном виде (повержности разъема корпу-	4	00	1,25		2,5		5
cos u op)	12	00	2,5	L	5		10
Пове рхности	Повер	פררו אוני	Параметры	wep	oxoban	שרת 200	Ra, MKM
зубьев зубчатых (шлицевых) соединений	Brade ombe	JHB DEMUR	(I.s	5] (7,63		
неподвижных	80.00		96	3	0, 32		
Паверхнасти	Класе точности	NOCAE BONYCKO NO FOCT	Балт винт	(801)	<i>FOUR</i>	a (Bm	улка)
нарезки крепежных	1010CT 9853-59	no Fact 16093-10	Параметры	шера	xo6an	nocmu,	Ra, MKM
болтов, винтов,		89	10	0			
SUEX	3	74				10	
Поверхности нарезки резьбы на валах, штоках, втулках и т.д.		89 7H		2,5	5		
			шпонка Паз вала Паз втулки				
TO BE DEHORMU HEROD BUNKHERE THE STATE THE	Поверхность		napamemow webosobamecmu, Ra, MK				RO, MKM
YECKOÙ U CEZMEHMHUU	pabe	NUN	2,5	l	<u>5</u>],	2,5	
ωπο κού	Нерабочая		10			20	. 🕡
Торцевые поверхности тел вращения, опреде	Торцев	0e buen 10), MK	ние. (Неперпендикулярность кт, на длине 100 mm				76
лянощие точность распо ложения деталей отно-	80 €	5	св.25 до	60	cb.	60	
сительно оси врощения и направления се (торуы			шерохова	רושפור	nu, Ri	a, m	M
гилья, стаканов идр)	1,25		2,5			5	
7.6	Napar	етры	ш ерохов а	mocr	nu, F	ìa, r	1KM
Поверх ности Кронштейнов, втула к, крышек, колец ступиц,		5 2,5					

			Продол	*EHU	е .	тавл 1
Разъет нь	ie cn	חאואט				
Поверхности	1		Радиа.	ьное	bue	HUE, MKM
при посадках с точным центрированием валов	Cana		∂o 10	до	16	∂o 25
в отверстиях, обеспечи-	LOEOU	нение	Параметр	ы шері	οχοβαι	mocmu, Ra, mu
вающим точное взаимное расположение соединяемых детальной (цилиндрических	80.	Л	0,32	o,	63	1,25
U KOHLINECKUK)	Отвер	cmue	0, 63	1,2		2,5
006	Cmer		א משרונם אינים	SHOW!	ים מסחם לי אים אים לי	yea mm
Рабочие поверхности конических соединений		iocmu	<i>до 5</i>			50 do 200
	no 1001 89	o8-58	Парапет	ש שקי	рохов	amocmu Ro, ru
	7-8	7	1,25			2,5
	9		5			10
	. 10		10			50
Рабочие поверхности	Шкивы плос наременных с диаметро		~ ~ ~ \ a		рпозные вараваны и апетроп	
во фрикционных	do 120 do 30		0 c8.300 myg		nee 5 mu duc	do mhi seu, konella
<i>πέρεδα</i> να χ	Параметры шероковатости, Ка, ткт					
	125	2,5	5		1	25
Свободне	ole n	ober	хност	v		
Закрытые поверхности (невидиные при наруж- ном остотре пашин)	Пар	pamem	ры шеро	xoBa/	חסכת	nu, Ro, mkm
теханически Фрађатываетые	20 5					
Подошвы и основания станин, рат, корпусов, мап; несопрягаетые поверхности, теханически обраво та нные		۽	ra			

<u>ОСТ 26-09-625-79 стр В</u> Продолжение табл 1

Свободные поверх	ности
Открытые поверхности (видитые при наружном ис- мотре машины)	Параметры шероховатост Ra , мкм .
теханически обравотонные поверхности кронитейнов, турит ступиц, втухох и т п, не соприхасающиеся с вругити поверхностями	w 5
-Поверхности выступающих частей быстровращающихся деталей (концы и фланцы валов и т.п.)	5 2,5
Поверхности механически обработанных корпусных деталей С наибольшим размером, мм: до 100 сб. 100 до 400 св. 400 до 1200	2,5 5
Поверхности головох винтов, торцов валов, фасох, канавох, закруглений, проточел вля выхода режущего инструмента и т.п.	10 2,5
Поверхности рухояток; ободов маховиков; штурвалов; ручек; Стержней, кнопок и др.	1,25 0,32 (с указанием полирования или покрытий)
Поверхности указателей, таблиц и другие поверх- ности, требующие отделки. Декоративные поверхности нашин и их деталей	1,25 0,63 (суказаниет полирования или покрытия)

OCT 26-09-625-79 Cmp 9

Продолжение табл. 1

Типовые поверхнос	mu
Поверхности и детали	Парапетры шероховатости, Ка, тхй
Неравочие хантуры деталей	8040
Отверстия на проход крепежных деталей, выточки и проточки. отверстия насляных каналов на силовых валах Острые кротки. Разделка кроток под сварку.	20
Плоскости прилегания гаек иголобок болтов. Певерхности тасляных канавок	10 5
Шаровые поверхносты ниппельных соевинений. Радиусы скруглений на силовых волах рабочие ловерхности зучесь бронзовых венцов чербячных колес	2,5
Трущиеся поверхности нагружен- ных деталей. Наружные поверхности валков машин аля переработки резины.	1,25
Трущиеся поверхности нагруженных веталей. Посадочные поверхности 2-го жласса (квалитет в) точности с дли-тельным сохранением заданной посадки.	0,63
Поверхности зерхала цилиндров, ра- во такощих с резиновыми манжетами. Рабочие поверхности гильз (цилинд- ров) и червяхов червячных прес- сов.	Q32, Q16
Гильзы ишнехи литьевых ташин и прессов	0,320,16 (сухачалиет памирована)
наружная поверхность валхов ташин для переравотки пласттасс Примечание. В ратку взяты паратет оптитальные для оберудования политер	0,320,16
отитальные для оббрудавания политер, *Паратетры шероховатисти, привс верхностей, не относятся к тен до верхности моторых установлена с дартами.	еденные для типовых по-

OCT 26-09-625-79 cmp 10

Точность размеров и шероховатость поверхностей при размичных тетодах обработки резанием 726.

Ταδινυμα 2

	•				/auoqu c
ł	Вид работки	LOANOCHIU DE CUCTO MO	Nosumements on on cross states of cross states	CMENEHS MON- HOCMU SOOMBI NO FOCT 10356-63	Рекотендуетые Значения паратет- ров шероховатости; Ка, ткт по ГОСТ 2789-73
	Abmomamusec-	10 8	17 15		80 20
-	KOR ZOSOBOR HOWHULGTU, NOUBODHOÙ NUJOÙ	107	1714	-	40 20
ожъж шо	Pe340m	74	14 11		80 20
ďω	Φρειού	108	17 15		40 20
,	абразивом	53	12 9		<u>5</u>], 2,5
	черновое	7 5	14	X	40 20
Обтачивание	получистовое	5	12	IX.	20 5
408	однократное	3 <u>a</u>	10	<u> </u>	
am _i	yuemoboê	3	9	VI	5 2.5
0	TOHKOE QAMQ3HOE	3	9		125 0,63 0,32
	CATTUSTICE .	2a	8		
точение зезка	Черновое	5	14	亚	40 20
HOY ESKI	4ucmoboe	5	12	7	
	или одно кратное	3	9	X	20 2,5
Topyoboe U node		3	9	亚亚	2,5 [0,63]
101	TOHKOE	20	8	V	2,3 [0,83]
2 50	3 4 46	5	12	X	10 5
Cbeprenue paccibe pru- banue	до ф 15 mm	4	11	区	20 10
boc Cge	c8. \$ 15 mm	4	11	ليسل	GEJ/V

				OCT	26-09-625-79cmp_11
				Продолж	ение табл.2
	Вид Гра ботки	KNALES MOUNDE NOT THE NO CHOMPRE POST	KBarmemy or 27 CT C38 144-75 B	Спепень почность формы по ГОСТ 10356- 63	Рекопендуетые значения пара- тетра шерохова- тости, Ra, мкм по ГОСТ 2789-73
HUE	черновое	5	12	X	20 10
\$00	однократное Литого или	5	12		
нкер	0.0011111000000	4	11	<u>/X</u>	10 5
Развертывание Зенкерование	OMBERCHUR HUCHOBOE NOCIE HERMOBOE VAU COEPAEHUR	За	10	<u>VIII</u>	5
3.HC		4	11	<u> </u>	
30/06	Нормальное	За	10	<u> </u>	2,5
رم ا	_	3	9	<u> </u>	
3	Точно е	2a	8	V/	<u>1,25</u> 0,63
	Тонкое	2	7	<u> </u>	o, 63
Протлеивание от Зерстий	Черновое прошитого	4	11	<u> </u>	
аот леивания о т дерстий	отверстия	3 a	10	<u>V//</u>	2,5
oms m 3e	Чистовое после чернового или	_3	g	<u> </u>	(1
g, o	сверления	2	7	∇	1,25 0,63
٥	ueoofoo	5	12	X	20 [40]
5 07	черновое	4	11	<i>∇⁄/</i> (Į	20 10
2	чистовое	30	10	<u>VII</u>	5 <u>25</u>
Pacmauubanue		3	9	<u> </u>	১ বেহা
ğ	TOHKOE QAMQSHOE	2a	8	<u>V/</u>	4.35 [4.62]
		2	7		1 25 0.63
BAUR KHEK THEU	черновое	3a	10	<u> </u>	5
Apan saubanue rapymnux nobepsnocmeů	yuc ma Bae	3	9	<u> </u>	36 (755)
Joon Joon	40 C/NO DUE	2a	8	<u>V</u>	2,5 1,25

OCT 26-09-625-19 cmp 12

Продолжение табл.2

_					
0.	Вид бработки	Chock movingenu loos no cuem e me monoune	Klawmemo, 25 no CT C3B 144 75 88	Степень точности формы по ГОСТ 10356-63	Рекотендуетые значения параметр шероховатости, Ra, ткт, по гост 2789-79
		5	12	.,	
اه و	Черновое	4	11	XI	20 [10]
2 T		3	9	<u> </u>	
Фрезерование 1 строгание	Чистовое	4	11	X	
9.5°	1007/10002	3	9 8		5; 2,5 . 1,25
900		2 a	8	<u>√u</u>	ر ا ا ا ا ا ا
	Tonkoe	3	9	<u> </u>	1,25
e,	Черновое	5	12	XI	
ract		4	11	-	20 10
JONDNOHUE	Чистовое	4	11	<u>X</u>	10 2.5
10e	предварительное	3	9	∇ii	2,5 1,25
rpo Banu Kpye soe		2a	8		_
Luugo Banue Kpyenoe	чистовое	2	7	\overline{VI}	125 0.63
3	TOHKOE	2	7		Q 63
		3a	10	ΔIII	2.5
37	предварительное	3	9		2,5
60 x.	4истовое	3	9	<u> </u>	
ифование тонкое	טאט	2a	8	<u>可</u> <u>又</u>	1,25 0,63
3 7	однократное	2	7		
J	TOHKOE	2a 2	8	Щ	0,63
	10 H NUE		7	∇	
ence	грубое	3	9	<u>VII</u>	2,5 1,25
Притира шабрение	Тонкое	2	7	<u> </u>	0,63 0,32

OCT 26-09-625-79 cmp. 13 Продолжение тобл. 2

Ви д обра во тки	KADEC MOWNOCMU NO	Kbarumembi ro no CT C38 144-75	Cmeners morrocropopris no popris no roct 10356-63	Рекотендуетые значения парапетра шероховатости, Ra, ткт, по ГОСТ 2789-73
Хонингование	3	<i>9</i> 7	₩ V	0,63 [0,32]
Слесарна я опиловка	_	_	_	202,5
Зачистка наждачным полот- ном (после резца, фрезы)				<u>125</u> 963

Примечания :

- 1. Данная таблица относится к деталят, изготовленным из стали. Для деталей, выполненных из чугуна и цветных сплавов, предельные втклонения по точности можно принимать на один класс и степень точности выше.
- 2. Значения паратетров шероховатости принимаются по тавлице независито от татвриала детали.
- 3. указана величина шеро коватости эконотически целесообразная для банного вида обработки.

Точность размеров и шероховатость поверхности зубьев зубчатых колес при различных методах обработки.

	различных мен	тових ворио	отки. Таблица З						
Вид обрабатки		Степень точности no гост 1643-72	шероховатости, Ка,						
Water: Inch	Цилиндрические зубчатые колеса — ГОСТ 1643-72								
8.4	Черновое	g	10						
3460@pe 3epo 8a - HUE	<u> Чистовое</u>	8	5 2,5						
	черновае	g	10						
ank green ogh	4ucma Bae	8	5						
SOHU & HUE SOHU & HUE	после точного	7	1,25						
Sp. E.	фрезерования	6	Q 63						
3y60 - INVER 50- HUE	Пасле термической	7	1,25						
3,50 2000 3000 3000	обработки	6	0, 63						
K	энические зубую	amble Konel	14 - npoekm FOCT1758						
-020	черновое	g	10						
3y6o. empose- Hu e	чистовое	8	5						
.s & s	nocae	7	125						
3ybo- wango banue	терми ческой обработки	6	Q 63						
	Примечание	🗆 - ука	зана величина						
	шероховатости эхономически целесообраз-								
ная для данной степени точности.									

Точность резьб и шероховатость поверхности нарезки при различных тетодах обработки

Tabruua 4

			7400044
o	Вид Фработки	Степень точности по гост 16093-70	Рекотендуетые Значения паратетра шероходатости по гост 2789-73
	Ππαωκού	8	10 5
Наруж на л резьба	Резцом, гребен- кой, фрезой	8	5 2,5
Hapy Pes	Накатывание роликот	7	2,5[<u>[25]</u> 0,63
	шлифованием	6	1,25 [0,63]
8	MEMYUKOM	7	10 5
Bryingeriones pesosa	ρεзμοή ερεδεμ- κού, φρεзού	7	10 5 2, 5
Bris	раскатником	6	2.5 1.25
	Moumeya Hue	- u	казана величина

Примечание — - указана величина шероховатости экономически целесо-образная для данной степени точности

OCT 26-09-625-79 cmp. 16

Точность размеров и шероховатость поверхности отливох

	поверхно	cmu omáub	OK. '		Ta	buya 5
Спосов	Мате- _Р иал	Масса Заготовкц	Buð производ-	Точнесть	ражеров	Рекотендуетые Значения пара- тетра шероко-
		K/°	cmba	KABCES/ MOVNOCTOU NO NO NO NO NO NO NO NO NO NO NO NO NO	x8au - no 00 €7€38 =	Bamocmu. Ra, mkm no roct 2789-73
	3		серийное	78	1415	
	ANOMUN Ve chaabe	∂0 100	единичное	8 10	1517	
serves	AMONUNU- EBNE CABBEI	CB. 100 do 1000	серийное единичное	8 10	1517	0
ě.		1000	серийное	1011	17	32
3	Hyzym, cmask Hoemmer meman	đo 100	единичное	7 10 8 11	1	
) ¥	36.3	CB 100 do	серийное	g 11		6ane e
nec 4 a H b &	YH, CMO HWE ME, CAJABSO.	1000	единичное		1617	90
n 8	863		Серийное	9 11	16	He
7	78.	cb. 1000	единичное	11	17	
Ę	Цин ко вые	801		35	912	5 1,25
Noċ dabar≠uem	сплавы	cb 1 do 10	<i>โย</i> คนน์หอ ย	58	1215	20 5
Noë Bren	30	∂o 1	серииние	58	1215	
8	5616 , cna64 ?2500K	CB.1 20 10		5 8	1215	205
	نده!	•	серидное.	5 7	1214	80 10
	26.8	до 100	единичное	7 9	14 16	0-
٠	Asomuny Conabo Sponsobole	CB. 100	серийнае	7 9	14 16	80 20
KOKUNB	6	до 1000	единичное	9 11	16 17	40 u bonee
\$	۰	_	Серииное	78	1415	80 40
P	7,0	do 100	<i>ยงินหม</i> งหอ ย	8 10	1517	80 u bosee
	yeyn y cmax	CB 100	<i>ε</i> θρυύ <i>κο</i> ε	8 9	15 16	8040
	2 2	do 1000	единичное.	9 10	1617	80 и более
Bacovio- Bue pop-	Yyzy+,cmaso, ybernywe memassoj	∂o 10			14 15	8010
6 6 0	n cuvaRP	cb .10 do 100	серийное		14 16	80 20
300	Amoriunue- Bue camabu	do 10		58	1215	40 5
3 201	Сталь	do 1	COUNTRIA	5 7	12 14	40 5
5 3 5 5	2774378	CB.1 20 10	серийное	7 9	14 16	80 10

Точность размеров и шероховатость поверхностей заготовок при обработке доблением

Ταδινυμα 6 Точность размеров Рекотендиетые Kba Aumemsi coneme oc 3HQUEHUR DADA-BUð KABCC метра шерохоob pa bo m KU Bamocmu. Ra. MKM. NO roct' 2789-73 80 u bouee Свободна в κοδκα 2009 409 κοθκα 40 ... 20 8 wmamnax ZOPAHOA BUPYBKO 40 ... 10 μ προδυδκα 20payan obsemhan 80 ... 10 wmamnoska bes kanubposku Листовая 5...7 20 ... 5 12 ... 14 obsemma s Высадка 5... 2,5 3...4 9... 11 итатповка выдавливание 3... 5 9...12 20... 5 вытяжка полых KO JOGHO B đemazeu neocmoú 5... 25 3...5 9...12 Формы (корписы стаканы то же, но глубокая 4...7 11...14 5...25 BUITTAMAG BUPYBKA MOCKUK Bemaneu no Kommypy 5... 7 5...2.5 12...14 (JOHA (pesa) Раскатка, после вырубки. 80...20 BNICABRU. ZUBRU. Вальцовка 80 ... 40 Apoxam nocse Сталь обдивки 5 AAROMUHUE BOR DEC NO PI

OCT 26-09-625-79 Cmp 18

Продолжение табл. 6

			рамеров	Рекомендуетые значения пара-
	д обработки	Kiase mov- Hormu no Clemene OCI	KBasumemen On CT C3 B 144-75	mempa wepoxoba- mecmu, Ra, mkm FOCT 2789 - 73
Carebolanue oméepomus uapuxonum onpoéxol	после сверления			25 963
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	после растачивания	45	11 12	
3010	после развертывания	23	79	2,5 0,16
при шероз	ание или раскатыва- капи или шариками коватости исходной иссти Ra 10 2.5	3 4	9 11	2,5 0, 63
אסט ע אסט	ывание шарихами иероховатости исход- поверхности a =2,5 0, 63	_		0,63 0,16
Алтазное выглаживание наружной цилиндрической поверхности при шерохова-тоети исходной поверхности Ra = 5° 1,25		23	79	1 25 q32
mocmu	Алмазное выглаживание отверстий при шерокова- тости искодной поверх- ности Ra = 2,5 1,25		79	0, 63 0,32

Параметры шероховатости поверхностей в зависимости от допусков размеров и формы при размерах от 1 до 500 мм

					Tab.	ouga 7		
		Вал						
Клаесы точности по	cucmene l	OCT			2			
KBQ.Aumemu no CT		75			6			
None donycka no c	ucmeme 0	CT	Πp	7	Н	Π	C=8	A
None donycka no ci			26/56	n6	K 6	156	h6	26
Интервалы номиналь ных размеров, мм	OMHOCUM EALHOR 2000 CO	הסטאוסביים	Pexa	тена	yemble	340	veru.	•
HWX PASMEPOS,	обравотки	10356-63	napar	empa	, Ra, M	KM, FO	72789	- 73
Om 1 do3	Н	<u>¥</u>		0, 16	-0,32			
0771 1 005	Π	又		0,08	- 0,16			
<i>a</i> 2 2 2 <i>a a</i>	Н	<u> </u>			932			
CB. 3 80 6	7	又			Q16			
CR C 20 10	Н	<u>V</u>		132	<i>- 0.63</i>			
CB. 6 do 10	Π	<u>V</u>		9, 16	<u> – 9,32</u>			
Cb. 10 80 14	Н	<u> </u>		932	-063			
CB. 14 do 18	П	<u> </u>			<u>-az</u>			
CB. 18 80 24	H			032	<u>- 06</u>	<u> </u>		
CB. 24 do 30	· n	<u>V</u>			<u> — 0,32</u>			
C8. 30 do 40	Н	<u> </u>			63			
CB. 40 do 50	п	<u>V</u>			932			
CB. 50 Bu 65	Н	<u> </u>			- 1,2:			
CB. 65 80 80	7	<u>V</u>			2-0,6			
CB.80 do 100	Н	VI			- 1,25			
CB. 100 do 120	η	<u>V</u>			<u> — 0,6 </u>			
CB 120 00 140	Н	<u> </u>			3 - 125			
CS. \$40 do 160 CS. \$60 do 180	Π				<u> – 96 </u>			
ER 180 do 200	Н	- V			- 124			
CI 200 2025 CI 225 10250	n	V			- 0,6	,		
CB 250 do 280	H	<u>¥</u>			125			
CB 280 do 315	П	<u>V</u>		124	0,63 - 2,5			
CB 315 do 355	H	₹/ 1						
C1.3.55 do 400		<u>-</u>		125	3 - 125 - 2,5	<u>'</u>		
CB 400 do 450	_ <u>¼</u> 	V Y			- /25			
c8. 450 do 500	η							

OCT 26-09-625-79 Cmp.20

					Прог	ornenc	10 mabs 7				
		Вал									
Классы точности	no cuer	neme oct		2		ä	2a				
KBQJUMEMBI NO C	T (38 14	4-75		7		8					
No se donycka no	cucmene	OCT	ſρ	Х	1	Πρ 2 za	Czq = B				
Moné Bonycka no	CT C38 1	44-75	U7	<i>f</i> 7	28	U 8	h 7				
Интервалы ноти- нальных разте- ров в тм	Trnocutens- van Elomet- puylickan moynocims obpabomw	CMENENS MOVADEMU NO FOET 10356-63		παρο		oa Ra,	3HQ4@HUR : MKM				
4 3- 3	Н	<u>VII</u>			0,32	- 0,6.	3				
0m 1 do 3	П	V/			0,16	- 0,3	2				
C# 2 20 C	Н	VII	0,32.	- 0,63							
CB. 3 do 6	Π	V/	0,16	- 0,32	932	-0,63	0,16 - 932				
cs. 6 da 10	H	<u>V!!</u>	96	3	Q32 - Q63 Q16 - Q3 Q63 - 125 Q63						
18. 0 00 10	П	<u>V/</u>	0,3	32	932	-0,63	2,32				
CB. 10.80 14	Н	VII			0,63	- 1,25	5				
CB. 14 do 18	П	VI			0,32	- 0, 63	3				
C8. 18 do 24	Н	<u>v//</u> v/	0,63	- 1,25	125	- 2,5	0.63 -125				
CB. 24 do 30	П	VI	9.32	- 0,63	0,63	-1,25	0,32 - 0,63				
CB- 30 00 40	Н	VII	0.63	- 1,25	125	- 2,5	0,63 - 1,25				
CB. 40 do 50	П	<u> </u>	0,32	- 0,63	0,63	- 125	932 - 963				
CB. 50 do 65	Н		1,2	5		- 2,5	1,25				
CB.65 do 80	П	<u>VII</u> <u>VI</u>	0,6	53	0,63	- 1,25	963				
C& 80 00 100	Н	VII	1,25-	2,5	2,		1,25- 2,5				
CB. 100 do 120	П	VI	963			- 125	963 - 1,25				
CB 120 do 140	Н	.\//	1,25-	ء ج	25	<u> - 5</u>	125-2,5				
CB 140 do 160 CB: 160 do 180	η	V/	0,63	- 1,25	12		0,63 - 125				
CB. 180 do 200	Н	<u>V//</u>	1,25-	2,5	2,5		1,25 - 2,5				
CB: 200 00 225 CB: 225 00 250	7	VI	0,63-			- 2,5	963 - 125				
[6.250 do 280	Н	<u>V//</u>	2,	5	2,5		2,5				
CB 280 00 315	П	<u>V/</u>	12.	5	125	-2,5	125				
CB. 315 do 355	Н	VII	2,5-	- 5	5		2,5-5				
CB.355 do 400	П	٧ı	1,2	5	2,5		1,25				
CS. 400 do 450	Н	VII	2,5-	5	5		2,5-5 125				
CB. 450 do 500	П	VI	1,2	5	2,5		1,25				

OCT 26-09-625-79 cmp. 21

					Προδο	AMEHU	e: mai	g, 7					
	0	mbepci	77 118										
KAQCEN MOVHOCM			T		2								
KBQAUMEMBI NO CT			 		7								
None Bonycka no			NP,		Н	П	C = A	Д					
None donycka no s			R7/57	N7	K7	J ₅ 7	_H7	G 7					
Интервалы номиналь ных размеров в.мм	Относиліва ная засчет рическая точность обрабатки	Criterie He moviocinu na ract 10356-63	,	napar		a Ra,	на ч е ні) 9					
0 / 2-3	Н	<u> </u>		0,32 - 0,63									
0m 1003	Π	<u> </u>			0,16 -	<u>0,32</u>							
CF 2 2- C	_H	<u> </u>			7,32 -	0,63							
CE. 3 do 6	П	VI		(7,16 -	0,32							
CB. 6 do 10	Н	<u>V//</u>			0,6	3							
	Π	ĀT	0,16 - 0,32 0,32 - 0,63 0,16 - 0,32 0,63 0,32 0,63 - 1,25 0,32 - 0,63 0,63 - 1,25 0,32 - 0,63 0,63 - 1,25 0,32 - 0,63										
CB. 10 do 14	Н	<u> </u>			063-	1,25							
CB. 14 do 18	Π	<u> </u>			032-	0,63							
C6. 18 80 24	H	<u> </u>			<u>063 -</u>	1,25							
CB 24 do 30	П	<u>VI</u>											
C8. 30 do 40.	<u>H.</u>	<u> </u>											
C8 40 do 50	Π	<u>V1</u>			932 -	0,63							
CE. 50 do 65	<u> </u>	<u>VII</u>			1,2	5							
CE 65 do 80	7	<u> </u>			0.6								
CB 80 do 100 CB 100 do 120	Н	<u> </u>			1,25 -								
CB: 120 do 140	П	<u> </u>			963 -								
CB. 140 do 160	H	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			125-								
CB. 160 do 180 CB. 180 do 200	7	VI VII			063 -								
CB 200 do 225	<u> </u>	V/			2,5								
CB 250 do 280	П	 			15:	_							
16 280 30 315	<u>Н</u> П			· · · · · · · · · · · · · · · · · · ·	2.5			 -					
C8 315 do 355		<u>VI</u>			0,63 -								
C\$ 355 do 400	H N	VII VI			25 -								
C& 400 do 450		<u>VI</u>			1,25								
CB. 450 do 500	<u>н</u>	V//			2.5-								
-4. 450 00 500					125								

OCT 26-09-625-79 cmp 22.

Продолжение табл. 7.

	0 m	Bepem	u e					
Классы точности				2		20	2	
KBQ AUMEMBI NO C			1	7		8	······································	
Nose donycka n	o cucmene	OCT	Υp	Х	ſ	Πρεια	Cza=Az	
None donycka no			77/08	F7/F8	E 8	⊔8	H8	
Интервалы ноти- нальных разтеров, в тт	Относитель- на я гготет- рическа я точность обравот ки	CMER ENЬ MOUNDOMU NO FOCT 10356-63	Pe na	KOMEH	дуеть тра	Ra, r	iQyeHUR ikm	
0m 1803	H	VII			9 - 0, 63 5 - 0,32			
CB 3 do 6	H	<u> </u>	****	0,6	3 - 1,2 2 - 96	5		
C8. 6 do 10	n H	<u>VI</u> VII		0,63	-1,25			
	П	<u>¥!</u>			2-0,6. -1,2:			
CB. 10 do 14 CB. 14 do 18	H N	<u>VIII</u> VII		0,32	- 0,6	3		
CB 18 do 24 CB 24 do 3 0	H n	VIII	1,25 - 2,5 0,63 - 1,25					
CB. 30 do 40 CB. 40 do 50	Н	VIII			5 - 2,5 3 - 1,2			
CE. 50 do 65	П Н	<u> </u>		1,2	5 - 2,5			
CB. 65 do 80	П Н	<u>∨!!</u> √!!!			3 - 1, 2 5 - 5	<u> </u>		
CB 100 do 120	П	VII			3 - 1, 2 5 - 5	5		
CB 140 DO 160 CB 160 DO 180	<u>Н</u> П	VIII VII			1,25			
CB 180 00 200 CB 200 00 225 CB 225 00 250		- <u>Yıı I</u> <u>Yıı</u>		1,2	5 - 5 <u>5-25</u>			
C8. 250 do 280 C8. 280 do 315	H N	VIII VII			5 - 5 5 <i>-</i> 2,5			
CB 315 do 355	Н	VIII			5 -5 5- 2,5			
CB 355 do 400 CB 400 do 450	П Н	VII VIII			5			
cb. 450 do 500	П	<u>VII</u>			5			

OCT 26-09-625-79 Cmp.23

Продолжение табл. 7

		u omb	epemi							
Классы точности			 	<u> </u>	1 2	4				
Квалитеты по С	T C 3B 14	4-75	ļ	8	9	11				
Поле допуска п	o cuemer	1e OCT	$C_3 = A_3$	17p /3	X3 W3	Cu=Ay Xy				
Name danyeka no	CT C3B 1	144-75	H8/H9	U8/57	F9/E9 D9	H11 D11				
Интервалы нати- нальных разперав в пп	Относитель ная геотег- рическая трочность вработки	точности	napamempa Ra, mkm,							
0m 1003	<u> </u>	<u> </u>			0,63 - 1,25	2,5 - 5,0				
		<u> </u>	<u> 432-063</u>	916-935	0,32 - 0,63	0,63 -1,25				
CB 3. 00 6	H	<u>/X</u>	1,25	0,63 - 125	1,25	2,5 - 5				
	Π	<u>v///</u>	0,63	q32-q63	0,63	1,25-2,5				
CB 6 20 10	H	<u> </u>	125-25	0,63 -1,25	1,25-2,5	2,5 - 5				
	_n	Viii	0,63-1,25	432-063	963 - 1.25	125 - 2,5				
CB 10 00 14	Н	<u>1 X</u>	1,25-2,5	125-2,5	1,25 - 2,5	5 - 10				
CB. 14 do 18	Π	₹ #	0,63-1,25	0,32-0,63	0.63-1,25	2,5-5				
CB 18 0024	Н	<u>IX</u>	2,5	125-25	2,5	5 - 10				
CB 24 30 30	Π	<u> </u>	0,63-1,25	963-125	0,63 - 125	2,5 - 5				
CB 30 do 40	Н	IX	2,5- 5,0	125-25	2,5-5	5 - 10				
C8. 40 do 50	Π	<u> </u>	1,25	0,63-1,25	1,25	2,5-5				
C8. 50 do 65	H	<u>/X</u>	2,5-5,0	1,25-2,5	2,5 - 5	5- 10				
(\$ 65 do 80	Л	Y ##	125-25	963-125	1,25-2,5	2,5-5				
C6.80 do 100	H	IX	2,5-5,0	2,5	2,5-5	10 - 20				
CB. 100 do 120	Π	V III	125-2,5	0,63 -1,25	1,25-2	5 - 10				
CE. 120 do 140 CE. 140 do 160	H	<u>1X</u>	5	2,5- 5	5	10-20				
CB 160 do 180	Π	<u> Y111</u>	2, 5	1,25	2,5	5 - 10				
08 180 do 200 (6 200 do 225	H	/X	5-10	2,5-5	5 - 10	10-20				
CB 225 do 250	Π	<u>\ </u>	2,5 - 5	125-2,5	2,5-5	5- 10				
CB 250 do 280	Н	<u> </u>	5 - 10	25-5	5 - 10	10-20				
<u>C6.280 do 315</u>	Π	VIII	2,5 - 5	125-2,5	2,5-5	5-10				
Cb 315 do 355	н	<u>IX</u>	5-10	2,5-5	5-10	10 - 20				
CB 355 do 400		VIII	2,5-5	125-2,5	2,5-5	5 - 10				
C8. 400 do 450	Н	X	5-10	2,5-5	5- 10	20				
CB 450 do 500	7	VUI	2,5- 5	125-2,5	2,5 - 5	10				

OCT 26-09-625-79 cmp 24

Продолжение табл. 7

	Ban	omber	cmu e				
Классы точности п	o cucmeme	oct	4	5		7	9
KBQ AUMEMBI NO CI	1 638 144	- 15	11	12		14	16
None Bonycka no	Cucmene	ocr	14	C5 • A5	X5	AnaCMn	Ag = CMg
None danyeka no-C	T C3B 14	14-75	C11 B11	H /2	812	J ₅ 14	Js 16
Интервалы номи- нальных разперов в гіп	Относитель ная геонетри ческая точ- насть об- рабитал	Cmenent movinocimu no luctiussa a3	nap	тендуе. Ометр ОСТ 2	a Ra		I A
0m 1 20 3	H	X//	2,5-5	5		10-20	20-40
	77	XI	0,63-125	2,5	;	5-10	10-20
CB. 3 20 6	<u> </u>	XII	2,5-5	5-	10	10-20	20-40
	7	XI	1,25-2,5	2,5-	5	5 - 10	10-20
CB. 6 80 10	<u> </u>	XII	2,5-5	5-	10	10-20	40-80
	7	XI	1,25-2,5	2,5-	5	5-10	20-40
CB. 10 do 14	H	XiI	5- 10	5 -	10	20-40	40-80
CB. 14 20 18	7	XI	2,5 - 5	2,5-	5	10-20	20-40
CB. 18 80 24	H	XII	5- 10	10-	20	20- 40	40-80
CB. 24 do 30	1_7	XI	2,5-5	5 -	10	10-20	20-40
CB. 30 80 40	<u> </u>	XII	5-10	10-	20	20-40	80u bones
CB 40 do 50	Π	<u> </u>	2,5-5	5 -	10	10-20	40
CB. 50 80 65	H	XII	5-10	10-	20	20-40	80 и боле
CB. 65 do 80		XI	2,5-5	5-	10	10-20	40-80
CB. 80 80 100	H	XII	10-20	10-	20	40-80	80 и более
CB. 100 do 120	Π	XI	5-10	5 -	10	20-40	40-80
CB. 120 do 140 CB. 140 do 160	H	XII	10-20	20	,	40-80	80u6onee
CB 160 do 180	Π	XI	5 - 10	10	,	20-40	
CB. 180 do 200 CB 200 do 225	<u>H</u> _	XII	10-20	20-	40	40-80	
CB 225 80 250	/1	XI	5 - 10	10-	20	20-40	
CB. 250 do 280	Н	X11	10-20	20-	40	40-80	80u6onee
c8.280 do 315	η	X /	5-10	10-	- 20		80 u bonee
Cå: 315 ∂o 355	H	X11	10-20	20.	- 40		80 u 601e
CB 355 do 400	Π	XI.	5-10	10	-20		80 u bose 6
CB. 400 do 450	<u>H</u>	XII	20	20-	40		80 u 601E
CB. 450 ∂o 500	П	XI	10	10-	-20		80 u 60 nee

Примечания:
1. Обеспечения относительной тачности:
1. Обеспечения относительной тачности:
1. Обеспечения относительной тачности:
1. Обеспечения деятельной тачности:
1. Обеспечения деятельной казыма деятельной от полимерного ташиностроения предпочтительной считать H-портильную степень геометрической точности, h соответствии с которой принимать реконендуетые значения параметра шероховатости.

OCT 26-09-625-79 Cmp. 26

Параметры шероховатости повержностей в зависимо оти от допусков размеров и формы при размерах от 500 до 3150.

Τοδνυμα 8

	Ombes	Coue			
Knaces moveo		.cmae	20		
Keanurers no l	Mganurens no CT C38144-75				8,7
Поле допуска по	Поле допуска по системе ОСТ			C = A	Cea = Aza
Mone donyera po	CT C78 144-75	<i>Is</i> 7	<i>Is</i> 7	HT	H8,H7 <u>(c8-16008</u> 0
Unmepbanoi NONUNANONUX PARMEPOB, 8 MM	Omnocumentos econempuvec- cas Tovnocio obpadomeu	Рекоме парам	endyemoie iempa i 1001 218	эначени Ra , мкм 19 - 73	
CE 560 20 630	//	,	5-10		
(8 830 do 710 (8 710 do 800	Н		5-10		
[8300 do 900]	Н		2,5 -5		5-10
CS 1000 do 1120 CS 1120 do 1250	Н			5-10	
(8 1250 do 1400 C8. 1400 do 1600	Н			5-10	
<u>(8. 1600 do 1000</u> (8. 1800 do 2000	<i>H</i>		10-20		
CE 2000 do 2240 CE 2240 do 2500	//		10-20		
(8 2500 do 2800 C8 2800 do 3150	,,			10-20	

OCT 26-09-625-19 Cmp 21

Продолжение табл. в

		Ban									
Knace mounoci	nu no OCT			ź	?				20		
KBanureros no L	T C38144-75		6						7		
Pene donyera no	cucreme OCT	Πp	_	Н	П	C=B	A	Notes	Galler	Xea	
Реле допуска по	<u>CT C38 144-75</u>	36	n6	<i>F6</i>	js6	16	96	47		\$7	
Интервалы Напинальных размеров, мм	DMHOCUTEAS- HITO SCOMET PUVECKARI TOV MOCMS OB- PASOMKU	Demouse									
C8 500 do 560 C8 560 do 630	Н			بے - ج				T	2,5 -		
<u>CB 630 do 710</u> CB 710 do 800	Н			2,5				25-5			
<u>CB 900 do 900</u>	Н	2,5 - 5									
C6, 1120 do 1120 C6, 1120 do 1250	Н		2,	5-3	5			5-10			
CB 1250 do 1400 CB 1400 do 1500	Н		بع	5-3	5		•		<i>5</i>	10	
<u>CB. 1600 до 1800</u> CB. 1600 дъ 2000	7 <i>H</i>		2,	5-5		~			5-,	0	
<u>(b. 2000 do 2240</u> <u>(b. 2240 do 2500</u>	Н				5.	-10					
<u>(b. 2500 20 2800</u> <u>Cb. 2800</u> 20 3150	Н		5.	10	-			Γ		-20	

<u> 007 26-09-625-79</u> Стр 28 Продолжение товл. 8

Ba		ombep	emue	<u> </u>						
ENGLE MOVHORMU	2CT	3			4		5	7	9	
Negaumemos co C	T CZB/44-75	8	9		11		12	14	16	
Пале допуска по	cucreme OCI	X 3 (3 - A3	Ш,	Co = Av	Co-A. Xv Av		Cs-Hs	A,=CM,	13.0	
Поле допуска по С	T 038 144-75	EO HO	Dg	HH	DII	CH	H12	11-14	N16	
номинальных размеров, в мм	Относитель- най геомет рическай точ- ность оброботт	over napamempa Ra, MKM, M								
CE. 500 do 560 CE. 560 do 630	Н	5-10 20-40								
CB: 630, do 710 CB: 710 do 800	//	5-10	10-20	و	0-4	0	40			
(b. 800 30 900 Cb. 900 30 1000	Н	5-10	10-20	ě	20-4	0	40-80	0.		
CB. 1000 do 1120 CB 1120 do 1250	Н	5-10	10-20	æ	7 - 40	2	40-80	bonee	3.03	
C8. 1250 do 1400 C6. 1400 do 1600	Н	10	10-20	a	0-40	2	40-80	٥	:	
Cb 1600 do 1800 Cb 1800 do 2000	Н	10	- 20		40-	- 00	7	90	0	
CB 2240 20 2500	11	10-20	20-40	40	2- <i>0</i> 0	2	80 ಕಂлес			
(\$ 2500 do 2800 (\$ 2800 do 3150	//	10-20	20-40	40	7 - 8 0	$, \mid$	80 Sosee			

Рекомендуемые посидли в от назначения и условий ерединений при размерах в системе отверстия. Назначение и условия работы соединений	Jobucumoe pabombi om 1 o No No cuemente OCT	9-625-79. Cmp. 29 **Rounoseerue 1 **Conpaborroe mu **Tobnugo **Codka **Tobnugo **Codka **Tobnugo **To
Скользящие посадки — (сочетание отверетий Н с валом h) а) для неподвижных сапряжений частосъемных деталей при повышенных требованиях к спосности стенные зубчатые калеса на валах оборудования, фрикционные турты и установачные кольща на валах и др. в) для центрирования корпусов под подшиний качения в оборудовании; в) для точного направления при возвратно - поступат ельных перетещениях поршиевой шток в направляющих втулках; поршни в цилиндрах и др.; г) для точных сопряжений с короткими равочими ходами, хостовики пружинных клапанов в направляющих втулках и др.		m 130.500 (8.500 30.3150 H7 h6 H7 h6
д) для центрирующих поверх- постей при пониженных тре- бованиях к соосности; при вальшой длине сопрягаеных поверхностей.	A3 C3	M8 M8 M8 M8 M8 M8 M8 M9 M9

OCT26-09-625-19 Стр. 30 Продолжение

Мазначения и услобия		oca Ora	
соединения	No cucmeme OCT	No CT 144-75,	
Ποςαθκυ ς	Sasopom		
с) для неподвижно закреп- ляеных деталей при не- больших нагрузках и необхо- диности обеспечить леекую сворку: стенные зудчатые колеса, туфты, рабочие шкивы и другие детали, соединяющиеся с валом на		O <u>m 130500</u> H8 h8	<u>CB 500 до 3 A</u> <u>HB</u> h B
шпонке; центрирующие фланцевые соединения, центри- рустые части машин, используе- мые в качестве качения и до- подиипников качения и до- же) для подвижных соединении при невысоких требованиях к точности; при медленных	<u>As</u> C3	<u>H8</u> h9	
или редких поступательных и бращательных перемещениях: перемещающиеся зубча- тые колеса; соедини тельные мирты ни балах и др.		<u>H9</u> h9	
з) дла относительно грубо центриробанных неподвиж- ных соединений: центриро- вание фланцевых крышек и др., 4) ола неподвижных соеди- нений малой точности: крышки сальников в корпусах; збездочки тр- говых целей на валах; сопражение распорных втулок; неответствен- ных шарниров.	<u>A+</u> C+	HH h ti	<u>HH</u> bH

OCT 26-09-625-19 Стр 31 Продолжение

Назначение и условия работы соединения	No even	neme	10 CT C	78
Nocadru c sast			144-75,1	<u>15-75</u>
Посад ка движения - (сочетание отверстию Н с волом д) - характеризует- ся минимальной по сравне- нию с остальными бели- чиной гарантированного зазора: а) в подвиженых соедине- ниях для обеспечения гер- метичности; в) для особо легной установ- ки сменных дсталей; в) при повышенных требова- ниях к соосности.	<u>A</u> _A		Om (80500 H1 g6	H7 96 H6 96
Тодовар посадка - (сочетание отверстин Н свалом f, е или d) а) дла точног сопражений с гаран тированным зазором соободно бращающиеся на валах шестерни; колеса, вклю частые туртати, цилиндой,	<u>A</u> X	A Xea	<u>H7</u> ¢ 7	<u>н7</u> ¢ 7
штоки, порими и др. 8) дър сопражений с большим гарантиробанным зазором при бысоких требобаниах к точности: балы в длинных или да-леко расставленных подшини-ках; блоки зубчатых колее и др)	A J		H7 e8 e7	
в) дла сопражений с гаранти- ровинным зазором при невы- саких требованиях к. точнос- ти, соосности. Крупные подшип- ники; посадки сцепных турт, центрирование крышек цилинд- ра, цилиндры, штоки, поршни ц др.	Aş Xs		10 10 10 10 10 10 10 10 10 10 10 10 10 1	<u>H8</u> e8

OCT 26-09-665-79 Cmp 32

Назначение и условия	Ποεαδκα		
работы соединания	No evement	10 CT 144-75; 1	
Посадки с за	зором		
г) дла сопражений с горантиро- ванным зозором в условиях малой точности: подвижные свединения, работамицие в		<u>Om 1 do 500</u>	C\$ 50076315 0
целовиях пыли и гризи, крыш- ки цилиндров с уплотнением стыка кольцевыми прокладка- ми; свободно сидящие на валах шестерни и муфты грубых мехомизмов: шарнирные соеди- нения тяг, рычагов и др.	<u>Av</u> Xv	MII	<u>HII</u> dII
Переходные посос	3 KU		
Πρεδπασκανεκοι δηρ κεποδδυμεκοία τος- δυκεκού δεπαπεύ, ποδδερτακουμίατα πρι ρεκοκπάας υπο πο γεποδιώκι θετηπήσ- πάμου εδορεκ ο ραδορεκ : α) καποροία προυκώς το τοδ πρετοώς δυδυαπωίε κυπέτα, κιφηπώ, ερυδιώντως υ δρ. δεπαπό κα θάλακ προ περεδαίε δοδραμού, καπονούς μόδο διδραμού, ρασδορασκώς ποποκία προ	<u>A</u> [H7 n6	<u>H7</u> n6
капитольног регоните и др. Б. для обеопечения хорошего цент- рирования без ватрат эначитель- ных училий для сборки и разборки: неподбиженые зубчатые колека на вознах редукторов; шкивы, мурты, моховики (на шпонках); втупки подшипнуков; втупки в ступи- цах вращающихся- на волах зубчатых колее и т.п.;	A	<u>H7</u> K6	<u>H7</u> K6
в) при необходимости облегчить сборку Посадка ичеет большие сред ние зазоры, чем предълдущай (небольшие шкибы и ручные махобички на концах валов и др.)	A	H7 js6	H7 js6

Hamailania	Посо	1ðka
Наэначение и условия работы соединения	No cucmeme OCT	No CT C38 144-75, 145-75
Посадки с на	MOSOM	
Продназначены для обеспечения прочности соединения и передачи нагрузки при наиненьшем натяге; прочности детали - при наиболь-шем натяге: а в сопражениях, у которых из-за монкостем ности деталей или мехамических свойств мельзя применять больших натягов: уплотнительные кольца на валу, фиксирующие положение внутреннего кольца подшинника качения; втулки и кольца в корпусах и т п	77,9	0m 120500 C\$500 20515 M7 P6 0m 120120 M7 T6 0m 1203 (\$ 8016800
в) в соединениях без пренежных веталей при небольших нагружах (втулки на валах: электро- и пневтовигателей); с крепежными детальни при больших нагружах (посадка на шпонке зувчатых колес и туфт тяжалого оборудования) в) в соединениях без крепежных	Πρ	M7 56 Qm 130 120 M7 56 Qm 130 3 GB 0010,550
деталей при эначительных на- грузках, в том числе знако- поременных (стальные кольца, дисковые и торельчатые мур-	A Tp	<u>H7</u> U7 <u>H1</u> 16 _{(Kranson}
ты на концаж валов и др.) при невольшиж нагружаж на малой длине сопряжения; г) в тяжелонагруженных соедине-	Aza Np Eza	<u>₩8</u> <u>₩8</u> <u></u> <u>₩</u> 7
ниях, когда требивания к точнос- ти сопряжения понижены и когда возникатицие напряжения не опасны для прочности детолей, о деорота- ции не имеют эначения; в карпу- врамзовые и стальные втулки в карпу-	As Nots	10 10 10 10 10 10 10 10 10 10 10 10 10 1

OCT & US 625-19 (mp 34)
Nousomenue &
Copasounce

Рекомендуеные стелени геометрической точности и елособы обработки для их достижения
Таблица

0.	Отклонение формы цилиндрических повержность некруглость		
Степень почнасти по ПСТ (03.56-63	Haumenobanue usdenuū	Cnocobsi obpabemeu	
<u>V,VI</u>	Посадочные повержности подшипни- ков качения классов 0,5 и 5, а также валов и корпусов под них Детали гидриблический иппирату- ры (поршни, золотники, гильзы, циндры) при средних и низких давлениях вез уплотнений и с уплотнениями Шейки балов редук- торов Машиностроительные детали, шготавляеные по квалитетам 6,7,8 (классы тачности 2,2а)	Шлифование, тонкое точе- ние, тинкие растачивание, развертыва- ние, прото- гивание	
<u>VII</u> , <u>VIII</u>	Валы под закрепительные под- шилниковые втулки (с допускам по вза - h10) Отверстия под втулки в гидрав- лических устройствах средних давлений Машиностроительные детали, изгатовляемые по квалитетам в,9,11 (классы точности 3,3а,4)	Грубое шли фование, чистовое точение, развертыва- ние, пре эпогива- н.	
<u>ī</u> X, <u>X</u>	Поршень - цилиндр насосов низких доблений с мягким уплот- нением. Валы под закрепительные под- шипниковые втулки (с допуском в 4 - h 11). Машиностроительные детали, изготовляеные по квалитету 12 (клок точности 5)	Грубае точение растачива- ние, Зенкорование, сверление	

Неплискоетнисть	U
HEADA MO JUHEL	NOCMB

CMCARNE MOTROMO NO DCT 10356-63	Наименование изделий и повержностей	ζησεοδω οδραδοπικύ
<u>v, vi</u>	Направлюющие точных нашин Опорные и трущиеся повержнос- ти ответственных нашинострои- тельных деталей	Шлифование, обтачивание и растачивани е повышенной точности
<u>VII , VIII</u>	Упорные подшипники машин ма- лой мощности. Опорные повержности корпусов подшипников Разъемы корпусов редукторов Контактном линия зубчатых колес 7-й степени тачности Опорные и трущиеся повержнос- ти машиностроительных дета- лей	Грубое шлифование, фрезерование, строгоние, протогивание, обтачивание
<u> </u>	Опорные поверхности ташин, устанавливаетых на клиньях и атортизирующих прокладках Присоединительные поверхности арматуры с испальзованием теких прокладок. Контактная линия зубчатых колее в-9-й степеней точности. Малоответственные рабочие поверхности машино-строительных деталей	грубое фрезерование, етрогание долвление, овтачивание
<u>XI</u> , XII	Плигие повержности под уста- повку прокладок, под арматуру Царийные повержности	

OCT. 25-05-05-19 Comp. 36

Henn	00.0	101	ANA	ന്നർ

Consored moved on the	Наименовани е изделий и повержностей	<i>Cဂဝငဝဝိစ၊</i> ဝဝ်၉ထဝ်ဝ ကနာပ
<u>v</u> vi	Направляющие планки и пазы приборов и механизмов высокой точности. Трущиеса повержности.	Шлифование, фрезерование повышенной точности, ко-ординатное растачивание
và VIII	Направляющие пазы и плонки механизмов средней точности Рубочие повержности прессов Плоскости плит штампов и прессоформ для подшинников классов 0,5,6. Ощ отверстий в корпусах зубчатых передач 7-й - 10-й степеней точности. Номинально параллельных деталей средней точности.	Фрезерование, строгоние, растачивание, протагивание. Литье под давлением
<u> , , x</u>	Стыковые поверхности вез взаин- ного перенещения при невысоких требованиях к герметичности и точности соединений.	Ipyboe appesepobarue, paemarubarue, chepnenue
<u> </u>	Нерабочие повержности	δος εργδως εποεοδώ οδρα- δοιπκα

H	еперпендикулярность и торцов	вое биение
Cmenent moundamu [95] /0356-63	Μαυπεκοδαμυε υзделій υ ποδερ∞κοσπεύ	ζησεοδεί οδραδοπκα
<u>¥, ¥i</u>	Фланцы валов и соединительных мурт двигателей Олорные торцы цилиндров нашин и двигателей Отбетственные детали точных теханизмов	Тонкое шлифобание, фрезеробание и растачибание, побышенной точности.
VII, VIII	Заплечники валов и корпусов под подшипники качения классов И и П. Торцы ступиц и распорных втупов порцы центральных отверстий корпусов насовов Ответственные дстали	Шлифование, читовое фрезерование, страение, долбление, расточивание
<u>x</u> , <u>x</u>	Привальчные плоскости рам, упоров, кронштейнов и т.п. Боковые плоскости канавок под коновий в приводах подшиников в приводах Машиностроительные детали средней точности	Обтачивание, грубое фре- зерование, строкание, долбление, растачивание
<u> </u>	Уплотнительные повержности присоединительных фланцев угловых вентилей бубчатые венцы збездочек Грубые машиностроительные детили	все ерубые способы обравотки

Hed	соосность и радиальное	биение
(menenb 'momocmu no Mei 10356-63	Наименование изделий и повержностей	οδραδο <i>π</i> ευ
<u>v, vi</u>	Посадочные шейки валов под зудчатые колеса в-й, 7-й степеней точности. Кольца подшиников качения классов 5 и в. Посадочные повержности валиков и осей точные нашиностроительные делали изготовляетые с долускати по квалитетам 7,8 (классы точности 2,2а)	Чистовое шлифобание, обтачивание повышенной точности. Растачивание с одной уетановки.
<u>V</u> a , <u>VII</u>	Посадочные шейки валов под зубуатые колеса в-9 степеней точности. Машиностроитель ные детали, изготовлаемые с допускати по квалитетам в, 9, 11 (классы точности 3,3 a,4)	Грубое илифобание, обтачивание, растачивание
<u>n</u> , <u>x</u>	Посадочные шейки валов под зубчатые колеса 10-й, 11-й, степеней точности. Мишиностроительные детали, изсотовлистые с допусками по квалитету 12 (класс точности)	Обтачивание, растачивание паниженной точности, Зенкерование
on Po sa	уковидитель темы, вашу.	A.U. Comos
om om	полнитель: старший Abous учный сотрудник Abous дела 33.	,

NULT PERNETPALINN NAMEHEHUN

Usm.	Homep	Ausmod	(cmp	anuu]		28-09-625-19 (mp 39		
	USMC - NENNOVX	Jamenen 'HBAZ		анулиро В анных	Номер дохументи	Подпись	Aoro .	Cpoc Bbedenup Usmenemud