

ТУРБИНЫ ГИДРАВЛИЧЕСКИЕ Для Гидроэлектростанций том II

OCT 108.023.107—85; OCT 108.023.109—85; OCT 108.023.108—84; OCT 108.023.105—84; OCT 108.023.06—84; PTM 108.023.20—83

ОТРАСЛЕВОЙ СТАНДАРТ

ТУРБИНЫ ГИДРАВЛИЧЕСКИЕ ВЕРТИКАЛЬНЫЕ ПОВОРОТНО-ЛОПАСТНЫЕ ДИАГОНАЛЬНЫЕ

ТИПЫ, ОСНОВНЫЕ ПАРАМЕТРЫ И РАЗМЕРЫ

OCT 108.023.109-85

Издание официальное

УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ указанием Министерства энергетического машиностроения от 09.04.85 № СЧ-002/2777

ИСПОЛНИТЕЛИ: О. С. БАБАНОВ, канд. техн. наук; Г. А. ЯБЛОНСКИЙ, канд. техн. наук; И. М. ПЫЛЕВ, канд. техн. наук; В. В. НАУМОВ; Л. Ф. АБДУРАХМАНОВ, канд. техн. наук (руководитель темы); А. А. ВАРЛАМОВ, канд. техн. наук (руководитель темы); А. А. СОТНИКОВ, канд. техн. наук; М. В. ГУЩИН; А. Н. КОРОВИН; А. Г. ИВЛЕВ; Л. Д. ИРЛИНА;
Н. И. МАЛЮКИНА; В. П. МОРОЗКИН, доктор техн. наук;
Б. Т. ЕМЦЕВ, доктор техн. наук; И. Г. БЕЛАШ, канд. техн.
наук (руководитель темы); Д. Х. ЦАКИРИС, канд. техн. наук;
П. В. ХРАБРОВ, канд. техн. наук; Н. Д. МАРКОЗОВ, канд.
техн. наук; В. И. ГРИГОРЬЕВ, канд. техн. наук (руководитель темы); И. В. ТИМЕ, канд. техн. наук; И. Б. ПЕТРОВА

СОГЛАСОВАН с Министерством энергетики и электрификации СССР

Начальник Главтехуправления

в. и. горин

ТУРБИНЫ ГИДРАВЛИЧЕСКИЕ ВЕРТИКАЛЬНЫЕ ПОВОРОТНО-ЛОПАСТНЫЕ ДИАГОНАЛЬНЫЕ

OCT 108.023.109-85

типы, основные параметры и размеры

ОКП 31 1140

Введен впервые

Указанием Министерства энергетического машиностроения от 09.04.85 № СЧ-002/2777 срок действия установлен

c 01.07.86

до 01.07.91

Несоблюдение стандарта преследуется по закону

Настоящий стандарт распространяется на вертикальные поворотно-лопастные диагональные гидравлические турбины (диагональные гидротурбины).

Стандарт устанавливает типы диагональных гидротурбин, зоны их применения по напорам, диаметры рабочих колес и основные параметры.

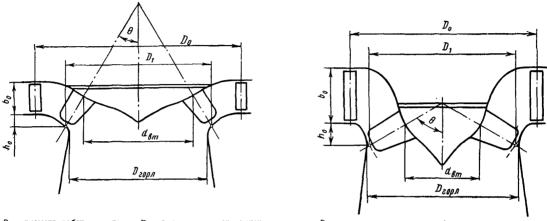
1. ТИПЫ И РАЗМЕРЫ

1.1. Типы диагональных гидротурбин установлены по наибольшим значениям максимального напора, на который они могут применяться.

Типы диагональных гидротурбин, зоны их применения в зависимости от величины максимального напора, а также соответствующий каждому типу диапазон номинальных значений диаметра рабочего колеса должны соответствовать указанным в табл. 1.

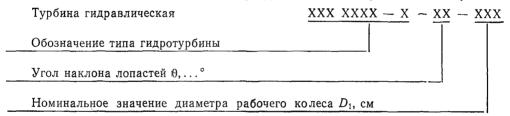
Таблица 1

Тип гидро- турбины		ьный напор ны <i>Н</i> _{тах} , м	Номинальное значение диаметра рабочего колеса D_1 , мм		
	наибольший	наименьший	наименьшее	наибольшее	
плд 50-В	50	40		9000	
ПЛД 60-В	60	50		8500	
ПЛД 70-В	70	60		8500	
ПЛД 90-В	90	70	1800	8000	
ПЛД 115-В	115	90		7 500	
ПЛД 140-В	140	115		7100	
ПЛД 170-В	170	140		630 0	
	1	I	1		


Отношение минимального напора гидротурбины к максимальному должно быть не менее 0,5. С учетом конкретных условий диапазон работы по мощности и длительность работы гидротурбины в зоне минимальных напоров должны быть согласованы с предприятием — изготовителем гидротурбины.

1.2. За диаметр рабочего колеса D_1 (чертеж) диагональной гидротурбины следует принимать диаметр окружности, проведенной через точки пересечения осей поворота лопастей со сферической камерой рабочего колеса (с продолжением сферической части камеры рабочего колеса).

Номинальные значения диаметра рабочего колеса D_1 рекомендуется выбирать из следующего ряда: 1800, 1900, 2000, 2120, 2240, 2360, 2500, 2650, 2800, 3000, 3150, 3350, 3550, 3750, 4000, 4250, 4500, 4750, 5000, 5300, 5600, 6000, 6300, 6700, 7100, 7500, 8000, 8500, 9000.


В технически обоснованных случаях допускаются отклонения от номинальных значений диаметров рабочих колес в пределах $\pm 2\%$.

Основные размеры проточной части поворотно-лопастных диагональных гидротурбин

 D_1 — диаметр рабочего колеса; D_0 — диаметр направляющего аппарата; $D_{\text{гор},1}$ — диаметр горловины; $d_{\text{вт}}$ — диаметр корпуса; b_0 — высота направляющего аппарата; θ — угол наклона лопастей

- 1.3. Диагональные гидротурбины следует изготавливать с радиальным направляющим аппаратом.
- 1.4. Условное обозначение диагональной гидротурбины должно строиться по следующей схеме:

Пример условного обозначения гидравлической турбины поворотно-лопастной диагональной на максимальный напор 115 м вертикальной с углом наклона лопастей $\theta \!=\! 45^{\circ}$ с номинальным значением диаметра рабочего колеса $D_1 = 600$ см:

ТУРБИНА ГИДРАВЛИЧЕСКАЯ ПЛД 115-B-45°-600.

Допускается применять обозначение, содержащее порядковый номер рабочего колеса (по нумерации организации — разработчика):

ТУРБИНА ГИДРАВЛИЧЕСКАЯ ПЛД 140/25566-B-45°-600.

2. ОСНОВНЫЕ ПАРАМЕТРЫ

2.1. Угол наклона осей поворота лопастей рабочего колеса к оси гидротурбины θ (угол наклона лопастей), число лопастей рабочего колеса z_1 (число лопастей), относительный диаметр окружности, проведенной через точки пересечения осей поворота лопастей с корпусом рабочего колеса $\overline{d}_{\rm BT} = \frac{d_{\rm BT}}{D_1}$ (относительный диаметр корпуса), относительный диаметр горловины камеры рабочего колеса $\overline{D}_{
m ropn} =$ $=rac{D_{
m ropn}}{D_1}$ (относительный диаметр горловины), относительный диаметр расположения осей поворота лопаток направляющего аппарата $\overline{D}_0 = rac{D_0}{D_1}$ (относительный диаметр направляющего аппарата), относительная высота направляющего аппарата $\overline{b}_0 = \frac{b_0}{\overline{D}_1}$ и относительное расстояние от плоскости нижнего кольца направляющего аппарата до точек пересечения осей поворота лопастей со сферической камерой (продолжением сферической части камеры) рабочего колеса $\overline{h}_0 = \frac{h_0}{D_1}$ (относительное расстояние $\overline{h_0}$) должны приниматься по табл. 2.

Основные геометрические и гидравлические параметры диагональных гидротурбин

	Тип гидротурбины						
Параметр	плд 50-В	плд 60-в	плд 70-в	плд 90-в	ПЛД 115-В	ПЛД 140-В	ПЛД 170-В*
Угол наклона лопастей θ,°	60		45			30	
Число лопастей z_1	7—8	7—8	8—9	9—10	9—10	9—11	10—12
Относительный диаметр корпуса $\overline{d}_{\mathtt{B}\mathtt{T}}$ **	0,50	0,53	0,55	0,60	0,65	0,70	0,76
Относительный диаметр горловины $ar{D_{ ext{rop}\pi}}$	1,01—0,99			1,00—0,98			0,98—0,97
Относительный диаметр направляющего аппарата \overline{D}_0	1,25—1,30		1,32—1,35			1,38—1,42	
Относительная высота направляющего аппарата $\overline{m{b}_0}$, не менее	0,375	0,350	0,350	0,320	0,280	0,250	0,230
Относительное расстояние \overline{h}_0	0,14-0,18		0,100,15			0,08—0,09	
Оптимальная приведенная частота вращения $m{n}_{\mathtt{lont}}'$, мин $^{-1}$	105—115	100—115	100110	85—95	83—91	82—87	77—85
Приведенный расход, л/с: $Q_{1 m ont}^{'}$	900—1150	9001100	850—1050	800—1000	760—900	7 20 —850	550— 650
максимальный по кавитационным условиям $Q^{'}_{1\mathrm{max}}$	1250—1500	1200—1400	1100—1300	1000—1200	850—1050	750—950	700800
Қоэффициент кавитации σ при $Q_{1\mathrm{max}}^{'}$	0,33—0,52	0,30—0,50	0,28—0,40	0,26-0,38	0,22—0,30	0,18—0,26	0,16—0,20

^{*} Прогнозно, перспективный вариант проточной части ** Допускаемые отклонения от указанных значений $\overrightarrow{d}_{\rm BT}$ не должны превышать $\pm 5\%$

2.2. Значения диаметра направляющего аппарата должны приниматься из ряда значений D_0 , установленного для поворотно-лопастных осевых гидротурбин по ОСТ 108.023.15—82.

2.3. Профили лопаток направляющего аппарата должны приниматься по ОСТ 108.023.14—82.

Гидродинамические характеристики профилей должны пересчитываться с характеристик, приведенных в ОСТ 108.023.14—82, с учетом значений \overline{b}_0 и \overline{D}_0 , принятых для диагональных гидротурбин. 2.4. Размеры и очертания проточной части отсасывающих труб должны приниматься по

ОСТ 108.122.01-76 с применением колен КУ-1ПЛ и КУ-3РО.

Относительная высота отсасывающей трубы $\overline{h} = \frac{h}{D_t}$ должна быть не менее 2,3.

2.5. Режим работы диагональной гидротурбины определяется приведенной частотой вращения гидротурбины

$$n_{\rm I}' = \frac{nD_1}{\sqrt{H}}$$

и приведенным расходом гидротурбины

$$Q_{\rm I}' = \frac{Q}{D_1^2 \sqrt{H}},$$

где n — частота вращения гидротурбины, мин $^{-1}$;

Q — расход гидротурбины, м³/с; H — напор гидротурбины, м.

2.6. Значения оптимальных приведенной частоты вращения $n'_{
m lont}$ и приведенного расхода $Q'_{
m lont}$ (на режимах с максимальным коэффициентом полезного действия), приведенного расхода на режимах максимальной мощности $Q'_{1\max}$ и коэффициента кавитации σ при $Q'_{1\max}$ должны соответствовать ука-

занным в табл. 2. 2.7. При энергетических испытаниях моделей диагональных гидротурбин должен обеспечиваться максимальный коэффициент полезного действия не менее 91,0%.

Указанное значение коэффициента полезного действия должно определяться путем пересчета на условия испытаний модельной гидротурбины при напоре H=4 м и температуре воды $t=20^{\circ}\mathrm{C}$ с диаметром рабочего колеса $D_1 = 460$ мм.

Максимальный коэффициент полезного действия, указанный на универсальных характеристиках, следует приводить к стандартным условиям по формуле пересчета коэффициента полезного действия, приведенной в рекомендуемом приложении 1.

Универсальные характеристики, с которых производится пересчет коэффициента полезного действия, должны быть получены при испытании модельных гидротурбин с диаметром рабочих колес $D_1 \geqslant 460$ мм при температуре воды от 0 до 35°C и напоре $H \geqslant 2$ м.

Зависимость коэффициента кинематической вязкости воды от температуры приведена в рекомен-

дуемом приложении 1.

Условия испытаний модельных гидротурбин и методы измерений должны соответствовать «Международному коду модельных приемо-сдаточных испытаний гидравлических турбин» МЭК 193 и 193А).

Универсальные и разгонные характеристики модельных гидротурбин приведены в рекомендуемом приложении 2.

ПРИЛОЖЕНИЕ 1

Рекомендуемое

РАСЧЕТ ЭКСПЛУАТАЦИОННЫХ ХАРАКТЕРИСТИК ГИДРОТУРБИН

1. Расчет эксплуатационных характеристик гидротурбин производится по универсальным характеристикам, полученным при испытаниях модельных гидротурбин.

2. Для определения коэффициента полезного действия гидротурбин рекомендуется формула

$$\frac{1-\eta_{\rm H}}{1-\eta_{\rm M}}=(1-\chi)+\chi\sqrt[5]{\frac{{\rm Re}_{\rm M}}{{\rm Re}_{\rm H}}},$$

где

 η_{H} — коэффициент полезного действия натурной гидротурбины; η_{M} — коэффициент полезного действия модельной гидротурбины;

 χ — доля пересчитываемых потерь энергии, принимаемая в зоне гарантируемых режимов работы гидротурбины при $Q_1' \geqslant 0.4 \, Q_{1\,\text{ont}}'$ равной $\chi = 0.75$; Re_{m} и Re_{m} — числа Рейнольдса модельной и натурной гидротурбин;

$$\frac{\mathrm{Re_{_{M}}}}{\mathrm{Re_{_{H}}}} = \frac{\nu_{_{H}}D_{\mathrm{гор. I. M}}\sqrt{2gH_{_{M}}}}{\nu_{_{M}}D_{\mathrm{гор. I. H}}\sqrt{2gH_{_{H}}}} = \frac{\nu_{_{H}}D_{_{1.M}}\sqrt{H_{_{M}}}}{\nu_{_{M}}D_{_{1.H}}\sqrt{H_{_{M}}}},$$

где $D_{{
m горл.m}}$ и $D_{{
m горл.h}}$ — диаметры горловины модельной и натурной гидротурбин, м; $D_{{
m Im}}$ и $D_{{
m Im}}$ — диаметры рабочего колеса модельной и натурной гидротурбин, м; $H_{{
m M}}$ и $H_{{
m H}}$ — напоры модельной и натурной гидротурбин, м; $v_{{
m M}}$ и $v_{{
m II}}$ — коэффициенты кинематической вязкости воды при испытаниях модельной и натурной гидротурбин, м²/с.

Зависимость коэффициента кинематической вязкости воды от температуры приведена на черт. 1. Для упрощения пересчетов коэффициента полезного действия гидротурбины по приведенной формуле на черт. 2 и 3 дана зависимость

$$\sqrt[5]{\frac{\mathrm{Re}_{\mathrm{M}}}{\mathrm{Re}_{\mathrm{H}}}} = f\left(\frac{\mathrm{Re}_{\mathrm{M}}}{\mathrm{Re}_{\mathrm{H}}}\right).$$

3. Приведенная частота вращения гидротурбины n_1' (мин $^{-1}$) определяется по формуле

$$n'_{\rm I} = \frac{nD_1}{V\overline{H}}$$

n — частота вращения гидротурбины, мин $^{-1}$

 D_1 — диаметр рабочего колеса, м; H — напор гидротурбины, м.

Соответствие приведенной частоты вращения натурной гидротурбины и ее модели учитывается поправкой $\Delta n_i'$ (мин⁻¹)

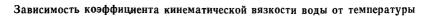
$$\Delta n_{\rm i} = n_{\rm i_{\rm H}}' - n_{\rm i_{\rm M}}' = n_{\rm i_{\rm M}}' - n_{\rm i_{\rm M}}' - 1$$

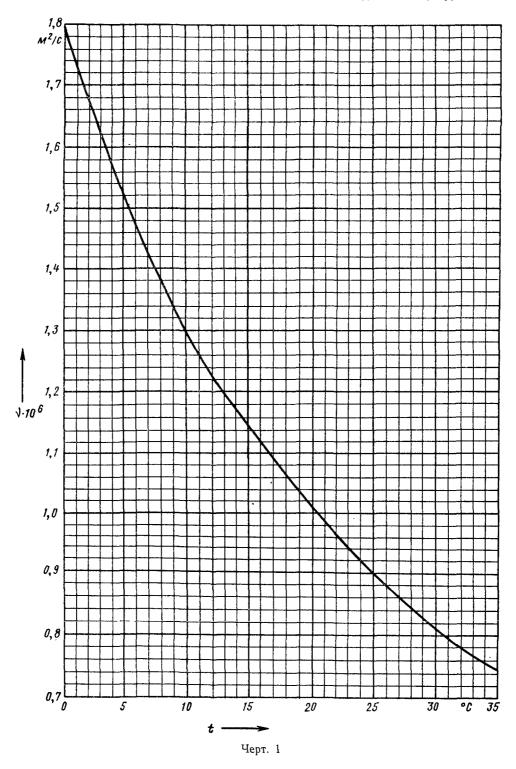
где $n'_{\mathsf{I}_{\mathsf{M}}\,\mathrm{OHT}}$ — оптимальная приведенная частота вращения модели, мин⁻¹;

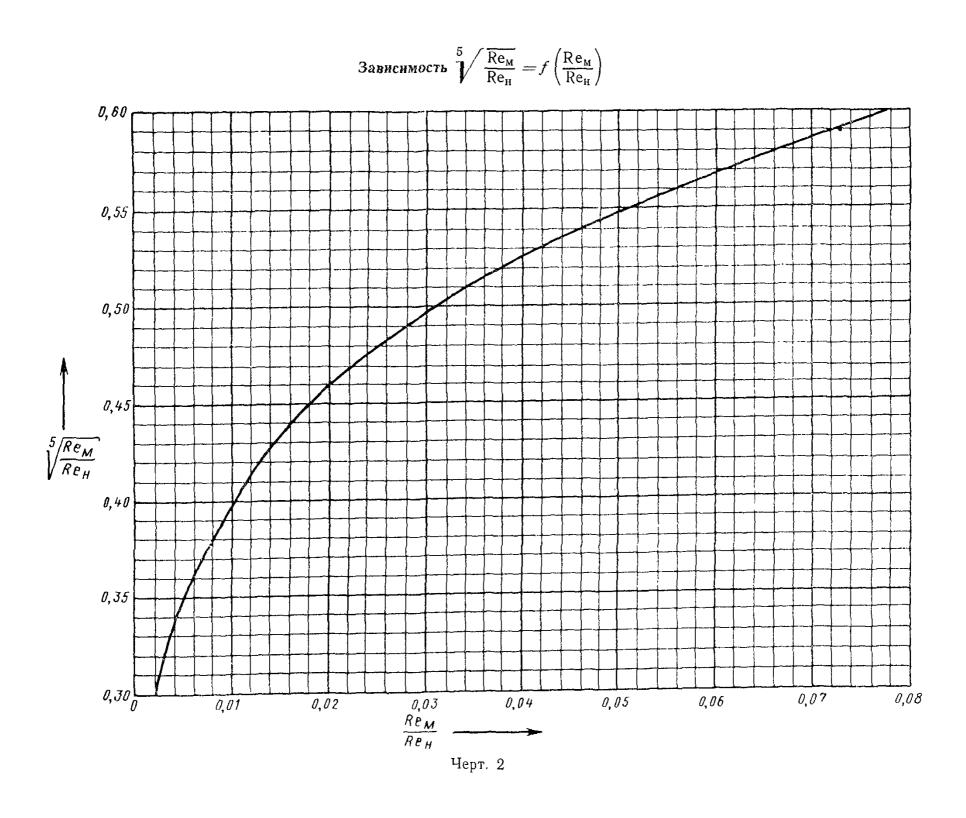
 $\eta_{ ext{\tiny H} ext{ max}}$ — максимальный коэффициент полезного действия гидротурбины;

 $\eta_{ ext{m max}}$ — максимальный коэффициент полезного действия модели по универсальной характери-

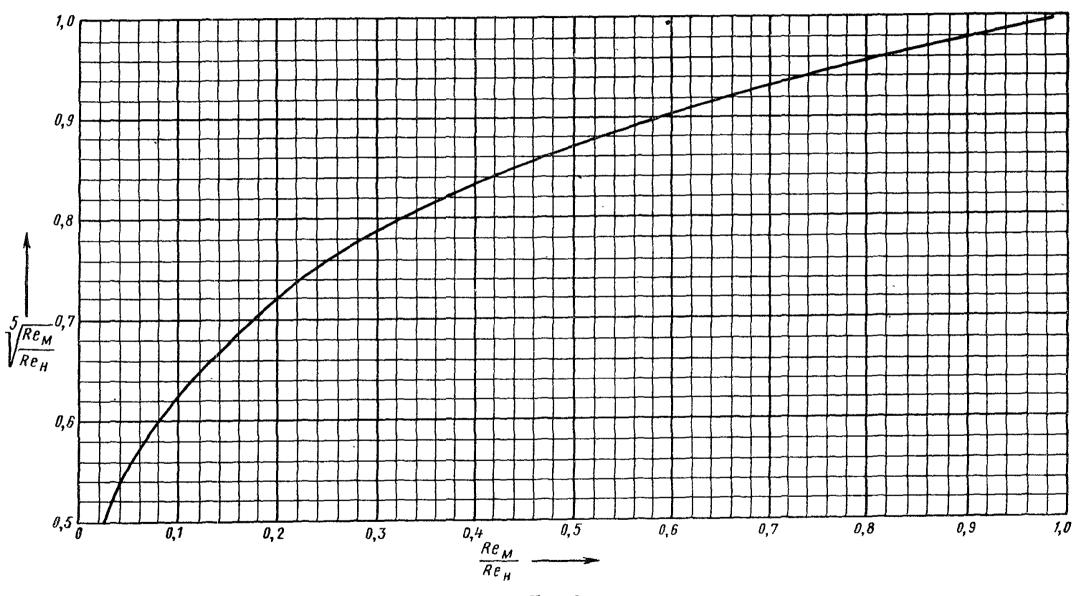
Вычисленная таким образом поправка Δn_1^{\prime} условно принимается постоянной для всех режимов работы гидротурбины.


4. Мощность гидротурбины N (кВт) вычисляется по формуле


$$N = 9.81 D_1^2 H \sqrt{H} Q_{1u}' \eta_{H}$$

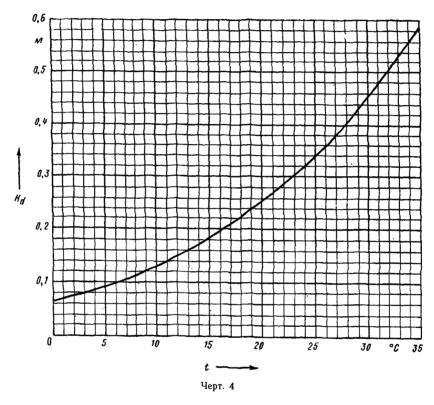

При пересчетах принимается

$$Q'_{\mathbf{I}_{\mathbf{M}}} = Q'_{\mathbf{I}_{\mathbf{M}}},$$


где $Q_{\mathrm{I}_{\mathtt{H}}}^{\prime}$ и $Q_{\mathrm{I}_{\mathtt{M}}}^{\prime}$ — приведенные расходы натурной и модельной гидротурбин, м²/с.

Зависимость
$$\sqrt[5]{\frac{\overline{Re_{M}}}{Re_{H}}} = f\left(\frac{Re_{M}}{Re_{H}}\right)$$

Черт. 3


5. Высота отсасывания диагональных гидротурбин H_s (м) отсчитывается от средней линии направляющего аппарата и определяется по формуле

$$H_s = B - \frac{\nabla}{900} - H_d + \frac{b_0}{2} - \sigma H - 1.5,$$

где B = 10,33 — высота водяного столба, соответствующая барометрическому давлению на уровне моря, м:

abla— отметка расположения средней линии направляющего аппарата над уровнем моря, м; H_d — высота водяного столба, соответствующая давлению парообразования, м (определяется по черт. 4);

Зависимость $H_d = f(t)$

 b_0 — высота направляющего аппарата, м;

- значение критического кавитационного коэффициента, указанное на универсальной характеристике гидротурбины;

1,5 м — запас, учитывающий масштабный фактор в величине критического кавитационного коэффициента, погрешности изготовления натурных и модельных гидротурбин.

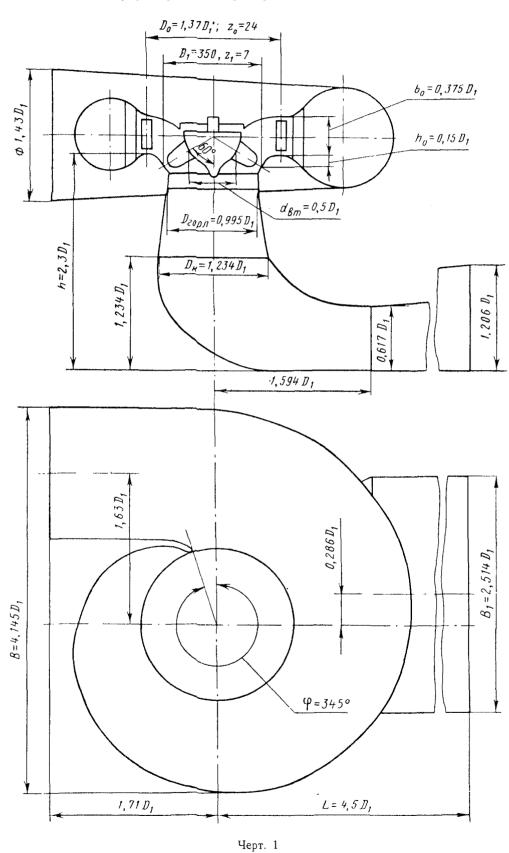
При указанных высотах отсасывания унос металла вследствие кавитационной эрозии не должен превосходить величин, рекомендованных в Публикации МЭК 609 (1978 г.).

С целью уменьшения кавитационных разрушений заглубление гидротурбины может быть увеличено. Величина дополнительного заглубления гидротурбины согласовывается между проектировщиком ГЭС и предприятием — изготовителем гидротурбин с учетом конкретных условий эксплуатации (режим работы, тип рабочего колеса и применяемые материалы).

УНИВЕРСАЛЬНЫЕ И РАЗГОННЫЕ ХАРАКТЕРИСТИКИ МОДЕЛЬНЫХ ГИДРОТУРБИН

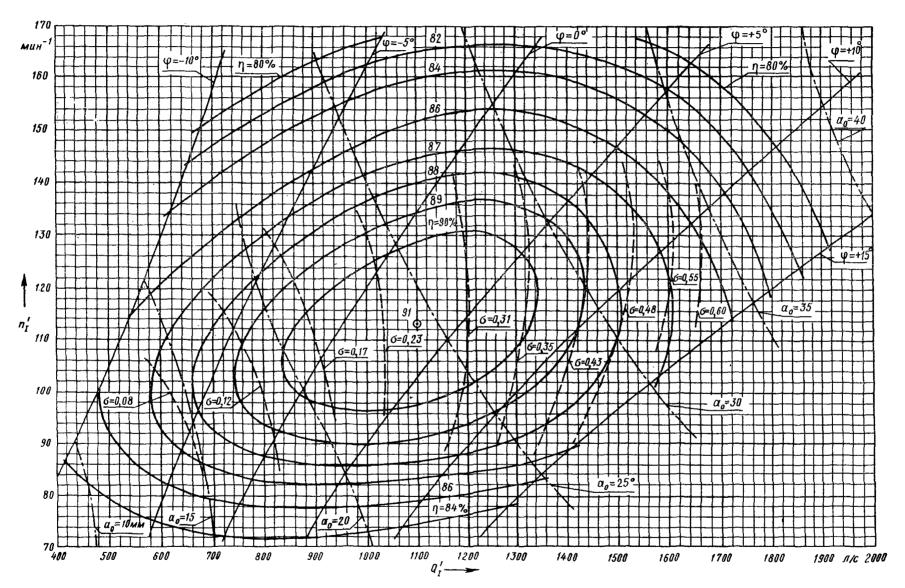
1. Перечень рекомендуемых к применению диагональных гидротурбин, их универсальных и разгонных характеристик приведен в таблице, а прилагаемые чертежи очертания проточной части модельных гидротурбин, их универсальные и разгонные характеристики на черт. 1—22.

Тип гидротурбины				вый номер еристики	Максимальный КПД, %	
	Модификация рабочего колеса	Номер чертежа приложения 2	универсаль- ной	разгонной	по универсальной характеристике	приведенный в соответствин с п. 2.7 стан-
плд 50-В	ПЛД 50/4015	1, 2	4503 МЭИ	_	91,0	91,3
ПЛД 60-В	ПЛД 60/40116	3, 4, 5	2449 ХТГЗ	2449 XTГ3	90,6	89,8
ПЛД 70-В	ПЛД 70/4011а	6, 7	2617 ЛМЗ		90,7	91,3
ПЛД 90-В	ПЛД 90/2556	8, 9, 10	2581 ЛМЗ	2585 ЛМЗ	91,8	91,9
	ПЛД 90/2556а	11, 12	2561 ЛМЗ	_	92,1	92,2
	ПЛД 90/4025		·	_		! —
ПЛД 115-В	ПЛД 115/25566	13, 14, 15	2553 ЛМЗ	2615 ЛМЗ	91,6	91,9
	ПЛД 115/2556в	16, 17	2560 ЛМЗ	_	92,1	92,1
ПЛД 140-В	ПЛД 140/2556г	18, 19, 20	2558 ЛМЗ	2565 ЛМЗ	92,1	92,5
ПЛД 170-В	ПЛД 170/4333м	21, 22	4507 МЭИ	_	91,0	91,5

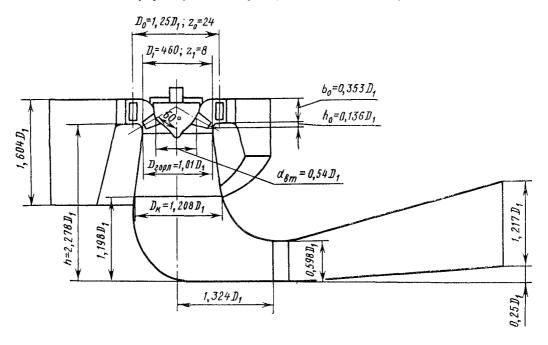

Прплагаемые универсальные и разгонные характеристики получены по испытаниям конкретных модельных гидротурбин, проточная часть которых по отдельным параметрам в ряде случаев отличается от рекомендаций настоящего стандарта. В необходимых случаях эти характеристики подлежат уточнению с моделированием принятой проточной части гидротурбины.

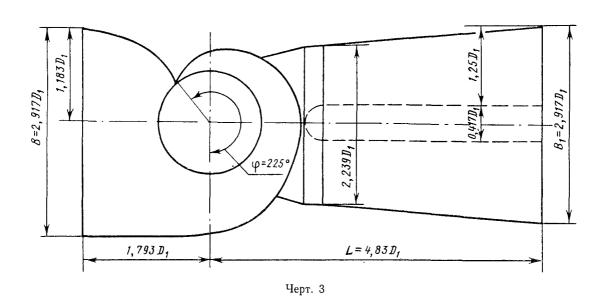
- 2. На прилагаемых характеристиках указаны:
- Q_1' приведенный расход, л/с;
- n'_1 приведенная частота вращения, мин⁻¹;
- a_0 открытие лопаток направляющего аппарата, мм;
- ϕ угол установки лопастей рабочего колеса,...°;
- $\eta_{\rm M}$ коэффициент полезного действия модельной гидротурбины, %;
- с— критический коэффициент кавитации модельной гидротурбины.
 Прилагаемые универсальные и разгонные характеристики получены по и

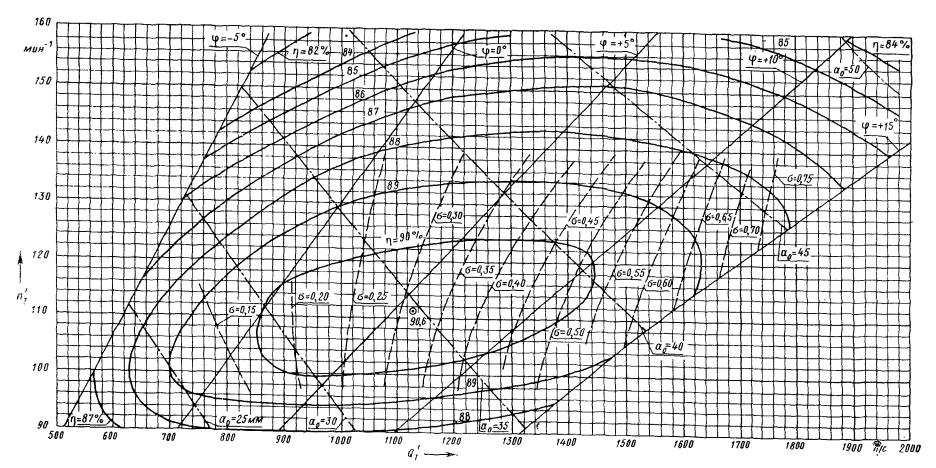
3. Прилагаемые универсальные и разгонные характеристики получены по испытаниям модельных установок с диаметрами рабочих колес $D_{\text{IM}} = 310 \div 460$ мм при напорах $H = 3 \div 8$ м и температуре воды от 0 до 35°C, при которых обеспечиваются числа Рейнольдса $\text{Re}_{\text{M}} \geqslant 2 \cdot 10^6$.


Испытания проведены на стендах гидротурбинных лабораторий ПО ЛМЗ, ПО ХТГЗ и МЭИ в соответствии с «Международным кодом модельных приемо-сдаточных испытаний гидравлических турбин» (Публикации МЭК 193 и 193А).

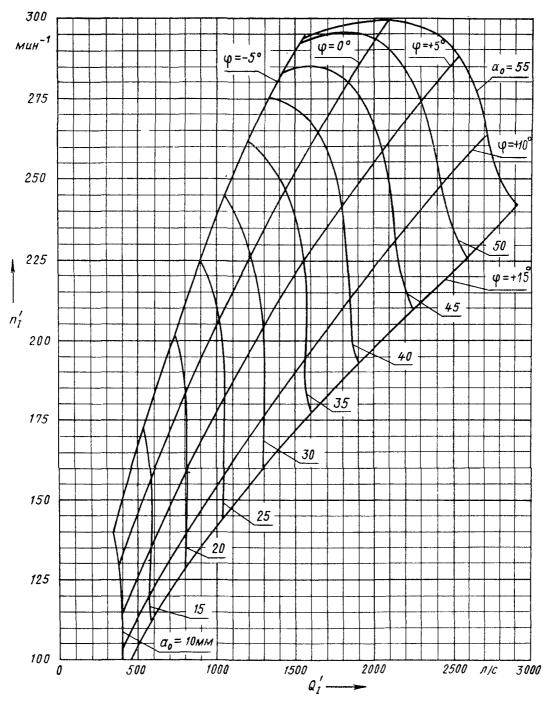
Универсальные характеристики, полученные при испытаниях моделей с $D_{\rm 1m}{<}460$, допускаются к временному использованию и подлежат уточнению по результатам испытаний моделей с $D_{\rm 1m}{\geqslant}$ ${\geqslant}460$ мм.


Проточная часть модели гидротурбины ПЛД 50/4015-B- 60° -35 (к универсальной характеристике № 4503 МЭИ)

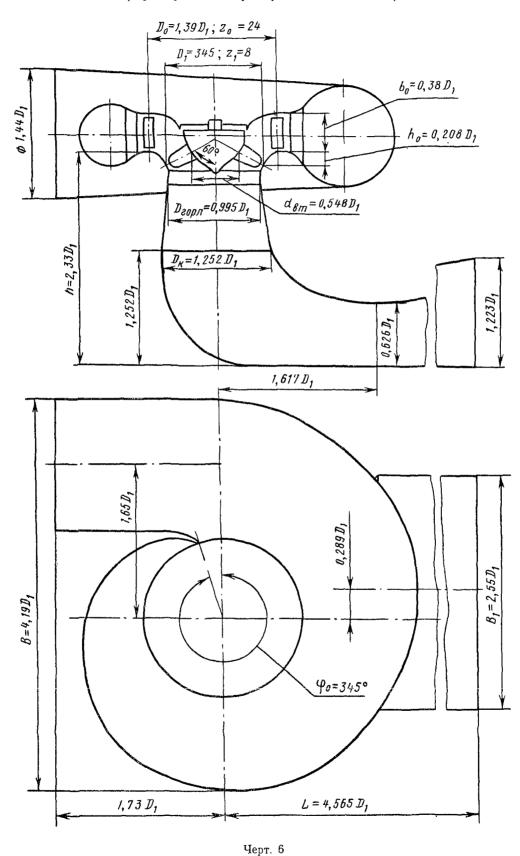

Универсальная характеристика гидротурбины ПЛД 50/4015-В- 60° -35 № 4503 МЭИ


Испытания проведены при напоре гидротурбины 5 м и температуре 16°C Черт. 2

Проточная часть модели гидротурбины ПЛД 60/40116-В- 60° -46 (к универсальной характеристике № 2449 ХТГЗ)

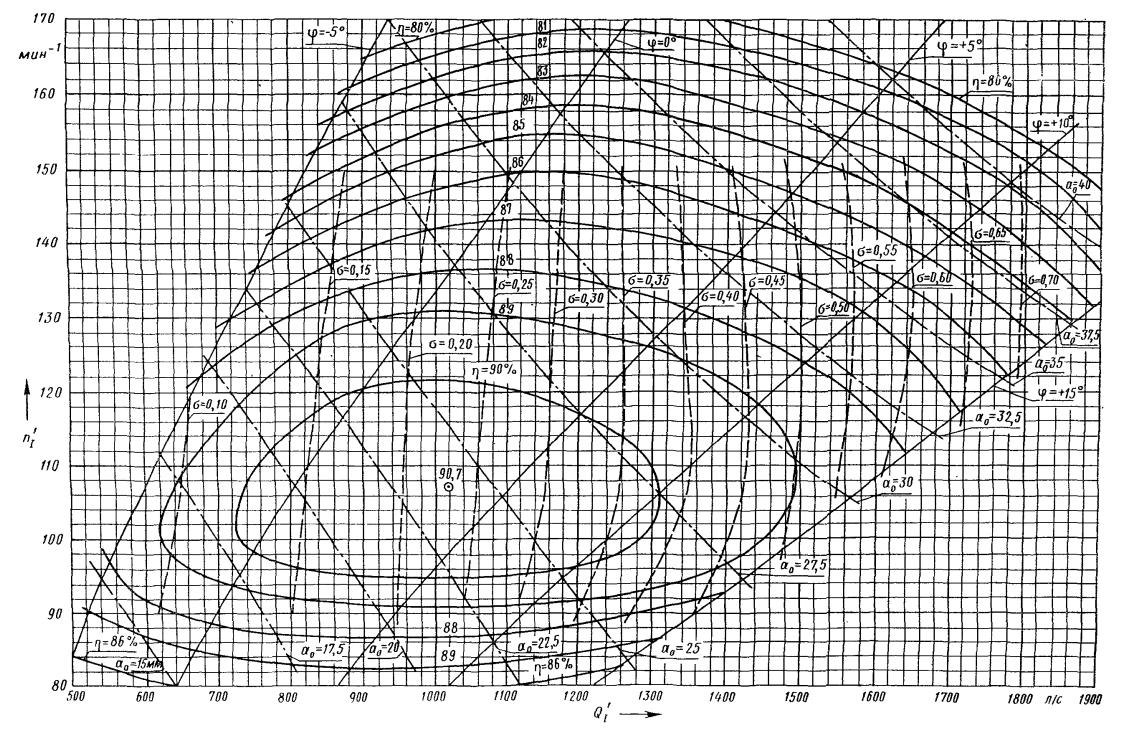


Универсальная характеристика гидротурбины ПЛД 60/40116-В-60°-46 № 2449 ХТГЗ

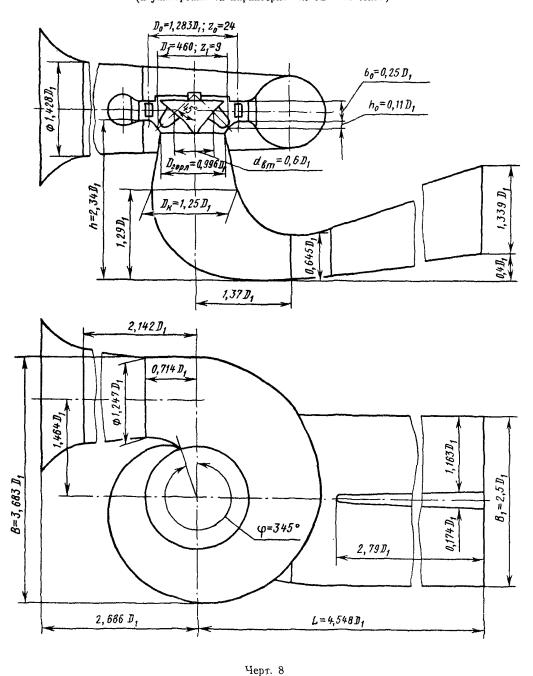


Испытания проведены при напоре гидротурбины 12 м и температуре 20°C $${\rm ^{{\bf 4}}C}$$

Разгонная карактеристика гидротурбины ПЛД 60/40116-В-60°-46 № 2449 XTГЗ

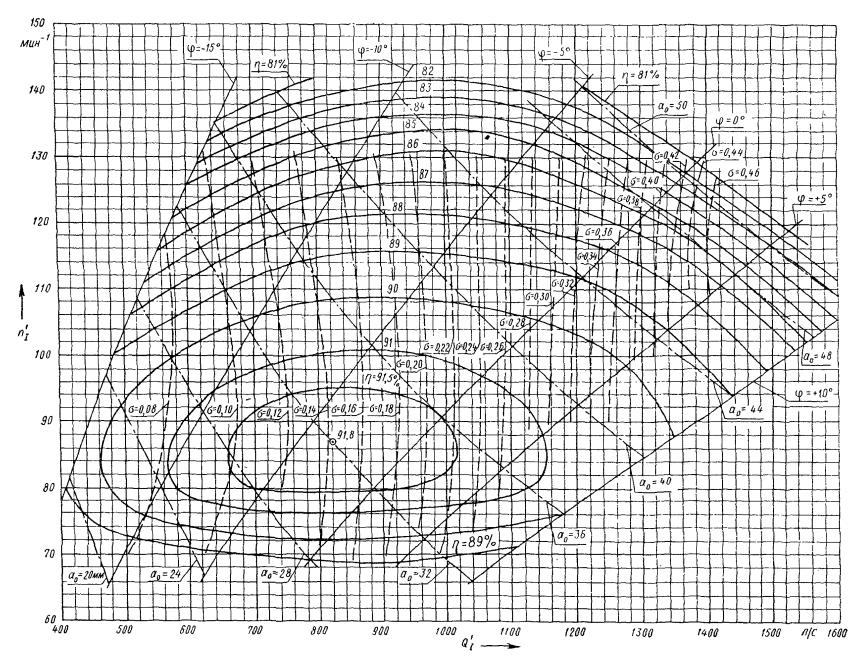


Черт. 5

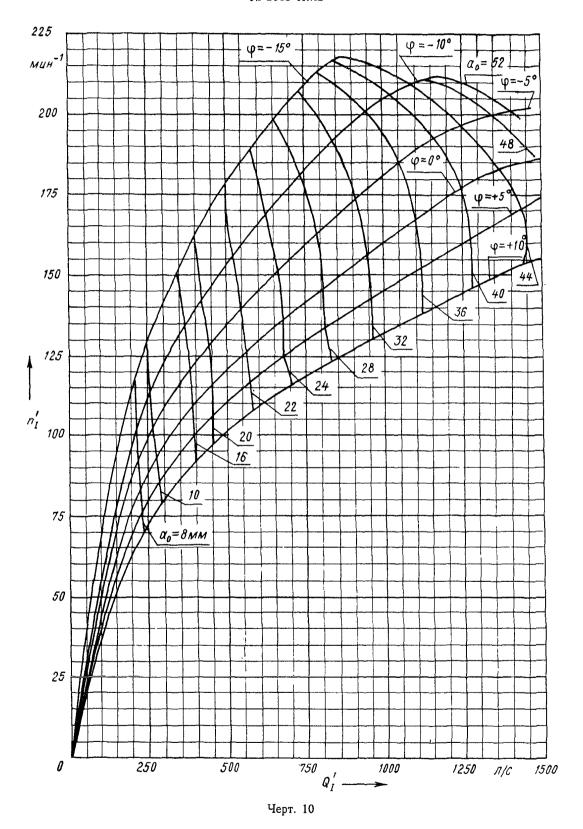


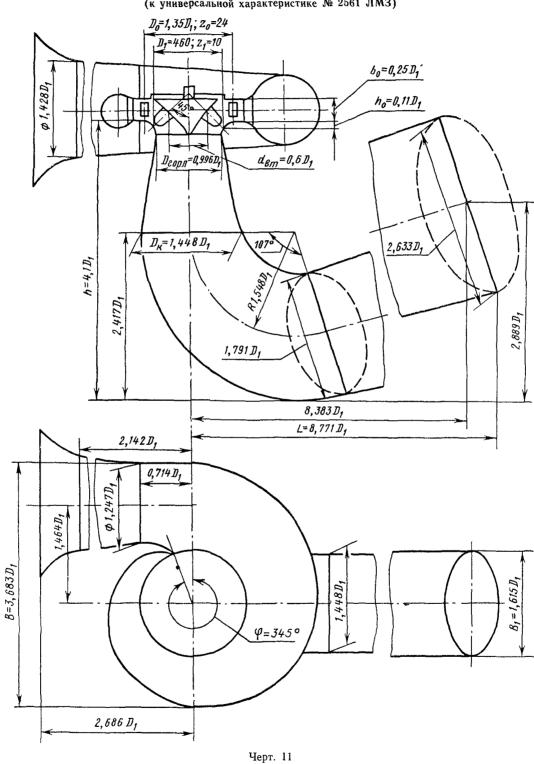
Проточная часть модели гидротурбины ПЛД 70/4011a-B-60°-34,5 (к универсальной характеристике № 2617 ЛМЗ)

Универсальная характеристика гидротурбины ПЛД 70/4011a-B-60°-34,5 № 2617 ЛМЗ

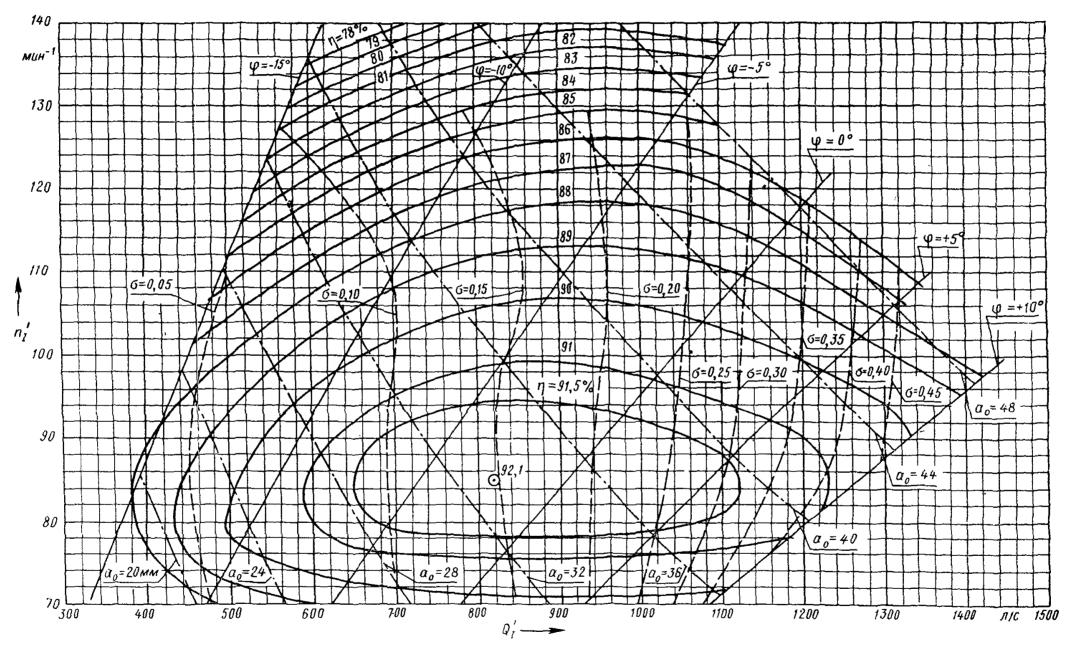

Испытания проведены при напоре гидротурбины от 3 до 6 м и температуре от 3 до 7°C Черт. 7

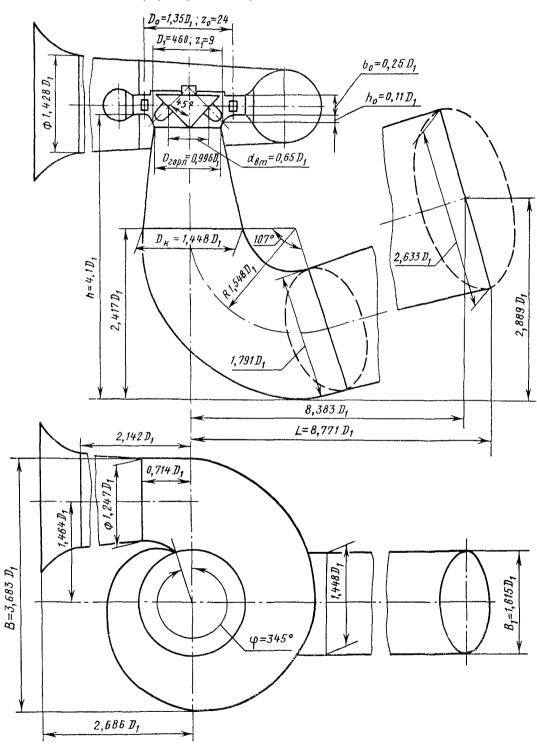
Проточная часть модели гидротурбины ПЛД 90/2556-B- 45° -46 (к универсальной характеристике № 2581 ЛМЗ)


черт. с


Универсальная характеристика гидротурбины ПЛД 90/2556-В-45°-46 № 2581 ЛМЗ

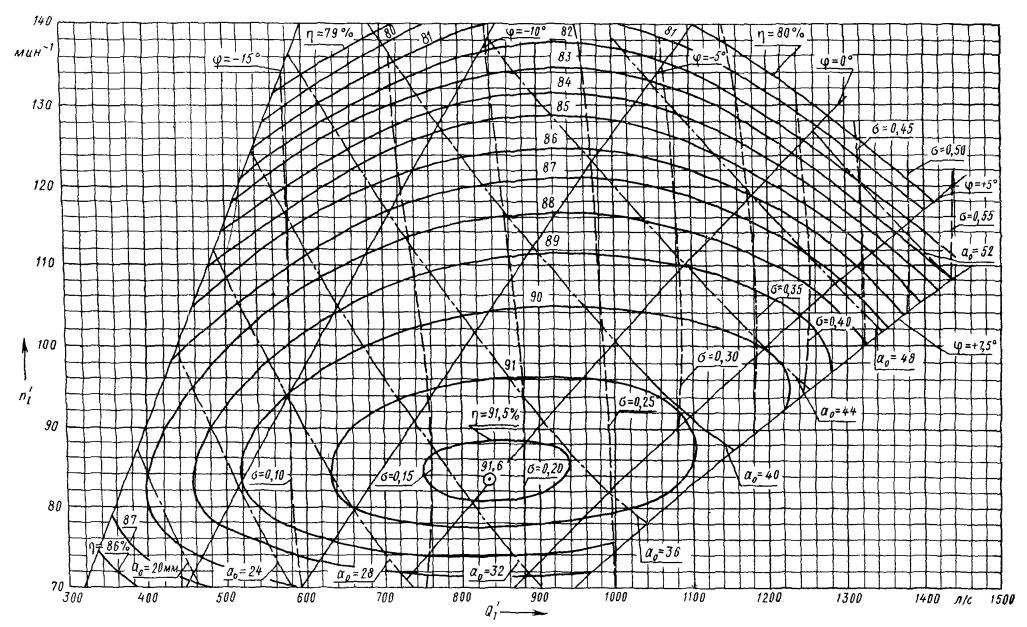
Испытания проведены при напоре гидротурбины 4 м и температуре от 14 до 18°C Черт. 9


Разгонная характеристика гидротурбины ПЛД 90/2556-В-45°-46 № 2585 ЛМЗ

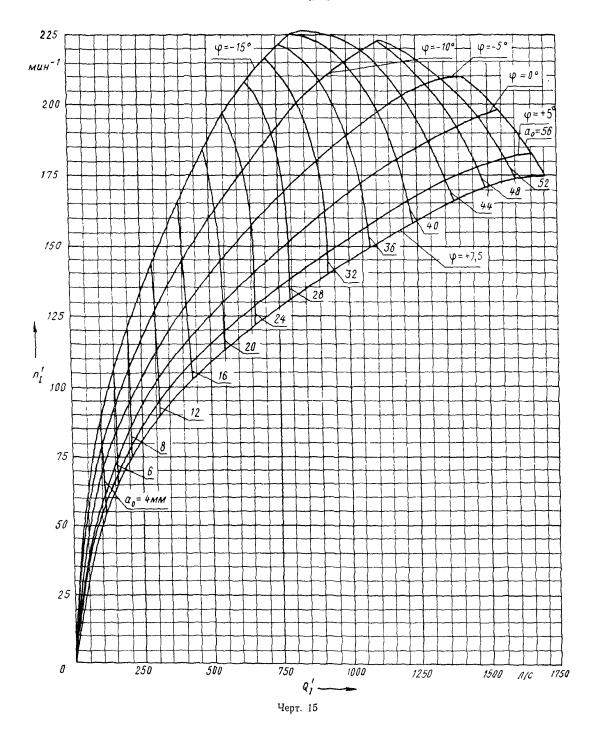


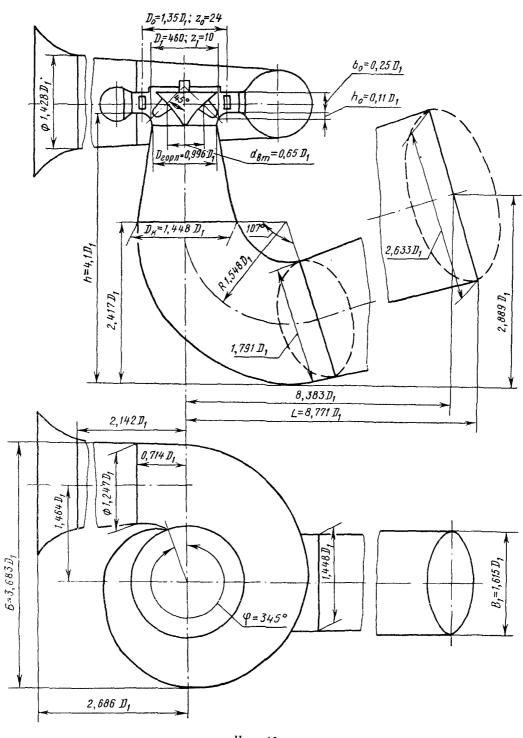
Проточная часть модели гидротурбины ПЛД 90/2556а-В-45°-46 (к универсальной характеристике № 2561 ЛМЗ)

Универсальная характеристика гидротурбины ПЛД 90/2556a-B-45°-46 № 2561 ЛМЗ

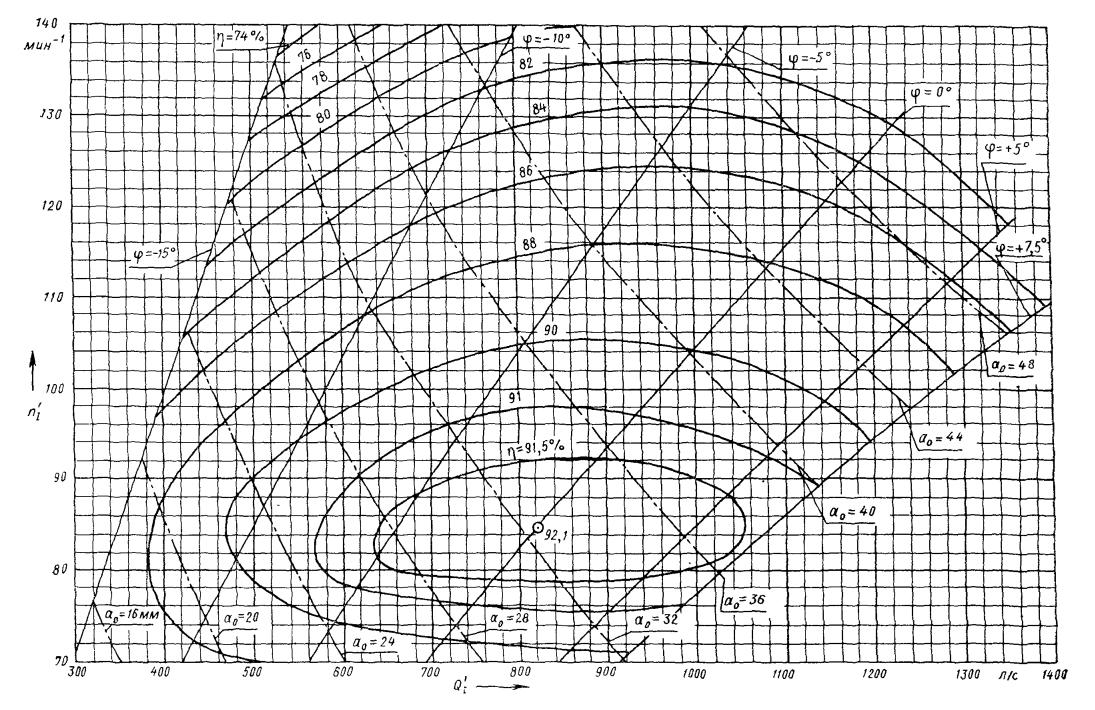

Испытания проведены при напоре гидротурбины 4 м и температуре от 11,5 до 18°C Черт. 12

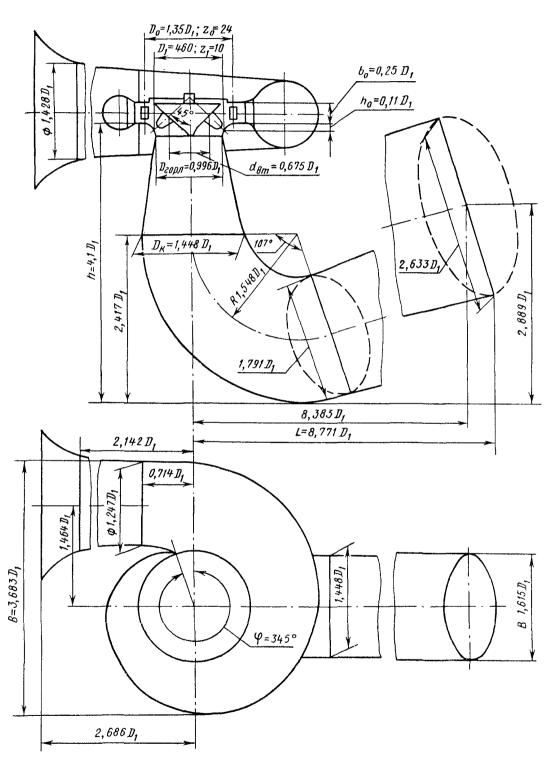
Проточная часть модели гидротурбины ПЛД 115/25566-В-45°-46 (к универсальной характеристике № 2553 ЛМЗ)


Черт. 13


Универсальная характеристика гидротурбины ПЛД 115/25566-В-45°-46 № 2553 ЛМЗ

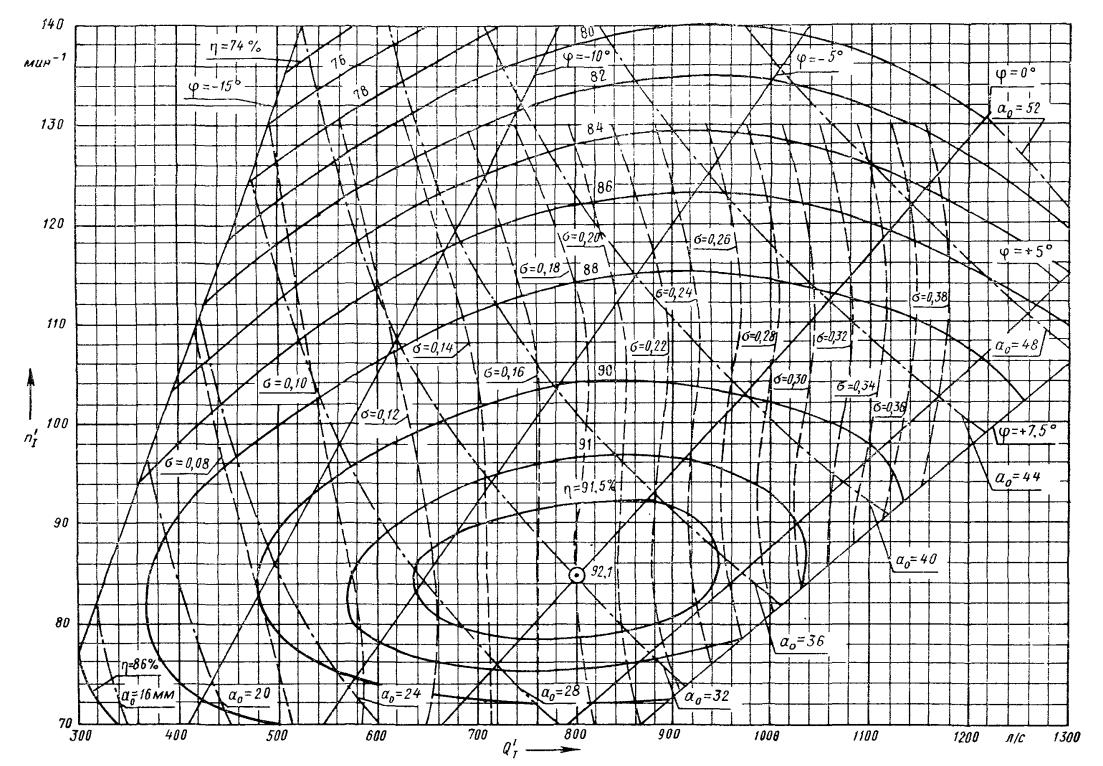
Испытания проведены при напоре гидротурбины 4 м и температуре от 6 до 11°C Черт. I4



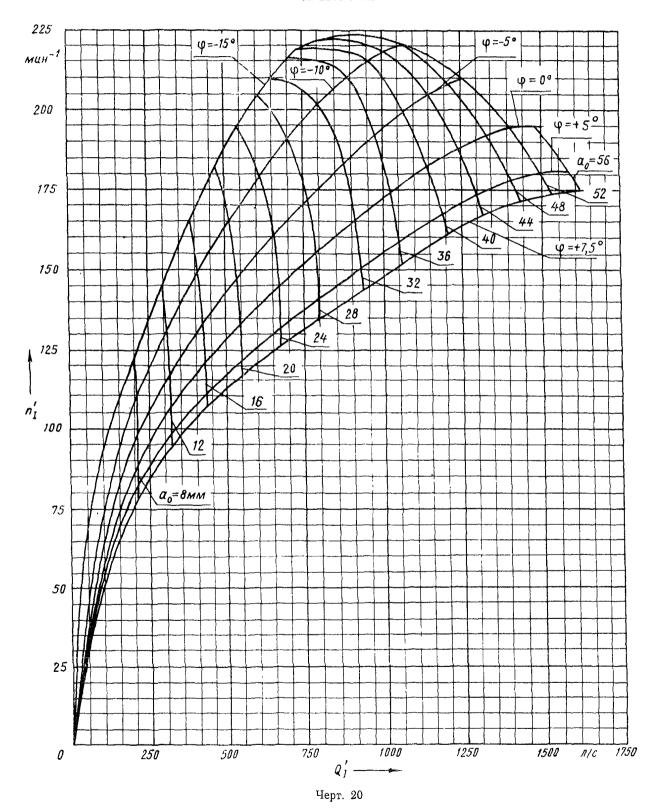


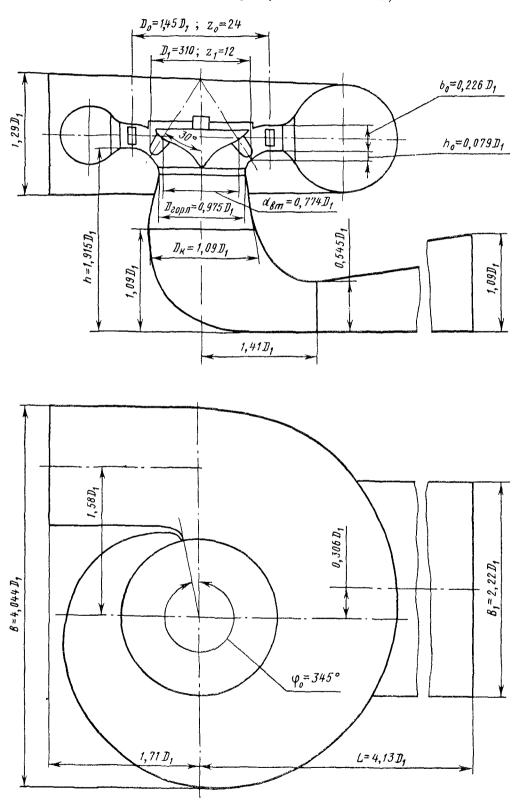
Проточная часть модели гидротурбины ПЛД 115/2556в-В-45°-46 (к универсальной характеристике № 2560 ЛМЗ)

Универсальная характеристика гидротурбины ПЛД 115/2556в-В-45°-46 № 2560 ЛМЗ



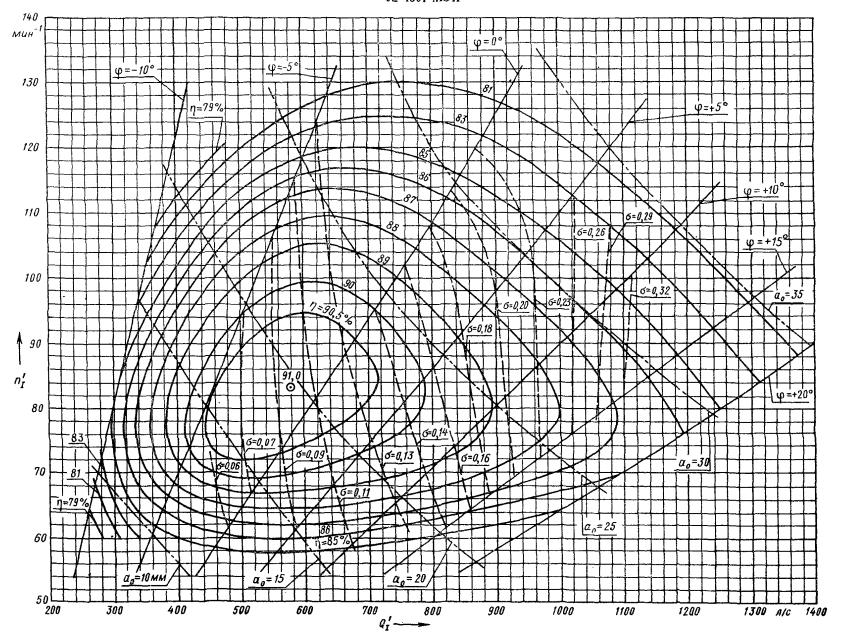
Испытания проведены при напоре гидротурбины 4 м и температуре от 17 до 20°C Черт. 17


Проточная часть модели гидротурбины ПЛД 140/2556г-В-45°-46 (к универсальной характеристике № 2558 ЛМЗ)


Черт. 18

Испытания проведены при напоре гидротурбины 4 м и температуре от 5 до 7°C Черт. 19

Разгонная характеристика гидротурбины ПЛД 140/2556г-В-45°-46 № 2565 ЛМЗ



Черт, 21

Проточная часть модели гидротурбины ПЛД 170/4333м-В-30°-31 (к универсальной характеристике № 4507 МЭИ)

Универсальная характеристика гидротурбины ПЛД 170/4333м-В-30°-31 № 4507 МЭИ

Испытания проведены при напоре гидротурбины 5 м и температуре 16°C Черт. 22

перечень документов, на которые даны ссылки в тексте ост 108.023.109--85

Обозначение документа	Наименование документа	Номер пункта стандарта	
OCT 108.023.14—82	Профили лопаток направляющего аппарата гидравлических верти- кальных поворотно-лопастных и радиально-осевых турбин. Типы и раз- меры		
OCT 108.023.15—82	Турбины гидравлические вертикальные поворотно-лопастные осевые и радиально-осевые. Типы и основные параметры	2.2	
OCT 108.122.01—76	Турбины гидравлические вертикальные. Трубы отсасывающие изо- гнутые. Очертания проточной части, размеры	2.4	
МЭК Публикация 193	Международный код модельных приемо-сдаточных испытаний гид- равлических турбин	2.7; 3 приложения 2	
МЭК Публикация 193А	Первое дополнение к международному коду модельных приемо-сда- точных испытаний гидравлических турбин	2.7; 3 приложения 2	
МЭҚ Публикация 609	Международный код по оценке кавитационных разрушений в гидравлических турбинах, аккумулирующих насосах и насос-турбинах	5 приложения l	

лист регистрации изменении отраслевого стандарта

	Номера листов (страниц)							
Изм.	измененных	за мен енных	новых	аннулиро- ванных	Номер документа	Подпись	Дата	Срок введения изменения
				-				
				00.				
					H 1400			
		i						

СОДЕРЖАНИЕ

ОСТ 108.023.107—85. Турбины гядравлические горизонтальные капсульные Типы, основные параметры и размеры:	:
ОСТ 108.023.109—85. Турбины гядравлические вертикальные поворотно-лопастные днагональные. Типы, основные параметры и размеры	37
ОСТ 108.023.108—84. Турбвиш гидравлические вертикальные копловые. Типы, основные параметры и размеры	7:
ОСТ 108.023.105—84. Турбины гидравлические вертикальные поворотно-лопастные поворотные пово	89
ОСТ 108.023.06—84. Турбины гидравлические вертикальные радиально-осевые Конструктивные скемы	103
PTM 108.023.20—83. Турбныы гидраванические вертикальные поворогно-допастные осеные и радиально-осеные. Предедывая металлоемкость	113

Редакторы: С. В Иовенко, Н. М. Суханова

Технический редактор А. Н	. Криченева	Корректор Л. А. Крупнова
Слано в набор 28.05.86.	Подписано к печ.	13.11.86. Формат бум 60×90 ¹ / ₆
Объем 16,5 печ. л.	Тираж 150	Заказ 111. Цена 3 р. 30 -к.