ГОСУДАРСТВЕННЫЙ КОМИТЕТ СОВЕТА МИНИСТРОВ СССР ПО ДЕЛАМ СТРОИТЕЛЬСТВА

ТИПОВЫЕ КОНСТРУКЦИИ И ДЕТАЛИ ЭДАНИЙ И СООРУЖЕНИЙ

CEPMS 1.400-2

РЕКОМЕНДАЦИИ

И СЕТОК ДЛЯ ТИПОВЫХ СБОРНЫХ И СЕТОК ДЛЯ ТИПОВЫХ СБОРНЫХ КЕЛЕЗОВЕТОННЫХ КОНСТРУКЦИЙ ОДНОЭТАЖНЫХ И МНОГОЭТАЖНЫХ ПРОМЫШЛЕННЫХ ЗДАНИЙ

центральный институт типового проектирования FOCCTPOR CCCP

Москва, А-445, Смольвая ул., 22

Сдано в печать 197€г. Заказ № 10853 Тираж 200 экз.

ГОСУДАРСТВЕННЫЙ КОМИТЕТ СОВЕТА МИНИСТРОВ СССР ПО ДЕЛАМ СТРОИТЕЛЬСТВА

ТИПОВЫЕ КОНСТРУКЦИИ И ДЕТАЛИ ЗДАНИЙ И СООРУЖЕНИЙ

CEPNS 1.400-2

РЕКОМЕНДАЦИИ

ПО УНИФИКАЦИИ АРМЯТУРНЫХ КАРКАОВ
И СЕТОК ДЛЯ ТИПОВЫХ СБОРНЫХ
КОНКОТОВОЙ ЙИДИЧТЕОНОВ ХИНКОТЕОГОВИМИ И
ИНАДЕ ХІНННЭЛШИМОЯП ХІНЖАТЕОГОНМ И

РАЗРАБОТАНЫ ЦНИЦПромзданий при участиц институтов: НИИЖБ, Протстроипровект, ПИ-1, Моспронпровект, ВНИИЖЕЛЕЗОБЕТОМ и Гипро строймаш ВДОБРЕНЫ Госстроем СССР протокол от 19 апреля 1967г.

COJEPXAHEE

	Ввеление	CTP.
I. :	Общие положения	4
Π.	Рекомендации по унификации арматурных изделий плит покрытий и перекрытий :	
	А. Плиты покрытий	23
1	Б. Плити перекритий	25
E.	Рекомендации по унификации арматурных изделий стеновых панелей	50
IY.	Рекомендации по унификации арматурных изделий колонн	63
λ.	Рекомендации по унификации арматурных изделий ригелей междуэтажных перекры-	77
yı.	Рекомендации по унификации арматурных изделий ферм • • • • • • • • • •	85
	Приложения.	
I.	Техническая характеристика арматурных сеток, изготавливаемых на многоэлектрод- ных точечных машинах	90
2.	Техническая характеристика плоских ар- матурных каркасов, свариваемых на иногоэлектродной точечной машине МТМКЗх 100	91
2	Техническая характеристика плоских ар-	J.
٥.	матурных каркасов, свариваемых на одно- точечных машинах типа шти	95

BREII EHWE

Настоящие "Рекомендации по унификации арматурных каркасов и сеток для типовых сборных железобетонных конструкций одноэтажных и многоэтажных промышленных зданий" предусмотрены для применения при проектировании арматурных изделий типовых железобетонных изделий и конструкций на основе максимального использования опалубочных форм для изготовления плит покрытий и перекрытий, стеновых памелей, колони, ферм и ригелей междуэтажных перекрытий, включенных в строительный каталог, часть 3, утвержденный приказом Госстроя СССР # 136 от 13 августа 1965 г.

Настоящие "Рекомендации" следует также максимально учитывать при проектировании типовых конструкций в новых опалубочных формах и при разработке индивидуальных сборных железобетонных конструкций.

I_ CEMME HONOXEHMA

- I.I. Арматурные изделия должны проектироваться с учетом технологических требований по их изготовлению на высокопроизводительном сварочном и механическом оборудовании арматурного цеха.
- 1.2. Арматурные изделия рекомендуется проектировать с учетом применения полуфабрикатов /рулонных или плоских сеток, лент каркасов и др./, изготавливаемых на районных арматурных или метизных заводах, с последующей доделкой, при необходимости, в арматурной цехе завода железобетонных изделий.
- 1.3. Ковструкция арматурных изделий должна предусматривать возможность их сборки в пространственные каркаси на все железобетонное изделие в арматурном цехе с последующей транспортировкой к месту формовки. Из условия транспортабельности пространственного каркаса ширина его не должна превымать 3 м. При этом поперечное сечение каркаса должно иметь замкнутый контур.

В случае невозможности или нецелесообразности устройства пространственного каркаса на все железобетонное изделие, допускается проектировать арматурное изделие в виде крупных блоков или отдельных изделий с последующей сборкой их у места формовки. Например, плиты покрытий, ввиду трудностей создания пространственного каркаса на все изделие с жесткостью, достаточной для транспортирования, целесообразно армировать отдельными плоскими изделиями, устанавливаемыми в форму перед бетонированием.

1.4. При проектировании следует предусматривать конструкцию и места установки фиксаторов в виде цементных мям пластмассовых подкладок, специальных устроиств на форме и т.п., обеспечиваещих проектное положение арматурного изделия в опалубке.

1.5. Допускаемые отклонения проектных размеров арматурных изделий не должны превышать величин, приведенных в табл. 2 и 6 ГОСТ 10922-64 "Арматура и закладные детали сварные для железобетонных конструкций. Технические гребования и методы испытаний".

На рабочих чертежах должны приводиться только те допуски, размеры которых отличаются от величин, указанных в ГОСТ 10922-64, и которые согласованы с технологическими организациями.

- 1.6. При проектировании конструкций без предварительного напряжения на рабочих чертежах арматурных изделий
 рекомендуется приводить указачия по замене арматурных
 стержней на другие класси стали, а для арматуры, распределенной по сечению /хомуты поперечного армирования, сетки
 и т.п./, также и на другие диаметры, если это не повлечет
 за собой необходимость переработки чертежей. Например,
 рекомендуется приводить указания по замене диаметров
 поперечных стержней каркасов изгибаемых элементов, стержней сеток и т.п., оговаривая необходимые при этом изменения в конструкции каркасов и сеток.
- I.7. Предварительно напряженные конструкции разрабатываются в различных вариантах напрягаемой арматуры /проволочная, стержневая, прядевая и др./.

На ненапрягаемую арматуру указанных конструкций распространяются требования п.1.6 настоящих рекоменпалий.

- 1.8. При проектировании отдельных марок типовых железобетонных изделий рекомендуется применять арматурную сталь;
- а/ для изделий с предварительным напряжением не более 3-4 различных классов;

- б/ для изделии без предварительного напряжения не более 2-3 различных классов.
- I.9. В отдельном плоском арматурном изделии рекоменжуется принимать:
- а/ в каркасах продольные стеряни не более двух различных диаметров, поперечные - одного диаметра;
 - б/ в сетках не более двух различных диаметров.
- I.IO. При проектировании железобетонных конструкций массового изготовления следует стремиться к сокращению числа типоразмеров арматурных изделий как в пределах одной марки железобетонного изделия, так и в пределах серии типовых чертежей.

Hon ston:

- в предварительно напряженных железобетонных изделиях конструкция арматурных каркасов и сеток должна быть, как правило, одинаковой независимо от вида напрягаемой арматуры и способов натяжения;
- в изгибаемих элементах железобетонных конструкций, одинаковых по опалубке, арматурные изделия должны, как правило, приниматься отличающимися только диаметрами стержней, все геометрические характеристики арматурных изделий должны быть одинаковыми;
- в изгибаемых железобетонных конструкциях, имерщих одинаковие размеры поперечного сечения, но разные длины, арматурные изделия могут отличаться только длиной или диаметрами стержней. Расстояния между осями продольных стержней должны быть одинаковы. Длина поперечных стержней также принимается одинаковой.
- I.II. При проектировании арматурных изделий следует предусматривать приспособления или средства захвата железобетонного изделия при под"еме, учитывающие технологию

изготовления конструкции, возможности распалубки и монтажа.

I.I2. Арматурными изделиями являются: сетки; плоские каркаси; монтажные петли; отдельные стержни.

Арматурные изделия могут об"единяться в пространственные каркасы, в которые, в необходимых случаях, включаются также закладные детали.

Требования, пред являемые к проектированию арматурных сеток, плоских каркасов и монтажных петель, а также к их унификации, приведени в п.п.І.ІЗ-І.22.

Арматурные сетки

- I.I3. Крупные сетки типовых железобетонных изделий следует проектировать в двух вариантах:
- а/ в первом варианте из товарных сеток по ГОСТ 8478-66 "Сетки сварные для армирования железобетонных конструкций", используя их целиком или как полуфабрикат;
- б/ во втором варианте из сеток, изготовляемых на высокопроизводительных машинах типа ATMC 14x75, с учетом технологических требований по изготовлению сеток на этих машинах, изложенных в п.п.1.14 и 1.15.

Техническая характеристика арматурных сеток, изготавляемых на многоэлектродных точечных машинах типа ATMC 14x75, приведена в Приложении I.

I.I4. Арматурные сетки, предназначенные для изготовления на многоэлектродных точечных машинах, должны проектироваться только прямоугольной конфигурации с одинаковыми диаметрами и длиной всех поперечных стержней. Диаметры и длины всех продольных стержней также должны быть одинаковыми.

I.15. Расстояния между продольными стержнями сетки рекомендуется назначать кратными IOO мм /IOO, 2OO, 3OO мм/.

В случаях, когда применение шага с такой градацией приводит к существенному перерасходу арматурной стали, можно назначать переменный шаг продольных стержней сетки, но также кратный 100 мм /чередование шагов 100 и 200 мм взамен 150 мм, 200 мм и 300 мм взамен 250 мм и т.д./.

При ширине сетки не кратной IOO мм расстояние, оставшееся после расстановки стеркней с принятым шагом, размещать с одной стороны сетки.

Расстояние между попереченми стержнями сетки может быть любым в пределах, указанных в технической характеристике /приложение 1/2, но обязательно одинаковым по всей длине сетки. Рекомендуется расстояние между поперечными стержнями принимать кратным 50 мм.

I. 16. Сетки, имеющие ломанный контур по периметру или отверстия внутри, а также мелкие сетки, следует проектировать, исходя из возможности их изготовления из широких сеток путем резки и приварки, при необходимости, дополнительных стержней.

Арматурные каркасы

I.T7. Конструкция плоских каркасов должна быть основана на применении заготовок по сортаменту сечений каркасов, приведенному в табл. I.I, изготовление которых может преимущественно производиться на многоэлектродных машинах типа МТМК ЗхІОО или на специальных автоматах. В сортаменте зафиксировани основние гоометрические карактеристики каркаса и рекомендуемие диаметри стержней.

С целью сокращения отходов при разрезке лент полуфабрикатов, при проектировании каркасов, основанных на применении заготовок по табл. І.І, следует стремиться к тому, чтобы расстояние от оси крайнего поперечного стержня заготовки до конца продольных стержней принималось равным половине шага поперечных стержней. При доработке такой заготовки, при необходимости, на концах могут быть приварены дополнительные стержни.

I. I8. При конструировании каркасов, основанных на применении заготовок по сортаменту табл. I.I, допускается предусматривать, при необходимости, приварку к заготовке дополнительных поперечных и продольных стержней на всю длину каркаса или на отдельных его участках. При этом следует учитывать допустимие минимальные расстояния между стержнями по условиям точечной сварки, а также требования СНиП П-В. I-62.

Диаметры дополнительных продольных и поперечных стержней могут приниматься отличающимися от диаметров стержней, принятых в заготовке, но удовлетворяющими условиями сварки. Однако, следует иметь ввиду, что общее количество диаметров стержней, применяемых для армирования одной марки железобетонного изделия, должно быть, по возможности, минимальным.

I.19. В случаях, когда применение заготовок по сортаменту не представляется возможным по экономическим, конструктивным, расчетным и др. соображениям, проектирование плоских арматурных каркасов должно быть ориентировано, как правило, на технологические параметры иногоэлектродной точечной медины типа МТКЗхІОО. Техническая характеристика каркасов, изготавливаемых на машине МТМКЗхІОО, приведена в приложении 2.

I.20. Каркаси, удельный вес которых в общем об"еме арматуры железобетонного изделия невелик, а об"единение их в ленту, пригодную для изготовления на высокопроизводительных сварочных машинах с последующей разрезкой, не представляется возможным, рекомендуется проектировать, ориентируясь на изготовление их на одноточечных машинах типа МТП. На этих же машинах предусматривается приварка дополнительных стержней к полуфабрикатам каркасов.

Тех чическая характеристика каркасов, изготовляемых на машивах типа МТП. приведена в приложении 3.

Монтажные петли

I.2I. Проектирование монтажных петель для массовых железобетонных конструкций следует ориентирорать на изготовление на специальных автоматах, которыми в настоящее время оснащены некоторые заводы железобетонных изделий.

Форма монтажных петель, изготавливаемых автоматами, приведена на рис.I.I.

1.22. Для конструкций, изготовление которых может производиться с заглаживанием поверхности механическим способом, следует предусматривать монтажные петли, не выступающие за грань поверхности бетона.

Форму и размеры выемки для таких петель следует принимать по рис. I.2.

В конструкциях, где применение монтакных петель, расположенных в выемке, невозможно из-за малых размеров бетонного сечения, следует предусматривать "падающие петям", рис. I.3.

При проектировании "падающих петель" следует стре — миться к тому, чтобы стержень поз. "a" /рис.1.3/ соответствовал рис. 1.1.

На рабочих чертеках изделий, в которых применяются "падалиме нетии", следует оговорить, что кольно "падалией петии" /рис. 1,3 поз. "б"/ после заглаживания поверхности бетона следует поднять в вертикальное положение, в внемку запелать бетоном.

Примечание:Помимо "падающих нетель" могут применяться и другие приспособления для захвата изделии, удовлетворяющие технологичестим требованиям, указанным в данном пункте, а также прочности самого приспособления и прочности изделия.

Пространственные арматурные каркасы

I.23. Проектирование пространственных арматурных каркасов, следует ориентировать на контактную точечную сварку с помощью сварочных клещей.

Наряду с этим в рабочих чертежах необходимо приводить способ образования пространственного каркаса для случая отсутствия электросварочных клещей.

Возможный способ образования пространственного каркаса при отсутствии электросварочных клещей приведен для колонн в п.4.4, а для балок и ригелей в 5.2 настоящих рекомендаций.

I.24. Пространственные арматурные каркасы или блоки должны проектироваться так, чтобы места сварки отдельных арматурных элементов друг с другом могли быть доступны для сварочных клещей. С этой целью рекомендуется:

размеры ячеек между продольными и поперечными стержнями в об"емных каркасах должны быть не менее 70x100 мм /рис.1.4/;

расстояния между двумя продольными стержнями плоских каркасов, собираемыми в пространственный в виде взаимно пересекающихся плоских каркасов, должны быть не менее 70 мм /рис.1,5/;

Расстояние от точки сварки двух стержней в одной плоскости до бликатых стержней пространственного каркаса, расположенных в другой плоскости, должно быть не менее половини диаметра контактной поверхности электрода плюс 5 мм и не менее 15 мм.

Диаметр контактной поверхности электрода в им в зависимости от максимального диаметра свариваемых стержней принимается:

- 20 мм для стержней диаметром до 10 мм включительно,
- 40 мм для стержней диаметром до 22 мм включительно,
- 60 мм для стержней диаметром до 40 мм включительно.
- I.25. Рабочие чертежи арматурных изделий должны содержать указания о рекомендуемом порядке сборки пространственного каркаса.
- I.26. В главах П.-УІ приведены рекомендации по унификации арматурных каркасов и сеток типовых железобетонных конструкций плит покрытий и перекрытий, стеновых панелей, ферм, колонн и ригелей промышленных зданий.

Для наиболее массовых типовых железобетонных изделий - плит покрытий и перекрытий и стеновых панелей приведены рабочие чертежи унифицированных по геометрическим харак-теристикам арматурных сеток и каркасов, рекомендуемых для применения при проектировании указанных конструкций, изготовляемых в существующих опалубочных формах.

В соответствии с необходимой несущей способностью сетки и каркасы разработаны в нескольких вариантах, отличающихся только диаметрами применяемых стериней.

При проектировании в приведенные конструкции сеток и каркасов допускается, при необходимости, внесение следующих изменений:

а/ замена класса стали и диаметров стержней:

б/ изменение количества привариваемых к заготовке продольных и поперечных стержней.

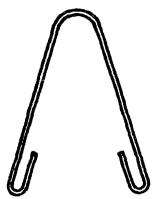
В главах П и П каркасам, запроектированним на основе пришенения полуфабрикатов по сортаменту табл. I.I, присвоены марки в соответствии с графой I, характеризурцей типоразмер заготовки, и графой З, устанавливающей вариант армирования по диаметру. Например, каркасу продольного ребра плит 3х6 м /рис.2.6/ присвоена марка КРІ2-П.

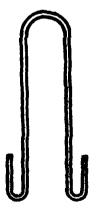
COPTAMENT

NO NY PAGAMENTOS EAPERCOS THROBBIOS CEOPHOIX SENESOGETONHOIX KONCTPYEUM PASHEPOI CEYEMAN H WATH NONEPEYMOISE CTEPSKHEN EAPKAGOS.

		3 3	AMA	HET	06/14/	WAR	BEC
pagmejo 	3 C K H B	2000		dz	do	TEAK.	11.1
	2	3	4	5	6	7	8
Ep1	R & Tal	Z	BAZ	-	487	150	9,6
		7	6AIII	=	587	 	ق بر
	in.	T.	YAIT	-	58]	 	1,9
EP2	1 e 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	T.F	6A1	=	58] 6A]	200	<i>2,5</i>
<i>~,</i> ~	WELLHAM K	Į.	18AZ	_	6AI	300	4/
		77	20.87	_	89.	300	5,/
		ומ	220		89]	300	6,1
		MI	2594	-	BAT	300	79
<u>.</u>	de Mai	Z	SAM	_	487	150	99
tp3	36	<u> </u>	PAIN PAIN		58 <u>.</u> 58 <u>.</u>	150	1,3
					301	150	1,9
Ep4	2 to Ma,	7	58]	-	58]	200	0,4
			847	킈	48]	300	95
eps	al state of the st		PANT.	_			0,9
		-	WAS	-		300	1.1
	-	\dashv	1	1			

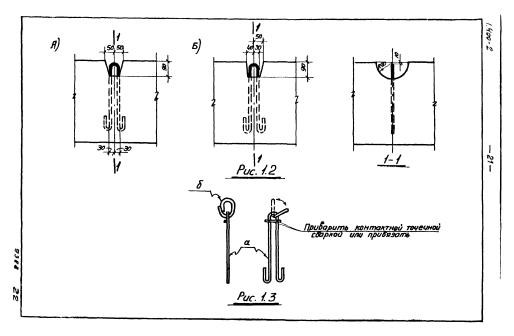
	Tas	SIA	149	1.10	100	20 sept	EHHE!
/	2	3	4	5	6	7	8
		I	587		487	600	93
	٠. ٥	1	SAM	_	487	600	95
	State of the state	13.151	894	_	487	600	0,8
		15	VOA!		58 <u>7</u>	600	1.3
KPG		E	1295		58_	600	1,8
-			8 9.17		481	100	1,0
		W/	OAI	_	587	100	1.5
		mii T	VARI		58 <u>7</u> 58 <u>7</u>	100	2,0
		2	177	<u> </u>	F 92		2.7
		7	48_7	_	481	300	0,3
		7	IOAIII	-	58]	200	1,4
	23 d, d, d,	111	MAN	_	582	200	2,6
EPT		12 12 15	16AAI		SAZ	300	3.3
		12	18911		6AZ	300	4,1
		7	20411		80.	300	5, 2
		Z	58]	-	487	600	0,4
		11	6AM		481	600	0,5
£p8	3 di	11/	BAIII		48_	600	0,8
	To the state of th	121212	OAI		587	600	13
		15	1291	-	587	600	1.8
	·						
/	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	<u> </u>	10 A.II		582		1,0
Kp9	Was do	<u>"</u>	VZAN	_	58]	200	12
	X	<u>"</u>	/4AII	-	58]	200	1.6
		L	<u> </u>	L	لــــا	L	
							}
							* 1
							1

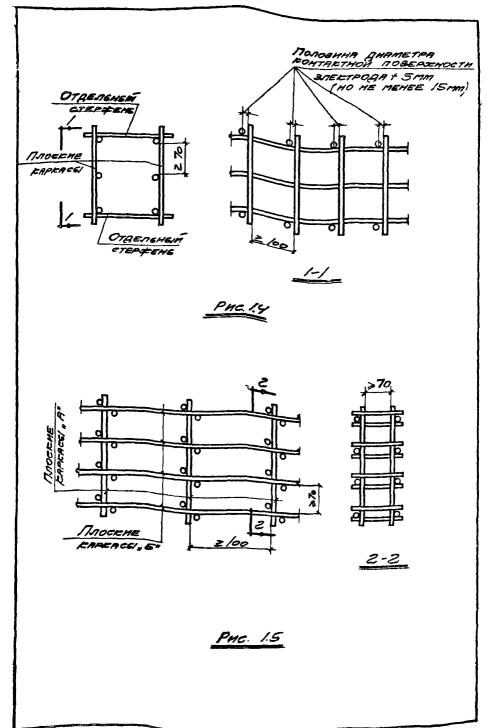

	TAG	PHY	(A .	1. 1	(np	одолэ	kænne)
/	2	3	4	5	6	7	8
	3 d,	2	48]	1	481	300	0,3
		7	VOA!	-	58]	200	1.4
, ,		<i></i>	1200	_	39.	300	2.1
tp/o	a,	1/2	20 A.	_	8AI	300	5,3
		112	22Aij	_	BAI		6,3
		<u> </u>					0,0
		Z	58]	-	481	600	0.4
	ابر م	1/2	8AM	-	487	600	28
Kp11	& 3 T T T T T T T T T T T T T T T T T T	_	DAI		587		1.3
		121	Sei	-	58]		a5
	d,	I	481		481	200	0,3
		1/2	581	1	58.	200	a5
Ep 12		111	50]	_	6AIII		0.6
		14	8AM	-	58]		1.0
		141	CAM		58]		2,0
		151	12 A a		582	250	2,0
		<u> </u>	14911	_	58]	250	2.7
		111	16AU	_	502	300	3,4
	de di	12	18AM	_	58]	300	4.2
EP13	a,	1	20Aij		58]	400	5,1
	+81-	1/2	229		641	400	6.2
		12	35 A.		89]	500	80
		וויע	28 A j		BAI	500	10,0
		13	32.9	_	8A_	500	12.9
I		<u> </u>	L				
1							!
1							


		TAL	5 MY	19 1.	1 (10	qtan	kenne,
/	e e	3	4	5	6	7	8
		7	ISA <u>I</u> I	_	58 <u>7</u> 58 <u>7</u>	300	6,5 8,2
	do di	14. 14.	25 A N		58]	 	10,0
KP14		TE VE	22.A.T.	 	6A] 8A]	500	12,1
	•	14 141	28A 11	_	BAT	500	19,6
		2	329.1	_	8A	500	25,5
		Ī	587	58]	48[600	0,4
	de d	<u>"</u>	8AII	BAII	487	600	0,9
		15, 13, 13,	BAII	16A III	58]	600	1.4
		14			58]	300	1,6
4			KANT	·			2.1
KP15		77	18AII	GAI!	6AII	300	2,5
		111	20AII				3,4
		V///	22 A.T	 			29
		141 141	25Anji				4.7
		7	28 M.J	KAN	PANI	300	6,2
		7	58]		58[300	0,5
	do	7	6AM	_	6AT	300	0,7
	o portion of the second of the	14 14 14	BAII	_	BATT	300	1.3
KP 16	8 8 d	1/2	IOAT	_	/oAiii	300	20
LP17	\$ 3 d d d d d d d	Ī	58]	-	50]	200	0.7

	7	AEV	H4A	1.1	npa	40safe	EHHE)
/	2	3	4	5	8	7	8
		7	16 A	-	58 <u>7</u> 58 <u>7</u>	 	3,4
		_	18AM	_		300	42
	the de la	14.	20AM	-	58 <u>.</u> 69.	400	5,1
Ep 18	do d,	I I	25 1111	-	BAI		8,1
	-8	12	28A II	-	BAI	500	10,0
		n	32.0 11		BA_	500	13,0
		7	16AM		587	300	6,6
	d3 Cd,	1/2	IRAN	_	581		8.2
			20 Air	_	58]		100
400		עו	2291	_	697	400	12.1
EP19		الأا إدا إذا إلا	25A.	_	BAI	500	15,8
		1/2	28A jij		8AI	500	19,6
		ווֿאַ	32 AZ		BAI	500	25,6
		<u> </u>	16AM			300	3,5
	. 9 8	11	VBAMI		58%		4,3
	S S d	الج ا	2000		582	<u> </u>	5,2
Ep20	(a)	112	224]	_	GAT	400	63
	و	121	25 Au 28 Au	_	8A] 8A]	500	8,2
		VII	32 A M	_	8A [500	13,1
		Ī	ISA TO	_	58]	300	6,7
] بر	Ī	IBAIII	_	58%	300	8,3
	de a		2005	_	58]	400	10,2
EP2/	di di	12,	22AM	_	6A	400	12,3
		141	25AII	-	847	500	15,9
	1		28 M.T	_	8A]	500	19.7
		ווע	92AZ	_	8AI	500	25,7

400-2	- /9 -						
	TA	16.7.2	1441.	1 (n)	pogo	MYCEM	ne)
/	2	3	4	5	6	7	8
		I	16ANT	-	58]	300	9,8
		1/2	18AII	-	582	300	12.3
(11	20 A II	_	50]	400	15,0
tp22	y se	in	22 A I	-	6AI	400	18,2
		<u>v</u>	25A.	-	BA_	500	23,6
		N.	28AE	-	BAI	500	29,4
		n	3200	-	BAI	500	38.3
		Ī	20 A.	_	12 Air	200	7.7
		<u>"</u>	22A 1	<u> -</u>	/2A	200	8.2
	y de	<u>#</u>	22A 1	_	MAJ	200	10,1
		11	25A [[_	BAN	200	9,1
Kp23	R S S	Y	25 A.M		14811	200	10,9
,—,—, 	is di	1/2	25 Aij	_	16AM	200	13,1
	65	12	28411	_	MA	200	149
		יתו	28A11		1641	200	14.1
		14	32AU	_	149.11	200	13,4
				<u> </u>			





Puc. 1.1

П. Рекомендации по унибикации арматурных изделий плит покрытий и перекрытий

А. Плиты покрытий

2.1. Сетки армирования полок принимаются для плит размером 3x6 м 3x12 м — по рис. 2.1, для плит размером 1.5x6 и 1.5x12 м — по рис. 2.2.

В соответствии с п.І.ІЗ сетки запроектированы в двух вариантах:

Іе вариант – предусматривает применение товарных сеток по ГОСТ 8478-66;

П вариант - предусматривает изготовление сеток на многоэлектродных сварочных машинах.

Сетки по I варианту для плит размером 3x6 и 3x12 м изготавливаются из рудонных сеток марок 150/250/3/3 и 150/250/4/3 , а для плит I,5x6 и I,5x12 м из марок 2900 200/200/3/3 , 200/200/4/4 и 200/200/5/5 по ГОСТ

8478-66

Для сеток по П варианту на рис. 2.1 и 2.2 приведена спецификация.

2.2. Сетки, предназначенные для армирования отдельных участков плит, принимаются:

для опорной части -- по рис. 2.3:

для армирования углов - по рис. 2.4;

для армирования вутов - по рис. 2.5.

Сетки по рис.2.3 - 2.5 запроектированы, исходя из возможности их изготовления из широких сеток или лент путем разрезки с последующей доработкой гибом.

2.3. Каркаси, предназначенные для армирования ребер плит, принимаются:

для продольных ребер — по рис. 2.6_{i} для поперечных ребер — по рис. 2.7.

- 2.4. Независимо от высоты плиты каркасы продольных ребер рекомендуется проектировать, как правило, на всю длину ребра. При соответствующем обосновании расчетом в случаях, когда в приопорных участках ребра устанавливаются сетки по рис. 2.3, каркасы могут не доводиться до каждой из опор на длину 750 мм.
- 2.5. На приопорных участках продольных ребер /в зависимости от результатов расчета на прочность и раскрытие трещин в момент отпуска натяжения /допускается, при необходимости, приварка дополнительного продольного стержня в уровне монтажной арматуры длиной 1500 мм /стержень "а" на рис. 2.6/,
- 2.6. Анкеровку продольных стержней каркасов поперечных ребер рекомендуется выполнять с помощью приварки у торцов на всю высоту каркаса поперечных анкерующих стержней. Диаметр анкерующих стержней принимается равным большему из диаметров продольных стержней каркасов.

В случаях, когда в продольном ребре плиты проектируется верхняя предварительно напряженная арматура, расположение которой препятствует приварке анкерующего
стержня на все вносту каркаса, допускается приварка
анкера в виде коротыша. Алина коротыша должна составлять
60 мм при приварке его к одному продольному стержне к
100 мм - к двух продольным стержням /например, в каркасе

среднего почеречного ребра плит размером 3x12 м/. Диаметр коротыша должен приниматься равным большему из диаметроя продольных стержней каркаса /рис. 2.8/.

В случаях, когда изготовление каркасов производится без применения полуфабрикатов в виде сварных лент, анкеровку продольных стержней каркасов поперечных ребер допускается предусматривать с помощью высаженных головок /рис. 2.5/.

2.7. Для возможности применения каркасов по рис.2.7 для армирования действующих типовых плит покрытий, в опалубочные чертежи плит размером I,5x6, I,5xI2 и 3x6 м режкомендуется внести следующие изменения:

а/ с целью использования одинаковых каркасов для армирования поперечных ребер плит размером 3х6 м высота сечения торцевого ребра принимается равной высоте промекуточных ребер — 150 мм. В существующих опалубочных формах указанное изменение высоты торцевого поперечноги
ребра может быть достигнуто путем установки вкладына
/рис.2.10/.

б/ с целью использования одинаковых полуфаорикатов для армирования поперечных ребер плит шириной 3 и 1,5 м, высота сечения поперечного ребра плит шириной 1,5 м принимается по рис.2.11.

Б. Плиты перекрытий

2.8. Нижние /пролетные/ сетки полки плит шириной 1,5 м рекомендуется принимать по рис.2.12 и 2.13.

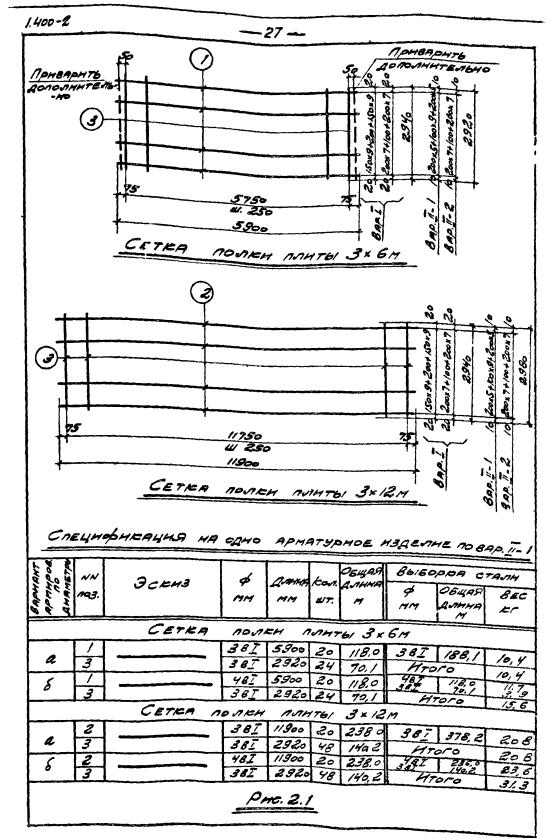
В соответствии с п.І.ІЗ сетки запроектированы в двух вариантах.

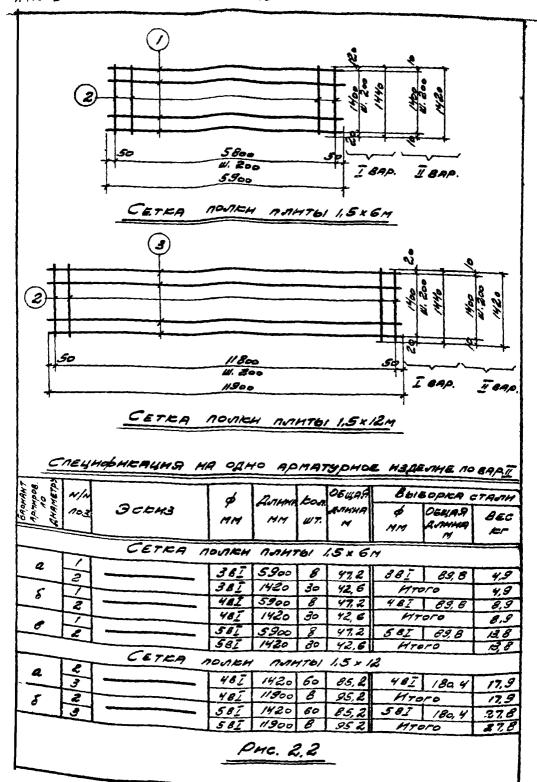
По I варианту /рис.2.12/ предусматривается применение сварных сеток марок 200/200/4/4 и 150/150/5/6, изготовляемых по специальному заказу в соответствии с п.1.6 гост 8478-66.

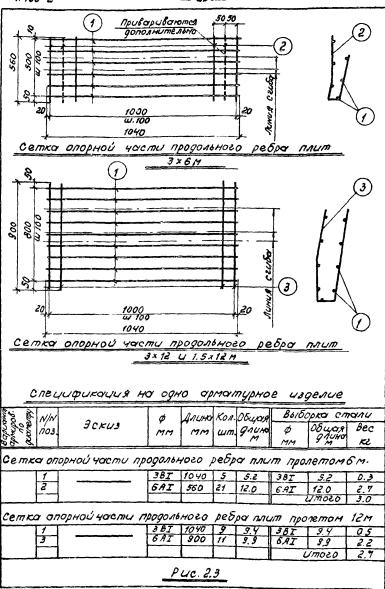
Указанные марки сеток отличаются от приведенных в табл. I сортамента сварных сеток ГОСТ в 8478-66 только диаметрами продольных и поперечных стержней.

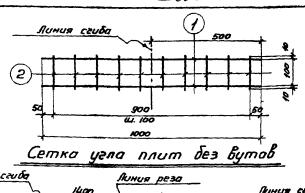
По П варианту /рис. 2.13/ предусматривается изготовление сеток на многоэлектродных сварочных машинах.

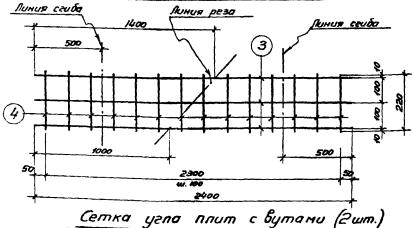
2.9. Верхние /опорные/ сетки полки для плит шириной 1,5 м, а также сетки полки для плит шириной 0,75 м рекомендуется проектировать, исходя из возможности изготовления на основе широких сеток с ячейкой 200х200 или 200х150 мм /см.рис. 2.14/ с последующей их разрезкой и в необходимых случаях приваркой дополнительных продольных или поперечных стержней.

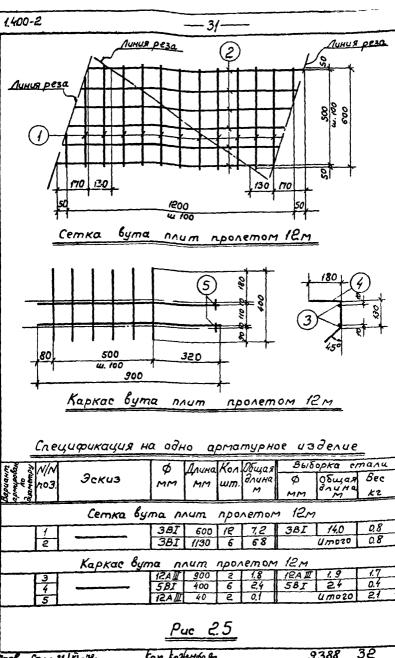

Разрезка широкой сетки на опорные и пролетные сетки для армирования плит шириной 1,5 и 0,75 м дана на рис.2.15 и 2.16.

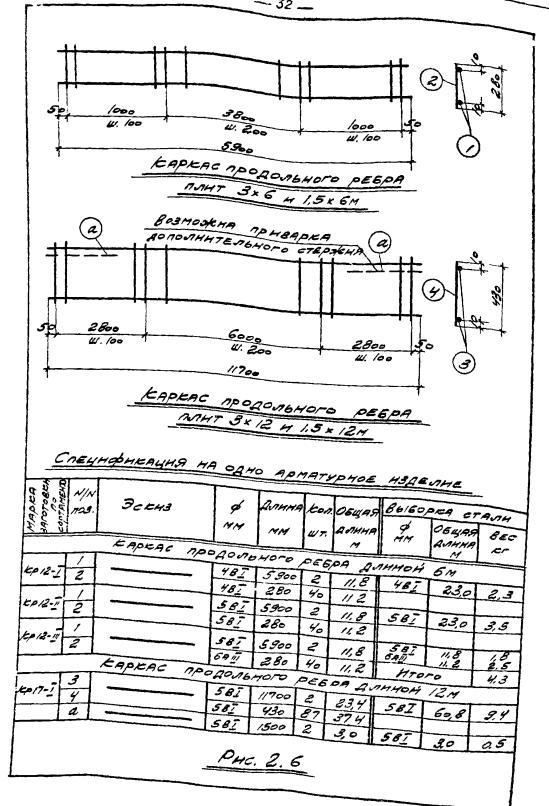

- 2.10. Сетки для армирования опорной части продольного ресра плиты следует принимать по рис.2.17.
- 2.II. Каркасы продольных ребер следует принимать; для плит с ненапрягаемой арматурой по рис.2.I8 2,20; для плит с напрягаемой арматурой по рис.2.2I.
 - 2.12. Каркасы поперечных ребер следует принимать: для промежуточных по рис.2.22;

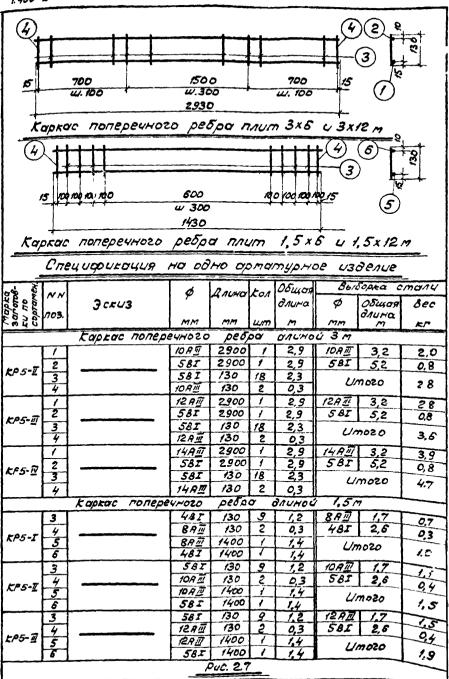

для торцевых - по рис.2.23.


Анкеровка продольных стержней каркаса по рис.2.22 осуществляется с помощью коротышей /поз. 4/. Допускается заменять коротыши высаженными головками в соответствии с указаниями п.2.6.


2.13. Внесение изменений в арматурные сетки и каркасы, приведенные на рис. 2.1-2.7, 2.12-2.23, допускается в соответствии с указаниями п.1.26.

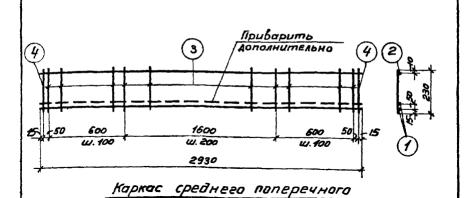






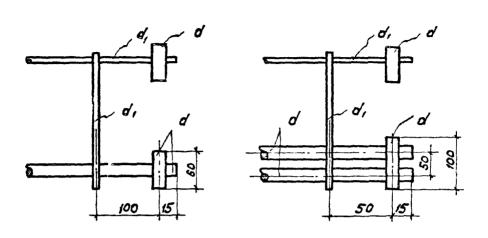
Спецификация на одно арматурное изделие

N S	NN				Obwos	<u> </u>						
Sayuari aprilipas duarietos duarietos		Эскиз	MI	nm	шт	дрина М	Ø MM	Общая Влина м	Bec Kr			
Сетка угла плит без вутов												
α	2		38.	1000	2	2.0	38.	3,2	0,2			
	1		3A.	150	10	1.2		Umozo	0,2			
ธ์	1		GA!	1000	2	2.0	6AT	2.0	0,4			
O	2		38]	120	10	1.2	3 B I	1,2	0,1			
								Umozo	9,5			
		Сетка уг	na ni	om c	64	manu	(2 m	n)				
α	3		38!	2400	3	7,2	3B.	12,5	0,7			
	+		3B.	220	24	53		Umozo	0,7			
δ	3		6A:	2400	3	72	6AT	7,2	1,5			
J	1-7-		387	220	24	53	3 <u>8</u> 7	5,3	43			
	٠		<u> </u>					Umozo	1,9			
			F	Duc. 2	.4							

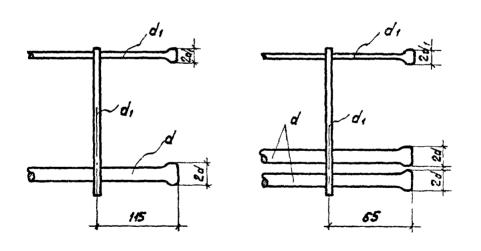


9388

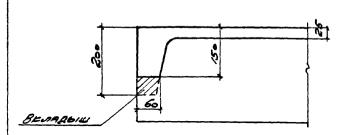
34

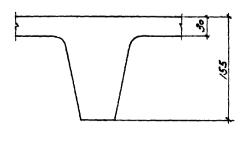


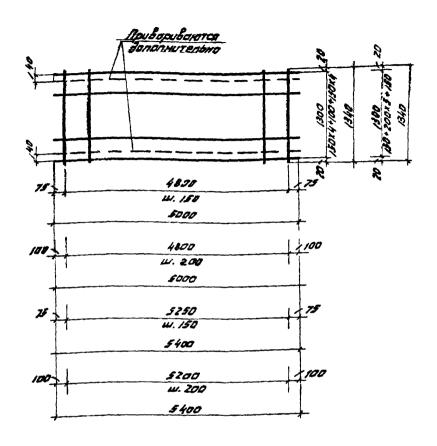
Спецификация на одно арматурное изделие


peδpa nnum 3×12

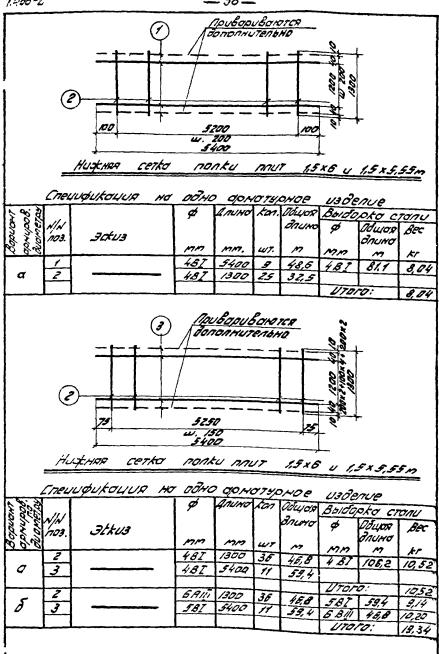
N/N GEERS		14	& Anuna		Ka	Odwas	Выборка стали				
MAPKA 3apotesyn no coptanem	103.	3ckus	MM	MM	WT.	длина	Ø	12222	Bec		
3AF	1103.		,,,,			~	MM	druha M	KF		
	Ko	ркас среднега	none	речна	20	ребра	длин	où 3m			
	1		12AE	2930	થ	5,9	12AIII	6,4	5,6		
KP9-1	2		58	2930	1	2,9	587	7,7	1,2		
	<i>3</i>	}	58: 12 A M	230 230	<i>21</i>	0,5	Um	020	6,8		
	1		14 A III	2930	2	5,9	14 AII	6,4	7,6		
KP9-I	2		582	2930	7	2,9	581	7,7	1,2		
	3		58. ⁷ 4 <i>A</i> <u>#</u>	230 230	21	4,8 9,5	Um	020	8,8		


Рис. 2.7 (продолжение)




Puc. 29

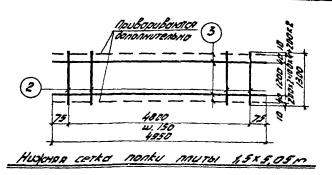
PHC. 2.10



PHC 2.11

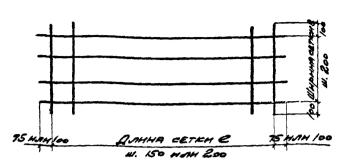

Нифние прапетные сетки попак поит шириной 1.5 m, изгатавливаемые на основе гост 8478-56

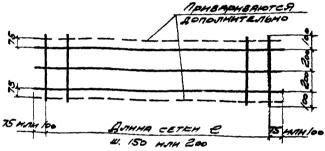
PUC. 2.12


Puc. 2.13

α

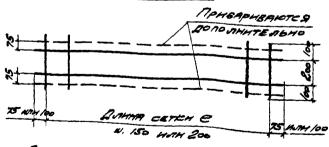
HUSKHAA CETKO NONKU 1,5 x 5,05 MUTH


	Cnel	NO RULD PROPERTY	000	0 0,00	2075	PHOE	U30	enue	
55			Ø	Anuna	Kon	OSLLOR	Bulde	pka ci	Onu
146	NN 1103	Эckuз	1	1	}	סמטחם	Ø	anuna Anuna	Bec
, Z			MM	MM	WT	מת	MM	רא	Kr
	1		487	5000	9	45,0	487	77.5	7,58
r	2	~~~~~	487	1300	25	32.5			7,00
			<u> </u>	1			UTOI	0:	7,68

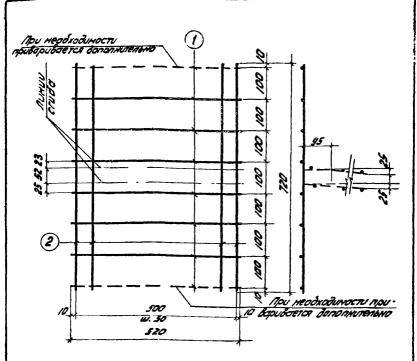

Спецификация на одно арматурное изделие

80002			Ø	Anuno			Bulda	oko ci	OnU
Q % S	N/N 103.	FCKU3				वैग्रासव	ø	Odwor Drund	Bec
8 8 8	1 1		WW	WW	111.	177.	MM	M	K/
	2		487	1300	33	429	487	97.4	9,65
0	3		487	4950	11	54,5			
							Uro	0:	9,65
-	2		5911	1300	33	42,9	581	54.5	8,39
0	3		587	4950	11	54,5	SAM	42.9	8.5
				L			Mon	0:	17.89

Рис 213 (продолфение)



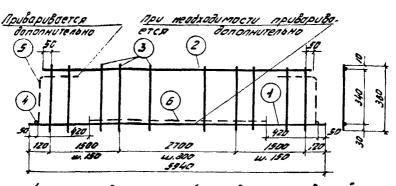
PME. 2.14


BEPENAA CETRA ANA MINT WHENHON 1,5 M Нифияя сетея для плит шириной 0,75м

PHC. 2.15

ВЕРЖИЯЯ СЕТЕЯ ДИЯ ЛИНТ ВИРИНОЙ 0,75М

PHC. 2.16

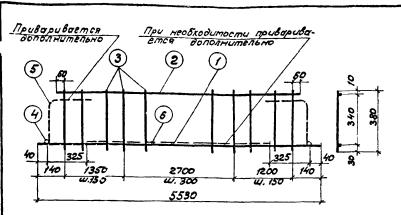


Сетка апарной части продольного ребра плиты

[пецификация на одно арнотирное изделие

1888	NIN		Ø	Anund	kon.	05409	80100	poka c	TON
Bopur Somul duame	מח	3cku3	MM	mm	wi	M	Ø MM	Odyox Onuna M	BOC
	1		587	520	8	4,16	587	12,08	1.9
σ	2		587	720	11	7,92			
							Uro	, O.	1,9

PUC. 2.17



Kapkac npodonbnoro peópo אחשת החשד לחשאסט 6m c HEHONDARDEMOLÍ apmorypoü

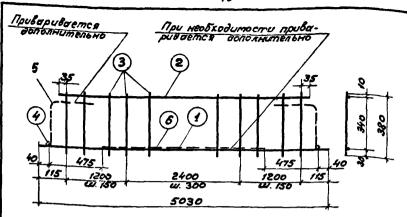
Спецификация на одно арматирное изделие.

topto	111		Ø	ANUHO	Kon.	OSUJOR	Bolde	poka c	TONU
Sot	N/N 103,	3cku3				BAUNO	ø	Dduvar dnuna	Bec
			מונית	MM	WT	m	מקרות	M	R
	4		16 8111	5940	1	5,94	6AII	17.5	3,9
· -	3		BAN	5800	1	5,80	VORIT	1.30	0,8
P15-1			GAIN	380	30	11, 10	16 A 111	6,05	9,5
	4		16 AN	60	2	0.12			
	حح	201	ID AIT	650	2	1,30	110	10	11:2
	1		ZOAM	5940	1	5,94	811	175	143
	2		844	5800	1	5,80	IDAIL	1,30	0.8
015	3		8 AII	380	30	11,70	2091	11.06	273
0/5- <u>V</u> //	4		20 A []	60	2	0,12			-7-
	جح.	205	IDALI	650	2	1,30			
	6		20 AU	5000	1	5,00	UTOR	2:	35,0
	4		22 A III	5940	1	5,94	8.411	17.5	6,9
	2		BAIII	5800	/	5,80	IOAIT	1,30	0,8
P15-VIII	_		BAU	360	30	11,70	22A11	6,06	181
~	7		22 AIT	60	2	0,12			
	3	8	IDAJI	650	2	1,30	UTOI	2:	20.5
	1		25 Ali	5940	1	5.94	BRIT	175	25,5
	2		BALT	5300	1	5,80	IOAII	1,30	
	3		BAIL	380	30	11,70	25 A III	10.06	426
P/5-IX	4		25AM	60	2	0,12			740
	5	28	IDRIT	650	2	1.30			
	6		25A 111	5000	7	5.00	Vrore	ļ	60,3

Puc. 2.18

Καρκατω προδολωμόνου ρεδρά δλη πλυτή δλυμού 5,55 m

Спецификация на одно орматурное изделие


Μαρκα	NN		Ø	Anuna	KOA.		BUSOPA	a cma	YAY
3azo- 1108ku	1703.	3CEU3	מונית	MM	um.	длина м	Ø Men	общая Впина М	Bec Er
	1		14A III	5530	1	5,53	5BI	15,63	2,4
	2		58I	5370	1	5,37	10AII	1,30	0,8
	3		58I	380	27	10,26	14A III	5,65	5,8
KP15- <u>i</u> v	4		14 A 🔟	60	2	0,12			
	5	2	10A III	650	2	1,30			
	۱	300				.,50	Umo	20:	10,0
	1		16R 🔟	5530	1	5,53	6R Œ	15,63	3,5
	2		6A∏	5370	1	5,37	10AM	1,30	0,8
KPIS- <u>V</u>	3		6AM	380	27	10,26	16 A 🔟	5,65	8,9
·-1 15 ¥	4		16 A <u>≡</u>	60	2	0,12			
	5	0	10A™	650	2	1,30			
	"	300	1 ""		_	1,50	Umo	20:	13,2

Puc. 219.

Каркасы продольного ребра для плит длиной 5,55 m

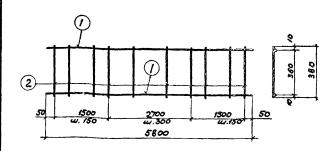
CREGUIPURAGUS HA ODHO APMAMYPHOE UBDENUE

								YENUE,	
Papea	NA		ø	A AUNO	KOA.	Общая	86150	PEO CI	nany
moleu	1703.	3CKU3				DRUHO	ø	OSMAR BAUNA	8ec
			MM	MM	WT.	M	MM	M	K/
	1		18A <u>m</u>	5530	1	5,53	6A III	15,63	3,5
	2		6A Œ	5370	/	5,37	IOA	1,30	0,8
KP45-11	3		6AII	380	27	10,26	IBA 🗵	5,65	11,3
_	4		18 A 🔟	60	2	0,12			
	5	300	10 A III	650	2	1,30	Umot	20:	15,6
	7		20 A III	5530	7	5,53	BAZ	15.53	5,2
	2		BATT	5370	1	5,37	IOA III	1,30	0,8
	3		8 A TT		27	10,26	20A III		25,8
War 177	_		20A III	38 <i>0</i> 60			ZON III	70, 40	۵,6
KPI5-YI	4	<u></u>	CDIT I	80	2	0,12			
	5	300	IORE	650	2	1,30			
}	6		20 A.T.	4800	1	4,80	Umo	20:	32,8
	1		22 A 🔟	5530	1	5,53	BATT	15,63	6,2
	2		8 AII	5370	1	5,37	10AII	1.30	0,8
	3		8 A 77	380	27	10,26	22 <i>A 🔟</i>	10,45	31,1
KPIS-IM	4		22 A <u>M</u>	50	2	0,12			
	5	300	IORE	650	2	1,30			
	6		22ATI	4800	/	4,80	Limo	20:	38,1
	7		25 A III	5530	1	5,53	882	15.63	5,8
	2		8AM	5370	1	5,37	10AT	1,30	0,8
	3		BRE	380	27	10,25	25 A 🗒	10,45	40,2
KP15-1 <u>X</u>	4		25 A E	60	2	0,12			
	5	300	10RT	650	2	1,30			
	6		25 A 🞹	4800	1	4,80	Umoz	o:	47,2
	1		28AE	5530	1	5,53	10 A 111	16,93	10,4
	2		10 Am	5370	1	5,37	28 A 🗉	10,45	50,5
	3	•	10RT	380	27	10,26			
KPI5-X	4		28 A III	60	2	0,12			
	5	300	10A <u>II</u>	650	2	1,30			
	6		28 A !!	4800	1	4,80	Umo	20:	<i>50,9</i>
			Puc. 2	.19	nood	Олжен	ue)		

Каркасы продольного ребра для плит длиной 5,05m

Спецификация на одно арматурное изделие

Mapka	NN		Ø	ANUNG	KOA.	Общая	86150	pra cm	anu
	no3.	3CEU3				BUND	Ø	GUNA OPA	BEC
,,,,,,,,,,			MM	MM	UT.	Μ.	17/4	Μ	K/
	,		14A 🞹	5030	1	5,03	5BI	14,37	2,2
	2	·	58 I	4870	1	4,87	10A III	1,30	0,8
	3		5BI	380	25	9,5	14R 🔟	5,15	6,2
KP15-N	4		14RI	60	2	0,12			
	5		10A1	650	2	1,30			
	٥	200	İ				Umo	20:	9,2
	1		16 R 🔟	5030	1	5,03	6A©	14,37	3,2
	2		6A ₹	4870	1	4,87	10 AT	1,30	0,8
KPV5-V			6A™	380	25	9,5	15 A 💯	5,15	8,1
KMJ-J	4		16A 🗹	60	2	0,12			
	5	<u>م</u>	IORI	650	ع	1,30			
	٥	्र	[Umo	20:	12,1

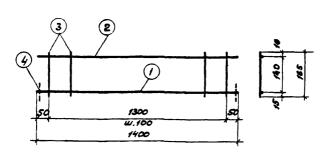

Puc. 2.20

Каркасы продольного ребра для плит длиной 5,05м с ненапрягаемой арматурой

Спецификация на одно арматурное изделие

		A A A A A A A A A A A A A A A A A A A	0/10 6	xpr•iqn				AMEHU	. /
Mapra	NN		P	Anuna	COA.	Общая	BUBOPA		AU
saro-	7703	3CKU3				BAUHO	P	OPTIQUE	BEC
mosku			mm	mm	um.	M	ויוריו	BAUHA M	KP
	7		18 A TE	5030	1	5,03	6R 🔟	14,37	3,2
	2		6AII	4870	1	4.87	10R III	1,30	0,8
_	3		6AM	380	25	9,5	18 AIII	5,15	10,3
KP15- <u>P</u> 1	4		18 R M	50	2	0,12			
		9	10R III	050					
	5	300	10HE	650	2	1,3	Umo	20:	14,3
,	1		20 AT	5030	1	5,03	<i>8A</i> <u>□</u>	14,37	5,7
	2		8 <i>R I</i> II	4870	1	4,87	IDAT	1,30	8,0
	3		8 R 🔟	380	25	9,5	ZORIT	9,15	22,5
KPIS-VII	4		20A III	60	2	0,12			
	5	300	10R <u>II</u>	850	2	/,3			
	6		20A <u>II</u>	4000	1	4,0	Umo	20:	29,1
	1		22.A.T	5030	1	5,03	89 🗐	14,37	5,7
	2		8 A 111	4870	1	4,87	10A III	1,30	0,8
	3		8A <u>™</u>	380	25	9,5	22 <i>A</i> @	9,15	27,3
KP15-VIII	4		22 <i>A_III</i>	50	2	0,12			
	5	000	10 R 🔟	650	2	1,3			
	6		22AII	4000	1	4,0	Umo	20:	<i>338</i>
	1		25 A III	5030	1	5,03	10RIII	15,67	9,7
	2		10AII	4870	1	4,87	25A I	9,15	353
	3		10AII	380	25	9,5			
KPIS- IX	4		25 R_	60	2	0,12	<u> </u>		
	5	300	10A 🔟	650	2	1,3			
	6		25R11	4000	1	4,0	Umo	20:	45,0

Рис. 2.20 (продолнение)

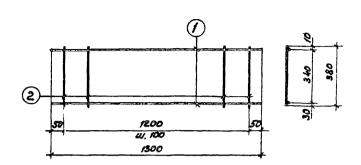


Каркас продольного ребра для плит длиной 6,0 m с предварительно напряженной арматурой

Спецификация на одно арматурное изделие

N/N		P	Anuna	Kon.		36150	PEKE CH	POINU
<i>1</i> 103.	3CKU3				длина	ø	08यवन वेग्रामक	вес
		MM	MM	шm.	<u>m</u>	MM	M	EF
1		58 I	5800	2	11,5	5BI	23,0	3,5
2		58I	380	30	11,4	U	7020 !	3,5
7		6A型	5800	2	11,5	6A <u>m</u>	23,0	5,1
2		6A <u>™</u>	360	30	11,4	Un	020:	5,1
7		88₫	5800	2	11,6	8AE	23,0	9,1
2		8 A M	380	30	11,4	Un	1050:	9,1
7		10AII	5800	2	11,6	10AI	23,0	14,2
2		IOA IT	380	30	11,4	Ur	nozo:	14,2
	/ 2 / 2 / 2 / 2	7 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2	703. 3CFU3 mm 7 58I 2 58I 7 68I 2 68I 1 88I 1 10AI	703. 3CKU3 MM MM 7 581 5800 2 581 380 7 682 5800 2 682 5800 2 882 5800 2 1002 5800	703. 3CEU3	1	1 581 5800 2 11,6 581 2 681 380 30 11,4 Un 1 881 5800 2 11,6 681 2 681 380 30 11,4 Un 1 881 5800 2 11,6 681 Un 1 881 5800 2 11,6 881 2 881 380 30 11,4 Un	1 SAT SBOO 2 11,6 SAT 23,0 2 12,0 SAT 380 30 11,4 Umozo: 1 SAT SBOO 2 11,6 SAT 23,0 2 SAT 380 30 11,4 Umozo: 1 SAT SBOO 2 11,6 SAT 23,0 2 380 30 30 30 30 30 30 3

Puc. 2.21.



Каркос промениуточных поперечных ребер плит инфиной 1,5 м

Спецификация на одно арматурное изделие

Mapra	NN		ø	DAUNG	Kon	Общоя	86180	PKW CM	PAN
3020-	1103.	30EU3				BALING	ø	SUCHA OQUICA	bec
moŝru			MM	MM	uп.	M	מוניו	M	EP.
	1		8R 🗐	1400	1	1.4	48I	3,71	0,4
P6 · <u>P</u> 7	2		481	1400	1	1,4	BRE	1,5	0,6
(20 · II	3		48 I	165	14	2,31			
	4		8 <i>R</i> 2	50	2	91	Umo	20:	1,0
	1		10 A 🗊	1400	1	1,4	48I	3,71	0,6
4	2		58I	1400	1	1,4	IOAW	1,5	0,9
KP6-VII	3		58I	165	14	2,31			
,	4		DRE	50	2	0,1	Umo	50.	1,5
	1		12 RM	1400	7	1,4	581	3,71	0,6
تند جمع دند	2		58I	1400	1	1,4	12AT	1,5	1,3
KP6- VĪI	3		581	165	14	2,31			
	4		12AII	50	2	0,1	Umo	20:	1,9
	1		14A <u>m</u>	1400	1	1,4	58I	3,71	0,6
	2		58I	1400	1	1,4	14A 🔟	1,5	1,8
KP6-1 <u>X</u>	3		58I	165	14	2,31			
	4		14819	50	2	0,1	Umo	20:	2,4

Puc. 2,22

Каркас глорцевых поперечных ребер ппин 1,5x5,55 и 1,5x5,05 м

Спецификация на одно арматурное изделие

Марка	NN		8	ARUNG	EOA.	084408	B6180	DECY CM	anu
30°E0 → moßeu	1703.	3cru3				длина	Ø	वेग्रायम् वेग्रायम्ब	800
			MM	MM	um.	M	MM	M	R-P
	1		6AII	1300	2	2,6	6AII	7,5	1,7
KP15	2	garage and the second	6R™	380	/3	4,9			
							Um	020:	1,7

Puc. 2, 23.

Т. Рекомендации по унификации арматурных изделий стеновых панедей

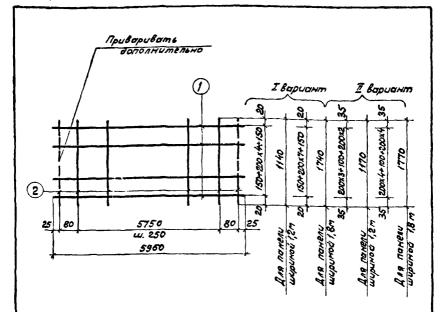
3.1. Сетки для армирования полок стеновых панелей неотапмиваемых зданий принимаются:

для панелей размером I,2x6 и I,8x6м— по рис. 3.I; для панелей размером I,2x12; I,8x12 и 2,4x12 и по рис. 3.2.

В соответствии с п.І.ІЗ сетки запроектированы в двух вариантах.

I. вариант предусматривает применение товарных сеток по ГОСТ 8478-66:

Сетки по II варианту предусмотрены для изготовления на многоэлектродных сварочных машинах.

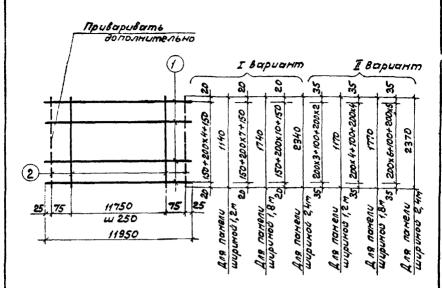

Спецификации, приведенные на рис.3.1 и 3.2,даны только для П варианта.

- 3.2. Каркасы для армирования продольных и поперечных ребер панелей длиной 6 м для стен неотапливаемых зданий принимаются по рис.3.3.
- 3.3. Каркасы для армирования ребер панелей длиной 12 м для стен неотапливаемых зданий принимаются по рис. 3.4 м 3.5.
- 3.4. Панели сплошного сечения для стен отапливаемых зданий рекомендуется армировать пространственными кар-касами по рис.3.7

Пространственные каркасы собираются из плоских сварных каркасов по рис. 3.6 и привариваемых к ним с помощью электросварочных клещей отдельных соединительных стержней.

Для панели шириной I,2 м пространственный каркас собирается из 5 плоских каркасов по рис.3.6, а для панели шириной I,8 м - из 7 плоских каркасов.

Количество и расположение отдельных соединительных стерыней приведено на рис. 3.7.

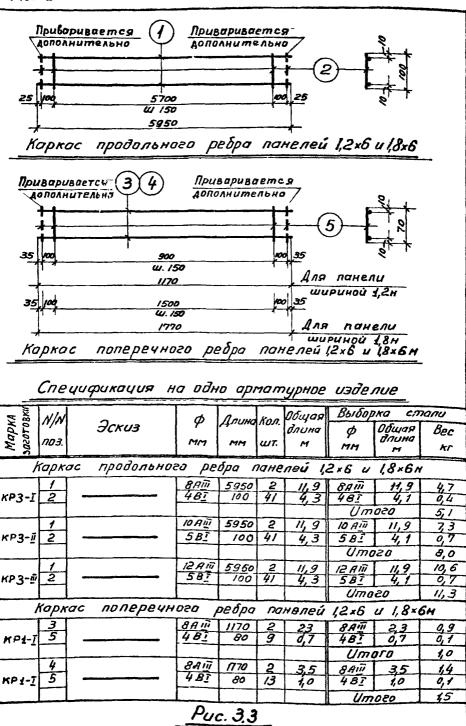


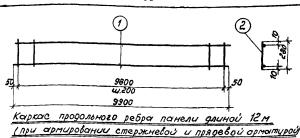
Сетки полки панелей разтерот 1,2×6 и 1,8×6 т для стен неотапливаетых зданий

Спецификация на одно арматурное изделие по Тварианту

96	NN B		P	RAUNO	Kon	Общая	86180	ORO CA	Ornu
00/26/ 01/06/ 01/06/	P & 3CRU					BAUHA	φ	OSWAR BAUMA	Bec
385.	8		MM	mm	um	m	דוריו	M	K/T
	Ceme	а польи ст	ehoboù 1	Τακελυ	u	IUPUNO	ú 1,8	2 M	
_	1		48I	5950	7	41,7	4BI	72,1	7,1
a	2		48I	1170	26	30,4	Umo	יסיום:	7,1
	Ceme	W MONKU CH	ne Hoboú	TOHEAL	1 11	UPUHO	1 1,8	M	
α	1		481	5960	10	59,5	48I	105,6	10,5
u	2		481	1770	26	45.0	Um	020:	10,5

Puc. 31

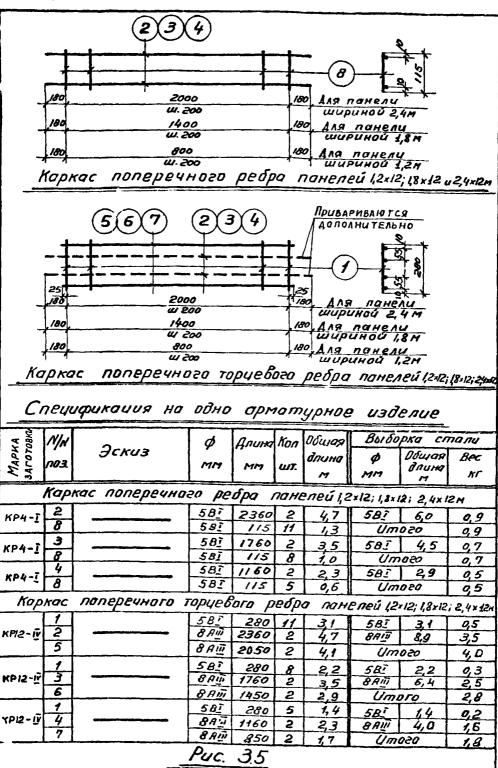

Cemeu noneu nameneu pasmepom 1,2x12,1,8x12u2,4x12m

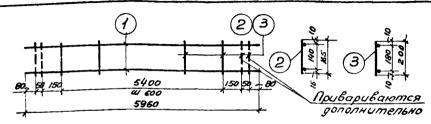

для стен неотапливаетых зданий

Спецификация на одно артатурное изделие по I варианту

6.0	<u> </u>		Ø	A NUNC	KON.	05щая	86150	DEG CA	DONU
	103.	3CEU3				BNUNG	Ø	०५४५वत्र वेग्रुपाद	800
2000	270		ריוניה	mm	UIT.	m	MM	~	EP
	mra	польц стеновой	POME	AU W	HOUN	ဗပ် ၊	,2 m		
	1		481	11950	7	83,7	48 I	142,2	141
a	2		48 I	1170	50	58,5			
_							Umo	:05	14,1
	Cemre	TOULU CMEHOBE	של חמה	enu	קטע	UNOU	1,80		
	17		481	11950	10	119,5	481	208,0	20,6
a	2		48I	1770	50	88,5			
~	1						Umo	20:	20,6
C	emka	חסאבע במפאספסט	RaHE	14 4	UQUE	HOU S	2.4M		
	1/		481	11950	/3	155,4	481	273,9	27,1
α	2		48I	2370	50	118.5			
u	+						Umo	20:	27.1

Puc. 32

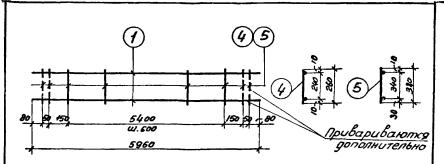

50 3800 W 200 9 900


Καρκας προφολόμοσο ρεδρά παμελυ φλυμού 12μ (πρυ αρμυρο βαμου δειςοκοπρομμού προβολοκού)

Спецификация на одно арматурное изделие

0.00	N/N	_	ø	AMUHO	KOA	Общоя	B6150	pka c	manu
20	1703	Эскиз	MM	MM	1117	grund	ø	OSLYCH	Вес
5 8			.,,,	1		M	MM	gnuna	ĸz.
K	урка	с продольного	ребр	ay Malt	enu	gaun	104 12	M	
	1		5 B T	9900	2	19.8	5BI	33.B	5.2
CP12-II	2		58I	280	50	14.0			
							Un	050	5.2
Kα	pkac	Продольного	ребро	א של ע	enu	gaui	100 1	219	
CPH-IY	1		58I	9900	2	19.8	58I	19.8	3.1
P11-11	3		5 B I	260	50	14.0	5 BI	14.0	2.2
							4	m020	5.3

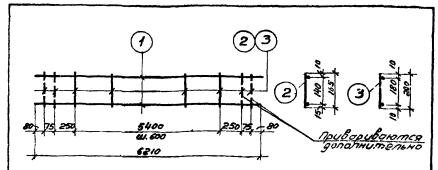
PUC. 34



Продольный каркас панели длиной 6м

Спецификация на одно арматурное изделие

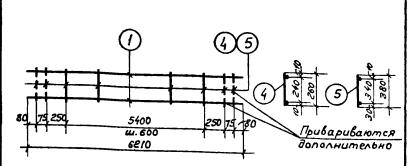
o o	NIN		ø	Длина	ν	Общая	Boisop	KO CI	שתמח	
Морка каготовк		Эскиз	Ψ	II, NUHU	NOA.	длина	φ	Общая	Bec	
Морко заготовки	nas.		MM	MM	WT.	М	MM	BAURA	Kr.	
	Продольный каркас панели длинай 6м									
	1		58-	5960	2	11,9	5B.	11,9	1,8	
KP6-I	2		48.	165	14	2,2	487	2,2	0,2	
							Umi		2,0	
	1		6AĒ	5960	2	11,9	6 AII	11,9	2,6	
KP6 - <u>ũ</u>	2		4BI	165	14	2,2	481	2,2	0,2	
							Umo		2,8	
KP6-A	1		8 A™	5960	2	11,9	8A III	11,9	4,7	
V-0-W	2		481	165	14	2,2	58 <u>T</u>	2,2	0,4	
							Umi	20	5,1	
KP6-IV	2		10 A III	5960	2	11,9	10 A III	11,9	7,3	
0 12	-		5BI	165	14	2,2	5 B.T	2, 2	0,4	
	-		ļ			l	Umi	050	7,7	
KP6-V	2		12 A III	5960	2	11,9	12 A III	11,9	10,6	
1	-		5BT	165	14	2,2	58 <u>T</u>	2,2	0,4	
					l		Um	720	11,0	
KP8-I	3		587	5960	2	11,9	58 <u>.</u>	11,9	1,8	
	-		48.	200	14	2,8	481	2,8	1,8 0,3	
	-						Uma	120	2,1	
KP8-II	3		6A 🗓	5960	2	11,9	6Atii	11,9	2,6	
	<u> </u>		701	200	14	2,8	482	2,8	0,3	
	1		-				Um	020	2,9	
KP8-iii	3		BAIII 4BT	5960	2	11,9	B A ∰	11,9	4,7	
_	-		481	200	14	2,8	481	2,8	0,3	
	1		12.5				Umo	20	5,0	
KP8-IV	3		10AIII	5960	2	11,9	10Aii	11,9	7,3	
1	<u> </u>		581	500	14	2,8	5B <u>?</u>	2,8	0,4	
	1		 				Umi	720	7,7	
KP8- <u>₹</u>	3		12Am	5960	2	11,9	12A 🗓	11,9	10,6	
-	<u> </u>		58.	200	14	2,8	5B]	2,8	0,4	
	<u> </u>		L				Um	020	11,0	
1			ρ_c	1c. 3.6						
				<u> </u>		_				



Продальный каркас панели длиной 6м

Спецификация на одно арматурное изделие

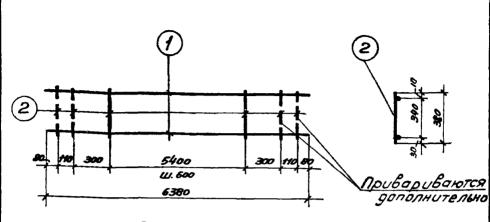
a Ku	N/N		φ	Асина	Kna	Общая	Busal	oka con	שוש	
Марка заготовки	na3.	Эскиз	MM	MM	шт.	дрина М	ф мм	Общая длуна М	Bec Kr	
	Продольный каркас панели длиной 6м									
	1		582	5960	2	11.9	58 <u>.</u>	11,9	1,8	
KP11-I	4		481	260	14	3,6	481	3,6	94	
							Um	050	2,2	
	1		8Avii	5960	2	11,9	8Ajji	11,9	4,7 0,4	
KP11- <u>I</u> I	4		4 <i>8</i> <u>I</u>	260	14	3,6	481	3,6	0,4	
							Um	020	5,1	
	1		10A III	5960	2	11,9	10 A III	11,9	7,3	
KP41-11	4		58 <u>.</u> T	260	14	3,6	58 <u>r</u>	3,6	0,6	
							Um	020	7,9	
[1		SRI	5960	2	11,9	582	11,9	1,8	
KP/5-1	5		481	380	14	5,3	481	5,3	0,5	
					<u>-</u> -		Umo	20	2,3	
]	1		BAIT	5960	2	11,9	8A.III	11,9	4,7	
KP/5- <u>ji</u>	5		48.	380	14	5,3	48.7	5,3	9,5	
					一 <u>一</u>		Umo	120	5,2	
	1		10 AT	5960	2	11,9	10 A HI	11,9	7.3	
KPI5-II	5		582	380	14	5,3	587	5,3	0,8	
							Um	120	8,1	


Рис. 3.6 (продолжение)

Продольный каркас панели длиной 6,23м

Спецификация на одно арматурное изделие

8 8	NI	,	4	Длина	Ka-	Общая	Buldo		manu
Mapka	N/N	! JCKU3	P	1	ı	BAUHA	ø	Общая	Вес
20, 2	1003		MM	MM	ידעש.	M	MM	ฮักบหล	1
					<u> </u>	<u> </u>		_ ~_	Kr
	Продольный каркас панели длиной 6,23 m								
	1		585	6510	2	12,4	585	12,4	1,9
KP6 -1	12		485	166	14	2,2	481	2,2	0,2
		<u> </u>	 			 	Um	920	2,1
1	1	4	6Am	6210	2	12,4	6AIII	12,4	28
MP6-	2		485	165	14	2,2	485	2,2	0,2
			 				Um		3,0
! .	1	4	IOAII	6210	<u>_</u>	12,4	10 A [ii	12,4	7,7
KP6 -	2		583	165	14	2,2	5 B Z	2,2	0,4
<u></u>							Uma	120	8,1
]	1]	IZ A LŪ	6210	ą	124	12 RIW	12,4	11,0
KPS-	2		585	165	14	2,2	585	2,2	0,4
L	4	<u> </u>					Uma	20	11,4
l	1	4	5B7	6210	2	124	581	12,4	1.0
KP8-I	3		481	200	14	38	485	2,8	0,3
<u> </u>	<u> </u>						Um	020	2,2
	1-1	1	6A ili	6210	2	124	6AIII	12,4	2,8
H >8 - 11	3		485	200	14	2,8	481	2,8	0,3
! 	I						Umo	20	31
-	1		IOAIR	6210	2	12,4	10 AIII	12,4	7.7
KP8-II	3		58.	200	14	2,8	582	2,8	0,4
	↓			T			Umo		8,1
_	1		12Am	6210	2	13.4	12AP	12,4	
KP8- <u>P</u>	.3		585	200	14	2.8	582	2,8	110
	L			\Box I			Um	20	11,4
		P_{ℓ}	JC. 31	Sinne	200	жени	in I		1
			- 0.0	טמוון	0 00	UREHU			- 1



Продольный каркас ланели длиной 6,23м

Спецификация на одно арматурное изделие

202	1				,,	Общая	86180p	Ka er	παλά	
40	N/N	Эскиз	Ø	$\mathcal{L}_{\Lambda}UHQ$	KOA.	βλύμα	Ø	Общая	Bec	
Mapra 3azomobra	103	J (1.1.5)	MM	MM	шm.	M	MM	длина М	KE	
	Продольный каркас панели длиной 6,23м									
	1		58I	6210	2	12.4	5 BI	12.4	1. 9	
KPH-I	4		48I	260	14	3.6	48 I	3.6	0.4	
								०२०	2.3	
	1		8 <i>A Ⅲ</i>	6210	2	12.4	BAI	12.4	4.9	
KPII-II	4		4 <i>BI</i>	260_	14	3,6	4 <i>BI</i>	3,6	0.4	
							um		5,3	
	1		10 A <u>I</u> I	6210	2	12.4	10A III	12.4	7.7	
KPII-II	4		5BI	260	14	3,6	5BI	3.6	0,6	
				L	L		um		8.3	
	7		5BI	6210	2	12.4	58I	12.4	1.9	
KP15-I	5		48I	380	14	5,3	4BI	5,3	0.5	
מי יות	<u> </u>							020	2.4	
	7		8A III	6210	2	12.4	8A∭	12.4	4.9	
KP15-II	5		4BI	380	14	5,3	4BI	5,3	25	
	<u> </u>							020	5,4	
 	1		10AII	6210	2	12.4	IDAI	12.4	7.7	
KPIS-II			5 <i>BI</i>	380	14	5,3	5 <i>BI</i>	5,3	0.8	
	۲			1		1	un	7060	8.5	
	1	L	<u> </u>							

Рис. 3.6 (продолжение)

Продольный каркас панели длиной 6,4 м

Спецификация на одно арматурное изделие

× Z	All-I			2	V	Общая Влина	Выба	pra ci	manu
Марка заготовки	N/N 103.	Эскиз	ф		ло <i>р</i> і. шт.	<i>длина</i> м	ф	05U10A BAUHA M	BEC Mr
	//p	OBOSENBIÚ KO	ркас	nan	enu	dno	IHOÚ	6,4 M	
	1		5B.T	6380	Q	12,8	58 <u>.</u>	12,8	2,0
KP/5-1	2		481	380	14	5,3	4 <i>B_</i>	5,3	0,5
l							Umi	20	2,5
	1		8AII	6380	2	12,8	8AIP	12,8	5,1
KP/5-I	2		48 <u>ī</u>	380	14	5, 3	481	5,3	0,5
1							Umo	20	5,6
	1		ID A mi	6380	2	12.8	10 A LI	12,8	7.9
KP/5-8	2		5 <i>B</i> _	380	14	5,3	5BI	53	0,8
-							Uml	720	8,7

Рис. 3.6 (продоложение).

ІУ. Рекомендации по унификации арматурных изделии колонн.

4.1. Армирование колонн одноэтажных и многоэтажных промишленных зданий следует производить пространственными каркасами, собираемыми из плоских сварных каркасов и отдельных соединительных стержней.

При этом установку плоских каркасов рекомендуется предусматривать только в направлении, параллельном стороне сечения колонны "В", а соединительных стерхней — стороне "h" /см.рис.4.I/.

Примечание: При соответствующем обосновании допускаются другие способы армирования колонн.

4.2. При проектировании плоских каркасов следует ориентироваться на сортамент арматурных заготовок по табл. $I_{\bullet}I_{\bullet}$

На рис. 4.2 приведены данные для подбора марок заготовок в зависимости от установленной расчетом плоцади продольной арматуры F_{α} и ширины сечения колонны "В".

4.3. В случаях, когда применение заготовок каркасов по табл.1.1 нецелесообразис или невозможно, проектирование плоских каркасов должно быть основано на п.1.19.

При этом рекомендуется принимать:

а/ продольные стержни - из арматуры класса A-W, диаметрами 12-32 мм.

Поперечные стержни — из арматуры класса A-I. Диаметр стержней устанавливается по условиям приварки в зависимости от диаметра продольного стержня;

б/ все основные продольные стеркни каркаса /рис.4.3/ из арматуры одинакового диаметра; в/ расстояние между осями продольных стержней - по табл. 4.1, а шаг поперечных стержней - постоянным по всей длине каркаса. При этом расстояние между поперечными стержнями принимается в соответствии с п.12.20 СНиП П-В.1-62 не более 20 или 10 диаметров продольного стержня и кратным 50 мм;

г/ расстояние от оси крайнего продольного стержня до грани сечения колонны — равным 45 мм, а до конца поперечного стержня — 30 мм.

Каркас, запроектированный в соответствии с табл.4.1, следует рассматривать как полуфабрикат, к которому до-пускается, при необходимости, приваривать дополнительные стержни, отличающиеся диаметром и длиной от продольных стержней каркаса. Приварку дополнительных стержней к каркасу следует проектировать с учетом требований п.12.7 СНиП П-В.1-62 в части расстояний между стержнями.

Плоские каркасы для колоны зданий, оборудованных мостовыми кранами, рекомендуется проектировать в соответствии с рис.4.4.

При этом, при армировании подкрановых консолей, в соответствии с п.4.6 настоящих Рекомендаций, плоские кар-касы не должны иметь поперечных стержней на участках консолей. Исключение составляют плоские каркасы, устанав-ливаемые у внешних граней крайних колонн.

4.4. Соединительные стержни, об"единяющие плоские каркасы в пространственный, как правило, следует приваривать к продольным стержням плоских каркасов с помощью электросварочных клещей.

В виде исключения, когда на заводе — изготовителе отсутствуют мощные клещи /типа К-243/, обеспечивающие прочность сварного соединения, соединительные стержни допускается приваривать к поперечным стержням плоских каркасов. При этом, расстояние "С"/см.рис.4.5/ принимается равным 15-20 мм.

Применение дуговой сварки для образования пространственного каркаса колонн запрещается. Для случая, когда на заводе — изготовителе не имеется электросварочных клещей для контактной точечной сварки, плоские каркасн об"единяются в пространственный с помоцью вязаных соединительных стержней /шпилек/.

Соответствующие указания о методах образования пространственного каркаса должны быть даны на рабочих чертежах.

Примеры армирования колонн пространственными каркасами с приваренными соединительными стержнями даны на рис.4.6, а с вязаными соединительными стержнями на рис.4.7.

В пространственном каркасе, образованном с помощью вязаных соединительных стержней, следует предусматривать связи для придания каркасу необходимой пространственной жесткости при транспортировании. Связи приваривартся дуговой сваркой кирайним продольным стержням плоских каркасов на расстоянии не реже 6 м и не менее двух на один пространственный каркас. Пример решения пространственного каркаса со связями приведен на рис. 4.8.

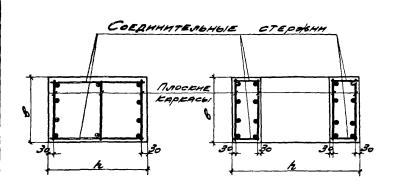
- 4.5. В пространственном каркасе диаметр и шаг привариваемых соединительных стержней или вязаных соединительных стержней принимаются равными диаметру и шагу поперечных стержней сварного плоского каркаса.
- 4.6. Подкрановые консоли колонн одноэтажных зданий рекомендуется армировать плоскими сварными каркасами с об"единением их в последующем вязаными хомутами.

Плоские сварные каркасы для армирования консолей рекомендуется принимать по сортаменту, приведенному на рис.4.9.

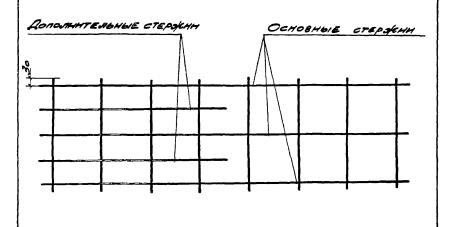
При необходимости, установленной расчетом, допускается приварка дополнительных наклонных стерхней к каркасам, предусмотренным на рис.4.9.

Диаметри всех наклонных стеркней должны приниматься одинаковыма. Диаметр вязаных хомутов в консолях рекомендуется назначать таким ке, что и поперечных стеркней пространственного каркаса колонны.

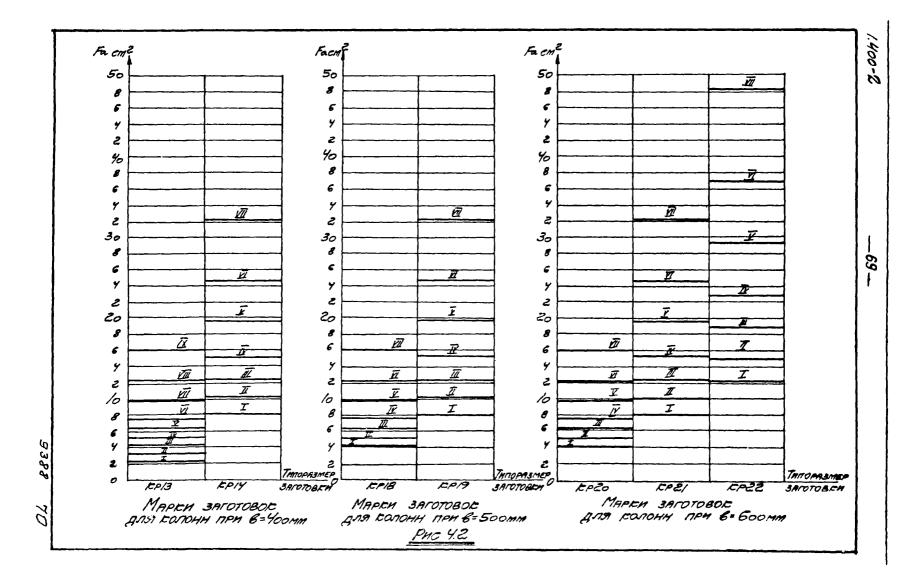
Пример конструктивного решения пространственного каркаса консожи приведен на рис.4.10.

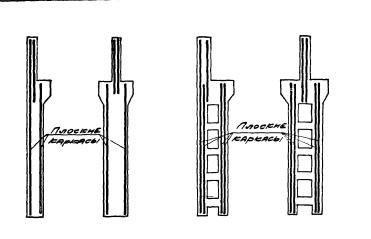

- 4.7. Перемнчки двухветвевых колонн армируются плоскими сварными каркасами, об"единяемыми /после установки их в каркасы ветвей/ с помощью отдельных стерхней, привариваемых контактной точечной электросваркой. Пример решения армирования перемычки приведен на рис. 4.II.
- 4.8. Сетки, предусматриваемые для местного усиления бетона колонны, например, оголовок колонны в местах опирания стропильных или подстропильных конструкции, в местах опирания подкрановых балок, на участке стика колонн, рекомендуется проектировать на основе применения арматурных сеток с ячейкой ІООХІОО мм, устанавливаемых попарно, сдвигая одну относительно другой на 50 мм, как показано на рис.4.12. Точки пересечения сеток по контуру следует приварить.

TABUNUA 4.1

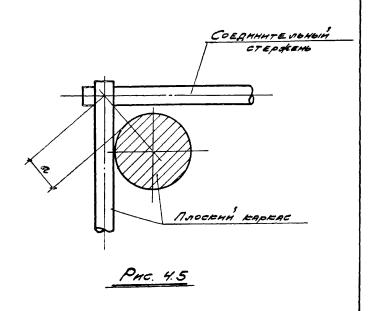

РАССТОЯННЯ МЕЖДУ ОСЯМИ ПРОДОЛЬНЫХ СТЕРЖНЕЙ В ПЛОС-КИХ КИРКАСЯХ КОЛОНИ В ЗАВИСИМОСТИ, ОТ ШИРИМЫ КОЛОНИ И КОЛИЧЕСТВА СТЕРЖИЕЙ

KONHUECTED KONHUECTED CTEPSKHEH & EAPERCE	400	500	600
	3/0	4/00	5/02
	155	205	255
	155	205	255
	105	105	/05
	100	200	300
	105	105	105
		105	105
		/00	150
		100	150
		105	/05
			105
			100
			100
			105

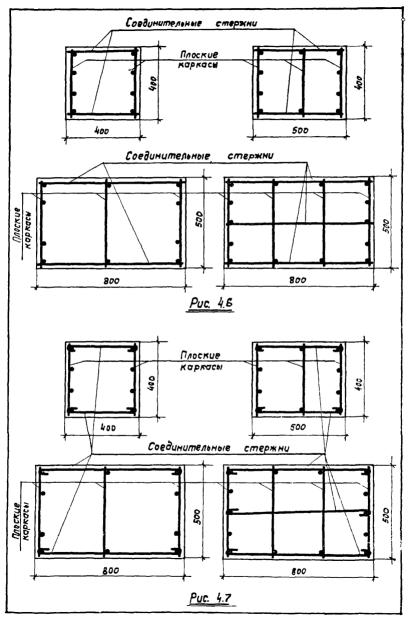

Примечание. Каркасы, обозначенные "х", преджиотремы для армирования сечения дололинтельными стержиями по стороне - h". [например срейнии каркас на рис 4.1]

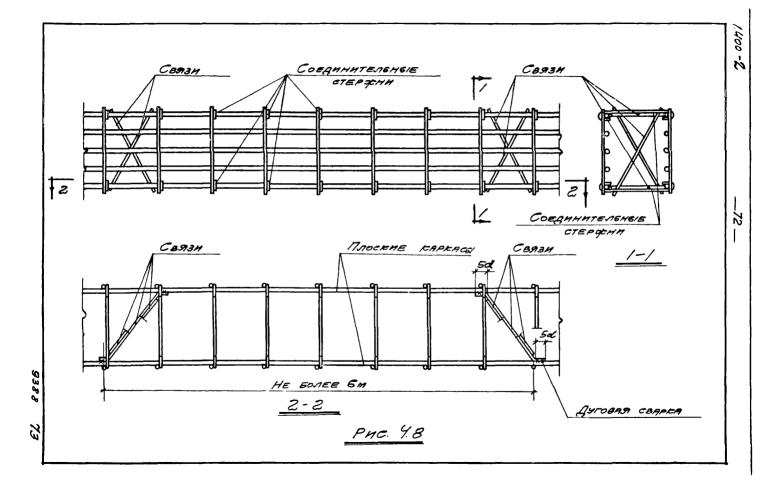


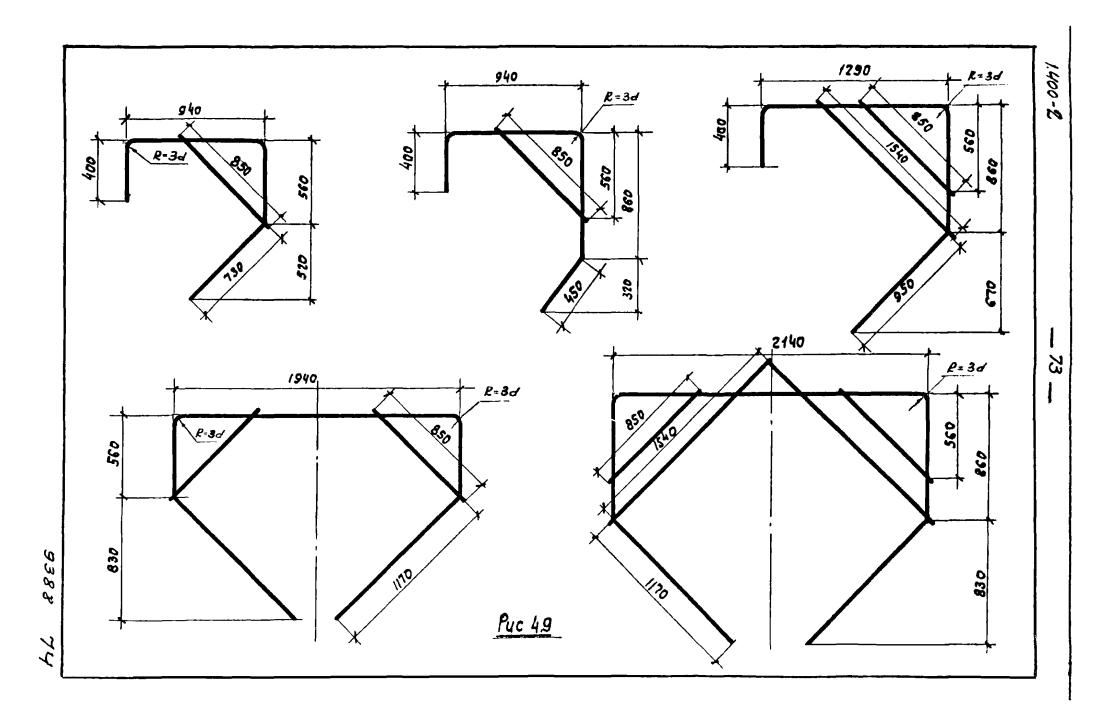
PHC. 4.1

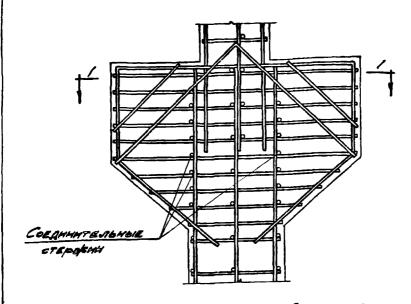


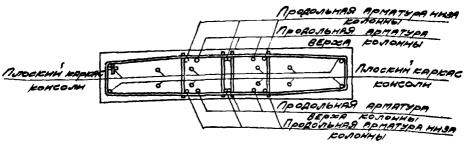
PHC. 4.3.

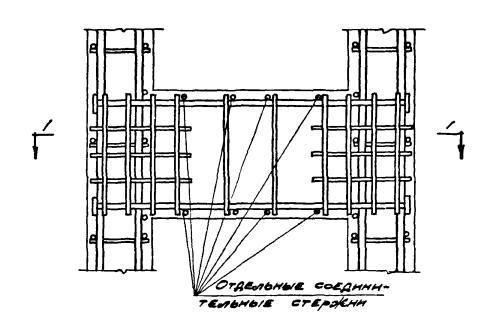


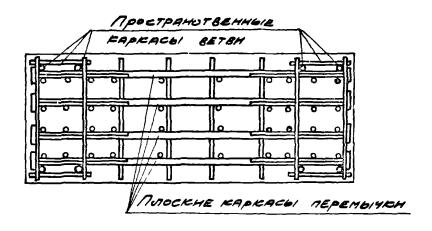


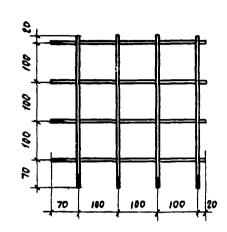

PHG. 4.4

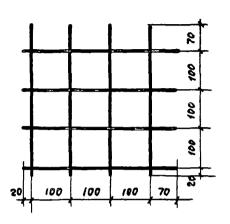


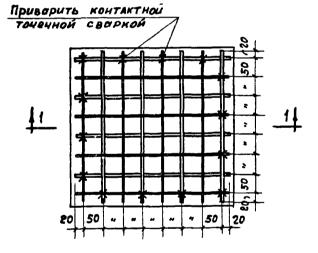

71

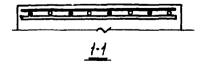





PHC. 4.10


75





PHG. 4.11

Puc. 4.13

У. Рекомендации по унификации арматурных изделий ригелей междуэтажных перекрытий

- **5.1.** Ригели междуэтажных перекрытий рекомендуется арымровать пространственными каркасами на все изделие.
- 5.2. Пространственные каркасы для ригелей с полками для опирания плит /перекрытие типа I/ и ригелей прямоугольного сечения /перекрытие типа 2/ при одинаковой нагрузке и длине должны приниматься одинаковыми.

Пространственные каркасы для ригелей образуются из плоских сварных каркасов и отдельных соединительных стержней, привариваемых электросварочными клещами к продольным стержням плоских каркасов.

Применение дуговой сварки для образования пространст-венного каркаса вместо электросварочных клещей запрещается.

Верхняя /опорная/ продольная рабочая арматура соелиняется с пространственным каркасом дуговой сваркой путем приварки прерывистым швом /непосредственно или через прокладки/ к верхним продольным стержням плоских каркасов. Необходимая точность положения верхней арматуры обеспечивается кондуктором.

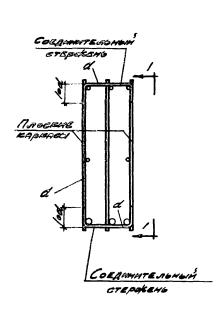
Для случая, когда на заводе-изготовителе не имеется электросварочных клещей, пространственный каркас, в зависимости от условий работы ригеля, рекомендуется проектировать из плоских сварных каркасов, объединяемых:

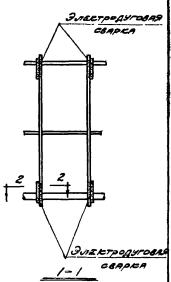
а/ для ригелей, не находящихся под воздействием крутящих моментов, - с помощью вязаных соединительных стерыней.

Для придания тако му пространственному каркасу необходимой жесткости при транспортировании должны предусматриваться связи, привариваемые дуговой сваркой к продольным стержням плоских каркасов. Связи предусматриваются на расстоянии не реже б м и не менее чем по две штуки в верхней и никней плоскости пространственного каркаса.

Пример решения пространственного каркаса со связями приведен на рис. 5.1;

б/ для ригелей, находящихся под воздействием крутящих моментов, - с помощью отдельных соединительных стержней - скоб, привариваемых электродуговой сваркой к поперечным стержням плоских каркасов, как показано на рис. 5.2.

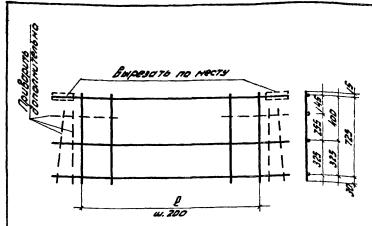

Соответствующие указания о методах образования пространственного каркаса доляны быть приведены в рабочих чертежах.


- 5.3. При проектировании плоских сварных каркасов следует ориентироваться на сортамент арматурных заготовок по табл. I.I. с приваркой при необходимости дополнительных стержней /на рисунках эти стержни показаны пунктиром/.
- 5.4. Плоские каркасы для ригелей пролетом 6 м, изготавливаемых без предварительного напряжения продольной арматуры, рекомендуется принимать в соответствии с рис.5.3.
- 5.5. Плоские каркасы для ригелей, изготавливаемых с предварительно напрягаемой продольной арматурой, рекомендуется принимать в соответствии с рис.5.4.
- 5.6. Полки ригелей для перегрытий типа I армируются сетками в соответствии с рис.5.5.

Сетки принимаются согласно рис.5.6. При этом в зависимости от типоразмера ригеля применяются сетки длиной 2.7 или 3.0 м.

5.7. Ригели с полками для опирания плит, изготавливаемие электротермическим способом натяжения арматуры, армируются сетками в соответствии с рис.5.7. При этом сетки принимаются согласно рис.5.8, а их раскладка — по рис.5.9.

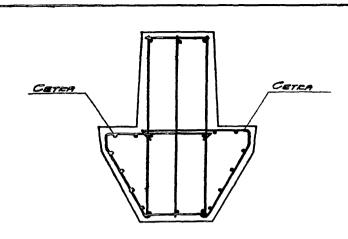
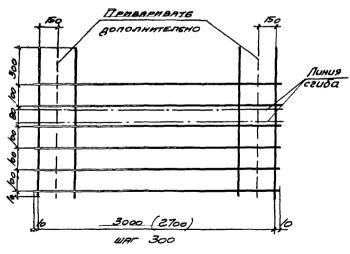
9388 80

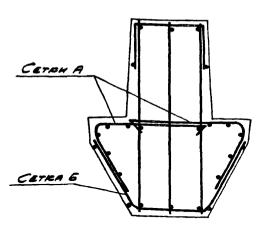


2-2

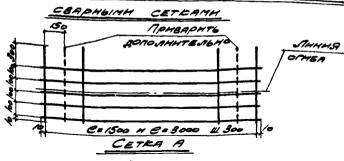
PHC. 5.2

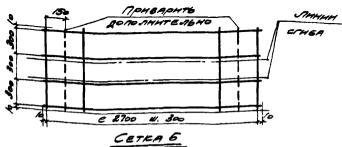
<u>Ρυς. 5,3</u> <u>Πποςκυύ καρκάς ρυτέπα προπέτον 6 m</u> <u>υзταταβπυβαένοτο δεз πρεδβαρύτεπονο</u>. <u>Γο ναπραφένυς αρνατυρώ.</u>

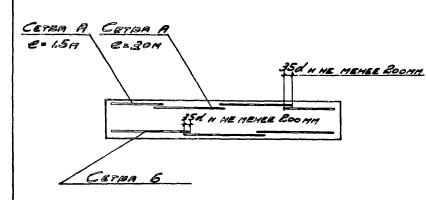





Рис. 5,4 Плоский каркос ригелей, изготовли-<u>ваемых с предварительным напряжением</u> продольной арнатыры.

Pro 5.5 APMINDOBANIE PITETEN CBAPHEMIN




Puc. 5.6 CBAPHASI CETER ANS PUTENER


Онс. 5.7 Армирование ригелей при электротерии.

ческом способе натяжения принтуры

PHC. 5.8

PHE 5.9 PACKNAREA NO BUNHE CETOK AME

AND PHIENEH NOONETON 9M

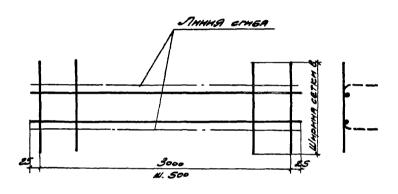
УІ. Рекомендации по унификации арматурных изделий ферм

6.1. Армирование верхнего пояса ферм и элементов решетки рекомендуется осуществлять пространственными каркасами.

Пространственные каркасы для армирования верхнеге пояса ферм рекомендуется принимать из отдельных блоков длиной 6 и более метров.

Пространственные каркасы образуются из плоских свярных каркасов и отдельных соединительных стержней, привариваемых электросварочными клещами в соответствии с указаниями п.4.4.

При согласовании с заводом-изготовителем пространственные каркасы допускается проектировать из отдельных продольных стержней с непрерывной намоткой поперечной арматуры в виде спирали, из плоских каркасов с последуршим иу гнутьем в замкнутые пространственные каркасы и т.п.

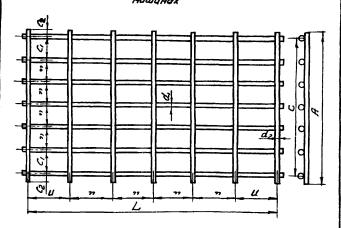

Указания по образованию пространственного каркаса должны быть приведены на рабочих чертежах.

- 6.2. Пространственные каркасы верхнего пояса рекомендуется стыковать в узлах фермы внахлестку и на накладках.
- 6.3. Ненапрягаемую арматуру нижних поясов ферм рекомендуется проектировать в виде -П-образных сеток длиной 3 м /рис.6.1/.
- 6.4. С целью упрощения каркасов, узлы ферм, в которых сопрягаются два и более элемента решетки, рекомендуется проектировать прямоугольными в плоскости фермы.
- 6.5. В случаях, когда по условиям анкеровки стержней решетки в поясах ферм узловые уширения не требуются.

сопряжения элементов следует проектировать без использования дополнительных арматурных каркасов.

6.6. Узян верхнего и нижнего пояса ферм рекомендуется армировать П-образными каркасами.

Пример армирования узла фермы приведен на рис. 6.2.

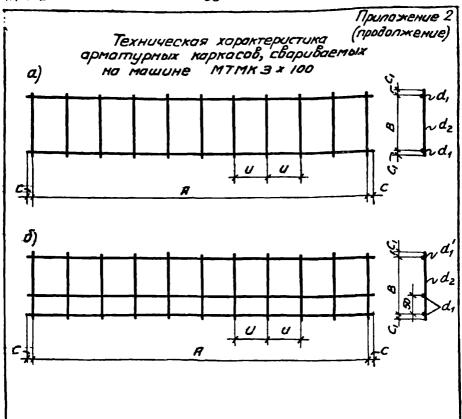

СЕТКА ДЛЯ АРМИРОВАНИЯ НИЖИЕГО

1090А ФЕРМЫ

РИС. 6.1

Приложения.

Приложение в Техническоя характеристика арматурных сеть, изгатавляемых на многоэлектродных точечных машинах

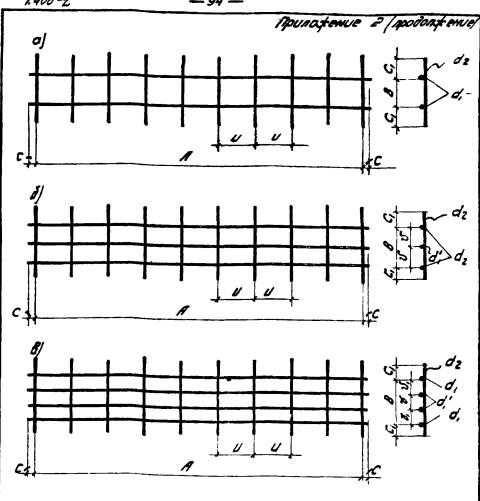

Тип машины	ATMC-14×75-7	ATMC-14x75-9
Максимальная ширина сетки Амм Максимальное расстояние межди	380 o	2350
Максимальное расстояние между осями крайних продольных пруткав С, нт. Расстояния межди осени	3750	2300
Расстояние между осями продольных прутков (пюбое в пределах) С, мм	om 100	дь 300
Минимальное расстояние от торца поперечного прута да оси крайнего продального прутка С ₂ мм	ź	15
Росстояние между осяни поперечных прутков (пюбое в предела х) Ц, мм	100 חוס	ão 300
Дианетр продольных прутков d,мм	am 3	_
Диаметр поперечных пруткав d2, км Наибольшев копичество	om 3	ðo 10
продольных стержней в сетке	З6	24

Приложение 2

Техническая характеристика плоских арматурных каркасов, свариваемых на много-электродной точечной машине MTMK3x100

n\n	Наименование	мем.	Показатели
I	2	3	4
I	Диаметры свариваемых стержней: а/ продольных / из стали периоди- ческого профиля или кругаой стали/	им	от 5 до 25 мм
	б/ поперечных /только из круглой стали - хожоднотянутой проволожи или катанки/ Ширина свариваемых каркасов:	V OI	от 4 до 12 мм
	а/ при сварке одного каркаса	му	от 105 до 775
	б/ при сварке двух каркасов /суммарная ширина/ не более	NOT	700 мм
3	Длина свариваемого каркаса	ММ	до 7200 мм. По сог- ласованию с заводом- изготовителем можно увеличить до 10500 мм
	Наибольшее количество одно- временно свариваемых точек /количество продольных стерк- ней/	точек	от 2 до 6
5	Шаг между продольными стержнями	мм	от 75 до 600
6	Типы свариваемых каркасов		

б Типы свариваемых каркасов приведены на стр. 92-94



Диаметр	о стерж	HEÙ (MM)		Размеры каркасов								
			В	94eer	карка	cob	NONLIOS CTO			mbi		
d,	α,	dz	_	U	v	2,	С		B+2C,	A+2C		
6-14	5-14	4-6	75-150	100,150								
8-18	5-18	4-8	155-250	200, 250								
10-22	<i>5-2</i> 2	5-10	255-350	100,150						 		
/2-25	6-25	6-12	355-500	200, 250			om 15	om 15	om 105			
14-25	8-25	6-12	505-725	300, 350			<i>до 300</i>	<i>дь 25</i>	đo 775	00 7200		
			J	400								
			l			L	<u> </u>	L	<u> </u>	<u> </u>		

77700 20	— 33 —
	При пожение 2 (продолжен
a)	G ₁ J
	A nd2
╽┢╾╄╼	
C.	A V V V V V V V V V V V V V V V V V V V
5)	
	1 d ₂
	d,
c	A
	,

Диаметр стержней (на)				Размеры каркасов							
, , , ,		В					EPAKHEU 3A CTEDALHEM	Габариты			
d,	d ₁	d ₂		U	v	v,	С		B+2C,	A+2C	
6-18	6-18	4-6	200-250	100; 150							
6-22	6-22	4-8	255-350	200; 250							
6-25	6-25	4-10	355-500	300; 350	100	u более	<i>do 300</i>	đo 200	<i>d</i> 775	ds 7200	
6-25	6-25	4-12	505-725	400;			1	1	1		

а) При $V_s = 50$ мм должно соблюдяться условие $d_s = d_s'$

AUG MEIP CTEPSKHEÙ (MN)						PO31	18001	KOPK	acab	
ابد	.,	_	8	A YEE	t KOP	KOCOB				U761
d,	d',	02		U	25		C		B+20,	A+20
5-18	5-18	4-6	75 -150	100,150						
6-22	5-22	4-8	155-250 255-350	200; 250	HE MINEY	50 ^{*1} 75	אן כנו	ar /5	ar 106	
6-25	6-25	4-10	255 -350	304.350	100	udaneo	20 300	00.700	do 775	dc 1200
6-25	8-25	4-12	355-600	400						
			355-600 TM BON		cognio	9a 16 C	9 45,00	BUE	d = d'	

Техническая характеристика плоских арматурных каркасов, свариваемых на одно-точечных машинах типа. МТП

	XMH P SPUT	MOMIN HOY	Inna	m TII				
le i	DTWMEHARTHME		Ед.	MT 7	II MTII 5 100	MTII 150	MTII 200	MTII 300
 	2		3	4	5	6	7	8
I	Максимальные диаметры риваемых стержней из класса А-I из стали класса А-II,	стали	ММ	18 16		25 22	30 26	40 36
2	Максимальная ширина с риваемых каркасов	Ba-	ш	_	при нечетн ных прутко длине выле 500+500=10	в равн та эле	а удв	оенной
					при четном ных прутко ной длине дов плюс р двумя сред стержнями = 1100+120	в равн вылета асстоя ними п 400+/І	а удв элек ние м родол	оен- тро- ежду ьными
3	Максимальная длина св риваемого каркаса	a-	мм		Длина карк машиной не и может бы вия органи /длина сто тирования	огран бак ат зации	ваири ой из тотеи	ется усло- овления
					Максимальн желательна с увеличен каркаса ре производит	не бо ием дл эко сн	лее 60 ины и ижает	000 мм, веса ся
4	Шаги между продольными и поперечными стержняя в каркасе.	M N M			Могут быть места пере сварку под	сечени	и под	