Государственное санитарно-эпидемиологическое нормирование Российской Федерации

4.1. МЕТОДЫ КОНТРОЛЯ. ХИМИЧЕСКИЕ ФАКТОРЫ

Измерение массовой концентрации химических веществ люминесцентными методами в объектах окружающей среды

Сборник методических указаний МУК 4.1.1255—4.1.1274—03

Издание официальное

Минздрав России МОСКВА • 2003

4.1. МЕТОДЫ КОНТРОЛЯ. ХИМИЧЕСКИЕ ФАКТОРЫ

Измерение массовой концентрации химических веществ люминесцентными методами в объектах окружающей среды

Сборник методических указаний МУК 4.1.1255—4.1.1274—03

ИЗ7 Измерение массовой концентрации химических веществ люминесцентными методами в объектах окружающей среды: Сборник методических указаний.—М.: Федеральный центр госсанэпиднадзора Минздрава России, 2003.—272 с.

ISBN 5-7508-0448-8

- 1. Разработаны: Федеральным научным центром гигиены им. Ф. Ф. Эрисмана (Т. В. Юдина), НПФ «Люмэкс», Санкт-Петербург (Е. А. Волосникова, Д. Б. Гладилович, И. Б. Любченко, Н. А. Майорова, Н. А. Тишкова, Н. А. Лебедева), Федеральным центром госсанэпиднадзора Минздрава России (И. В. Брагина, Е. С. Шальникова, Н. С. Ластенко).
- 2. Утверждены и введены в действие Главным государственным санитарным врачом Российской Федерации, Первым заместителем Министра здравоохранения Российской Федерации Г. Г. Онищенко 1 апреля 2003 г.
 - 3. Введены взамен МУК 4.1.057—4.1.081—96.

ББК 51.21

Редакторы Барабанова Т. Л., Акопова Н. Е., Максакова Е. И. Технический редактор Ломанова Е. В. Подписано в печать 30.10.03

Формат 60х88/16

Тираж 1000 экз.

Печ. л. 17,0 Заказ 6288

Министерство здравоохранения Российской Федерации 101431, Москва, Рахмановский пер., д. 3

Оригинал-макет подготовлен к печати Издательским отделом Федерального центра госсанэпиднадзора Минздрава России 125167, Москва, проезд Аэропорта, 11 Отделение реализации, тел. 198-61-01

Отпечатано в филиале Государственного ордена Октябрьской Революции, ордена Трудового Красного Знамени Московского предприятия «Первая Образцовая типография» Министерства Российской Федерации по делам печати, телерадиовещания и средств массовых коммуникаций 113114, Москва, Шлюзовая наб., 10, тел.: 235-20-30

- © Минздрав России, 2003
- © Федеральный центр госсанэпиднадзора Минздрава России, 2003

Содержание

Общие положения	5
Измерение массовой концентрации алюминия флуориметрическим методом в пробах питьевой воды и воды поверхностных и подземных источников водопользования: МУК 4.1.1255—03	7
Измерение массовой концентрации цинка флуориметрическим методом в пробах питьевой воды и воды поверхностных и подземных источников водопользования: МУК 4.1.1256—03	17
Измерение массовой концентрации бора флуориметрическим методом в пробах питьевой воды и воды поверхностных и подземных источников водопользования: МУК 4.1.1257—03	27
Измерение массовой концентрации меди флуориметрическим методом в пробах питьевой воды и воды поверхностных и подземных источников водопользования: МУК 4.1.1258—03	35
Измерение массовой концентрации железа общего флуориметрическим методом в пробах питьевой воды и воды поверхностных и подземных источников водопользования: МУК 4.1.1259—03	45
Измерение массовой концентрации нитрита флуориметрическим методом в пробах питьевой воды и воды поверхностных и подземных источников водопользования: МУК 4.1.1260—03	56
Измерение массовой концентрации фторида флуориметрическим методом в пробах питьевой воды и воды поверхностных и подземных источников водопользования: МУК 4.1.1261—03	68
Измерение массовой концентрации нефтепродуктов флуориметрическим методом в пробах питьевой воды и воды поверхностных и подземных источников водопользования: МУК 4.1.1262—03	79
Измерение массовой концентрации фенолов общих и летучих флуориметрическим методом в пробах питьевой воды и воды поверхностных и подземных источников водопользования: МУК 4.1.1263—03	95
Измерение массовой концентрации анионных поверхностно-активных веществ флуориметрическим методом в пробах питьевой воды и воды поверхностных и полземных источников водопользования: МУК 4.1.1264—03	108
Измерение массовой концентрации формальдегида флуориметрическим методом в пробах питьевой воды и воды поверхностных и подземных источников водопользования: МУК 4.1.1265—03	122
Измерение массовой концентрации кадмия флуориметрическим методом воздухе рабочей зоны и атмосферном воздухе населенных мест: МУК 4 1 1266—03	131

МУК 4.1.1255—4.1.1274—03

Измерение массовой концентрации меди флуориметрическим методом в воздухе рабочей зоны и атмосферном воздухе населенных мест:
MYK 4.1.1267—03145
Измерение массовой концентрации цинка флуориметрическим методом в воздухе рабочей зоны и атмосферном воздухе населенных мест:
MYK 4.1.1268—03157
Измерение массовой концентрации сероводорода флуориметрическим методом в воздухе рабочей зоны и атмосферном воздухе населенных
мест: МУК 4.1.1269—03170
Измерение массовой концентрации фтористого водорода флуориметрическим методом в воздухе рабочей зоны: МУК 4.1.1270—03 187
Измерение массовой концентрации фенола флуориметрическим методом в воздухе рабочей зоны и атмосферном воздухе населенных мест: МУК 4.1.1271—03
Измерение массовой концентрации формальдегида флуориметрическим методом в воздухе рабочей зоны и атмосферном воздухе населенных мест: МУК 4.1.1272—03
Измерение массовой концентрации бенз(а)пирена в атмосферном воздухе
и в воздухе рабочей зоны методом высокоэффективной жидкостной хроматографии с флуориметрическим детектированием: МУК 4.1.1273—03 220
Измерение массовой доли бенз(а)пирена в пробах почв, грунтов, донных отложений и твердых отходов методом ВЭЖХ с использованием
флуориметрического детектора: МУК 4.1.1274—03244
Приложение А. Подготовка химической посуды для выполнения
измерений
Приложение Б. Контроль точности измерений

Общие положения

Настоящие методические указания устанавливают методы определения массовой концентрации неорганических и органических загрязнений в водной и воздушных средах — поверхностных и подземных источниках водопользования, питьевой воде, воздухе рабочей зоны и атмосферном воздухе населенных мест методами люминесцентного анализа, а также определения бенз(а)пирена в воздушных средах и почвах методом высокоэффективной жидкостной хроматографии с флуоресцентным детектированием.

Методические указания предназначены для использования в лабораториях центров госсанэпиднадзора, санитарных лабораториях промышленных предприятий.

Настоящий документ вводится в действие наряду с существующими методиками с целью повышения производительности и снижения стоимости анализа при сохранении высокой чувствительности определения.

Средствами измерений являются флуориметры, спектрофлуориметры или люминесцентные анализаторы жидкости (например, анализатор жидкости «Флюорат-02» ТУ 4321-001-020506233-94, выпускаемый НПФ «Люмэкс»), имеющие следующие технические характеристики:

- диапазон возбуждающего излучения, нм 200—650;
- диапазон регистрации флуоресценции, нм 250—650;
- предел обнаружения фенола в растворе, мкг/дм³ не более 5.

Порядок проведения измерений при использовании анализатора жидкости «Флюорат-02» подробно описан в соответствующем разделе. При использовании иных средств измерений необходимо использовать руководство (инструкцию) по его эксплуатации.

К выполнению измерений и обработке их результатов допускают специалистов, имеющих высшее или среднее специальное образование или опыт работы в аналитической лаборатории, прошедшедших соответствующий инструктаж, освоивших метод в процессе тренировки и показавших положительные результаты при выполнении процедур контроля точности измерений.

При выполнении измерений необходимо соблюдать требования техники безопасности при работе с химическими реактивами по ГОСТ 12.1.007, требования электробезопасности при работе с элек-

троустановками по ГОСТ 12.1.019, а также требования, изложенные в технической документации на средство измерений.

Помещение должно соответствовать требованиям пожаробезопасности по ГОСТ 12.1.004 и иметь средства пожаротушения по ГОСТ 12.4.009. Содержание вредных веществ в воздухе не должно превышать норм, установленных ГН 2.2.5.686—96 «Предельно допустимые концентрации (ПДК) вредных веществ в воздухе рабочей зоны».

Организация обучения работающих должна соответствовать требованиям техники безопасности по ГОСТ 12.0.004.

При выполнении измерений в лаборатории должны быть соблюдены следующие условия:

- температура воздуха 20 ± 5 °C;
- атмосферное давление 84,0—106,7 кПа (630—800 мм рт. ст.);
- влажность воздуха не более 80 % при температуре 25 °C.

Требования к качеству электроэнергии по ГОСТ 13109.

Применительно к анализаторам жидкости «Флюорат-02» методики прошли метрологическую аттестацию в ФГУ «Уральский НИИ метрологии» в части анализа водных сред и ФГУ «ВНИИМ им. Менделеева» в части анализа воздушных сред.

УТВЕРЖЛАЮ

Главный государственный санитарный врач Российской Федерации, Первый заместитель Министра здравоохранения Российской Федерации

Г. Г. Онищенко

1 апреля 2003 г.

Дата введения: 1 сентября 2003 г.

4.1. МЕТОДЫ КОНТРОЛЯ. ХИМИЧЕСКИЕ ФАКТОРЫ

Измерение массовой концентрации нитрита флуориметрическим методом в пробах питьевой воды и воды поверхностных и подземных источников водопользования

Методические указания МУК 4.1.1260—03

1. Введение

1.1. Назначение и область применения

Настоящие методические указания устанавливают методику выполнения измерения массовой концентрации нитрита в пробах воды поверхностных и подземных источников водопользования, а также питьевой воды флуориметрическим методом.

Диапазон измеряемых концентраций 0,005—5,0 мг/дм³ нитритионов. Допускается присутствие до 5 мг/дм³ железа, до 10 мг/дм³ меди, до 20 мг/дм³ сульфида, до 100 мг/дм³ аминокислот, до 1 г/дм³ мочевины, щелочных, щелочно-земельных элементов, магния, алюминия, цинка, свинца, кадмия, нитрата, сульфата, хлорида, аммония.

1.2. Физико-химические и токсикологические свойства нитрита

Нитрит натрия – бесцветные или желтоватые кристаллы.

Физические характеристики: температура плавления 271 °C, плотность 2,17; при температуре выше 320 °C разлагается, не доходя до кипения.

Химические свойства: растворяется в воде 81,8 г/100 г (20 °C), 163 г/100 г (100 °C).

Токсическое действие нитритов: вызывают расширение сосудов вследствие пареза сосудодвигательного центра (при больших дозах — и вследствие непосредственного действия на кровеносные сосуды), а также образование в крови метгемоглобина. (Вредные вещества в промышленности: Справочник /Под общ. ред. Н. В. Лазарева. Л.: Химия, 1977. Т. III.)

Нитриты относятся к веществам 2-го класса опасности; ПДК нитритов (по NO_2) в воде водных объектов хозяйственно-питьевого и культурно-бытового водопользования составляет 3,3 мг/дм³ (Предельно допустимые концентрации (ПДК) химических веществ в воде водных объектов хозяйственно-питьевого и культурно-бытового водопользования. ГН 2.1.5.689—98), в питьевой воде 3,0 мг/дм³ (Питьевая вода. Гигиенические требования к качеству воды централизованных систем питьевого водоснабжения. Контроль качества. СанПиН 2.1.4.1074—01).

2. Характеристика погрешности измерений

Характеристика погрешности измерений (граница допускаемой относительной погрешности измерений для доверительной вероятности P = 0.95) приведена в табл. 1.

Таблица 1 Характеристика погрешности измерений для доверительной вероятности P=0,95

Диапазон измерения, мг/дм ³	Характеристика погрешности измерений, $\pm \delta$, %	
от 0,005 до 0,01 включительно	40	
свыше 0,01 до 0,05 включительно	20	
свыше 0,05 до 1,0 включительно	15	
свыше 1,0 до 5,0 включительно	10	

3. Метод измерения

Флуоресцентный метод определения массовой концентрации нитрита основан на взаимодействии нитрита с 2,3-диамино-нафталином в кислой среде с образованием нафто-[4,5-b]триазола. Щелочные растворы этого соединения при ультрафиолетовом облучении обладают синей флуоресценцией, интенсивность которой измеряется при помощи люминесцентного анализатора.

4. Средства измерений, вспомогательные устройства, реактивы и материалы

При выполнении измерений массовой концентрации нитрита применяют следующие средства измерений, реактивы, вспомогательные устройства и материалы.

4.1. Средства измерений

Анализатор жидкости «Флюорат-02» или другой люминесцентный анализатор, флуориметр или спектрофлуориметр, удовлетворяющий требованиям указанных ТУ TY 4321-001-20506233---94 Весы лабораторные общего назначения с наибольшим пределом взвещивания 200 г и ценой деления 1,0 мг, любого типа **ΓΟCT 24104** Колбы мерные 2-50-2, 2-100-2, 2-25-2, 2-500-2 **ΓΟCT 1770** Пипетки с одной отметкой 2-го класса точности, вместимостью $5, 10, 25 \text{ см}^3$ **ΓΟCT 29169** Пипетки градуированные 2-го класса точности, вместимостью $1, 2, 5 \text{ см}^3$ **ΓΟCT 29227** Государственный стандартный образец состава раствора нитрит-ионов: массовая концентрация 1 мг/см³, границы допускаемого значения относительной погрешности ± 1 %

Допускается использование средств измерений и стандартных образцов с аналогичными или лучшими метрологическими характеристиками. Средства измерений должны быть поверены в установленные сроки.

4.2. Реактивы

Вода дистиллированная	ΓΟCT 6709
Калия гидроксид, х. ч.	ΓΟCT 24363
Этилендиамин-N,N,N',N'-тетрауксусной	
кислоты динатриевая соль 2-водная,	
ч. д. а. (трилон Б)	ΓΟCT 10652
2,3-Диаминонафталин, имп.	

Кислота соляная, х. ч.	ГОСТ 3118
Аммиак водный, ч. д. а.	ГОСТ 3760
Алюминий серно-кислый 18-водный, х. ч.	ΓΟCT 3758

Допускается применение реактивов, изготовленных по иной нормативно-технической документации, с техническими характеристиками не хуже, чем у указанных.

4.3. Вспомогательные устройства и материалы

ТУ 6-09-167886
ТУ 6-09-1181—76
ΓOCT 25336
ГОСТ 25336
ГОСТ 25336
ΓOCT 25336
ΓΟCT 14919

Описание подготовки химической посуды к анализу приведено в прилож. А.

5. Подготовка к выполнению измерений

При подготовке к выполнению измерений должны быть проведены следующие работы: отбор и при необходимости подготовка пробы, а также приготовление вспомогательных и градуировочных растворов и градуировка анализатора «Флюорат-02».

5.1. Отбор и подготовка проб

Общие требования к отбору проб по ГОСТ Р 51592, отбор проб питьевой воды по ГОСТ Р 51593, из источников водоснабжения — по ГОСТ 17.1.5.05. Анализ пробы необходимо выполнить в течение 24 ч с момента отбора пробы. До момента анализа пробу следует хранить в холодильнике при 4—6 °С. Объем отбираемой пробы составляет не менее $100~{\rm cm}^3$. Пробы, содержащие осадок или взвесь, необходимо профильтровать через фильтр «синяя лента», отбрасывая первые $25~{\rm cm}^3$ фильтрата.

5.2. Приготовление растворов для анализа

5.2.1. Раствор соляной кислоты, молярная концентрация 1,6 моль/дм3

В стакан из термостойкого стекла помещают 200— 250 см^3 воды, осторожно приливают 65 см^3 концентрированной соляной кислоты, тщательно перемешивая раствор, а затем разбавляют водой до 500 см^3 .

Раствор хранят в стеклянной бутыли. Срок хранения не ограничен.

5.2.2. Раствор гидроксида калия, содержащий трилон Б

В стакане из термостойкого стекла нагревают до 60—70°C 600 см³ воды, растворяют при перемешивании 16,4 г трилона Б, охлаждают до комнатной температуры и постепенно, тщательно перемешивая, вносят 56 г гидроксида калия. После остывания раствор разбавляют до 1 000 см³ водой.

Раствор хранят в полиэтиленовой бутыли. Срок хранения — 3 месяца.

5.2.3.Раствор 2,3-диаминонафталина, молярная концентрация 0,0002 моль/дм³

В мерную колбу вместимостью 500 см³ помещают точную навеску 15,8 мг 2,3-диаминонафталина, растворяют в соляной кислоте (п. 5.2.1), доводят объем до метки той же кислотой, раствор тщательно перемешивают. При наличии помутнения раствор необходимо профильтровать через фильтр «красная лента».

Раствор устойчив в течение 3 месяцев при хранении в холопильнике.

5.2.4. Раствор 2,3-диаминонафталина, молярная концентрация 0,00002 моль/дм³

В мерную колбу вместимостью 100 см^3 помещают 10 см^3 раствора 2,3-диаминонафталина с концентрацией 0,0002 моль/дм³ и разбавляют до метки раствором соляной кислоты (п. 5.2.1).

Раствор устойчив в течение 7 дней при хранении в холодильнике.

5.2.5. Раствор алюминия серно-кислого, массовая доля 10 %

В 90 см³ дистиллированной воды с добавлением 0,5 см³ концентрированной соляной кислоты растворяют 10 г раствора алюминия серно-кислого. Срок хранения раствора не ограничен. Признаком его непригодности является помутнение или выпадение осадка.

5.2.6. Раствор нитрита, массовая концентрация 100 мг/дм3

В мерную колбу вместимостью 50 см 3 помещают 5 см 3 ГСО состава раствора нитрит-ионов массовой концентрации 1 мг/см 3 , разбавляют до метки водой и перемешивают. Раствор устойчив в течение 3 месяцев при хранении в холодильнике.

5.2.7. Раствор нитрита, массовая концентрация 1,0 мг/дм3

В мерную колбу вместимостью 100 см³ помещают 1,0 см³ раствора нитрита по п. 5.2.6 и разбавляют до метки водой. Раствор устойчив в течение 10 дней при хранении в холодильнике.

5.2.8. Раствор нитрита, массовая концентрация 0,1 мг/дм3

В мерную колбу на 100 см³ помещают 10 см³ раствора нитрита по п. 5.2.7 и разбавляют до метки водой. Раствор устойчив в течение 3 дней при хранении в холодильнике.

5.3. Приготовление градуировочных растворов

В первую мерную колбу вместимостью 25 см³ помещают 5 см³ дистиллированной воды, а во вторую – 5 см³ рабочего раствора нитрита (градуировочные растворы № 1 и 2, соответственно). Затем в обе колбы вводят по 2.5 см^3 раствора 2.3-диаминонафталина и через 5 мин добавляют по 5 см^3 раствора гидроксида калия по п. 5.2.2, содержимое колб доводят до метки дистиллированной водой, перемещивают и производят измерения на приборе.

Выбор рабочего раствора нитрита и концентрации раствора 2,3-диаминонафталина определяется ожидаемой концентрацией нитрита. В диапазоне 0,1—5,0 мг/дм³ используют рабочий раствор нитрита по п. 5.2.7 (концентрация 1,0 мг/дм³) и раствор 2,3-диаминонафталина по п. 5.2.3, а в диапазоне 0,01—0,1 мг/дм³ – рабочий раствор нитрита по п. 5.2.8 (концентрация 0,1 мг/дм³) и раствор 2,3-диаминонафталина по п. 5.2.4.

Примечание. Необходимо убедиться, что после добавления раствора гидроксида калия среда будет щелочной. Для этого к 2,5 см³ раствора соляной кислоты по п. 5.2.1 прибавляют 5 см³ раствора гидроксида калия по п. 5.2.2 и контролируют рН при помощи универсального индикатора. Если рН > 9, то никаких изменений в процедуру анализа не вносят. Если же рН оказывается меньше 9, то увеличивают добавляемый объем гидроксида калия таким образом, чтобы рН раствора было более 9.

5.4. Градуировка анализатора и контроль стабильности градуировочной характеристики

Градуировку прибора осуществляют путем измерения сигналов флуоресценции растворов, приготовленных по п. 5.3. При градуировке прибора и всех измерениях в канале возбуждения используют светофильтр № 7, а в канале регистрации – светофильтр № 6.

Для модификаций «Флюорат-02-1» и «Флюорат-02-3»

Установку режима «Фон» производят при помощи градуировочного раствора № 1, а установление параметра «А» в режиме «Градуировка» (нажатием клавиши «Г») — при помощи градуировочного раствора № 2. Параметр «С» задается равным 1 000 для раствора нитрита по п. 5.2.7 и 100 для раствора нитрита по п. 5.2.8. Допускается вводить известное значение множителя «А» с клавиатуры прибора.

Для модификаций «Флюорат-02-2М» и «Флюорат-02-3М»

Входят в меню «Градуировка», устанавливают C0 = 0 и C1 = 1~000 для раствора нитрита по п. 5.2.7 (100 для раствора нитрита по п. 5.2.8). Значение параметра «J0» устанавливают по градуировочному раствору № 1, а «J1» — по градуировочному раствору № 2. При этом значения параметров «C2»—«C6» и «J2»—«J6» должны быть равны нулю.

Контроль стабильности градуировочной характеристики состоит в измерении концентрации нитрита в нескольких специально приготовленных смесях (табл. 2, смеси № 2—9) в режиме «Измерение». Приготовление образца для измерений проводится по п. 5.3. Градуировка признается стабильной, если измеренное значение концентрации нитрита в смеси отличается от аттестованного не более чем на 7 % в диапазоне концентраций 100—1 000 мкг/дм³ и не более чем на 15 % при меньших концентрациях. При несоответствии полученных результатов указанным нормативам процесс градуировки необходимо повторить.

На стадии освоения методики контроль стабильности градуировочной характеристики проводят ежедневно. В дальнейшем контроль градуировочной характеристики проводят не реже 1 раза в месяц, а также при смене реактивов.

Для приборов модификаций «Флюорат-02-1» и «Флюорат-02-3», не имеющих энергонезависимой памяти, контроль стабильности

градуировочной характеристики проводят после каждой новой градуировки прибора.

При использовании иных люминесцентных анализаторов градуировку и измерение проб производят в соответствии с руководством по эксплуатации.

Таблица 2 Смеси для контроля стабильности градуировочной характеристики анализатора

№ смеси	Компоненты	Объем, см ³	Концентрация нитрита, мкг/дм ³	Относительная погрешность $(P = 0.95), \%$
1	Раствор по п. 5.2.6 Вода дистиллированная	10 до 100	100 000 10 000	1,2
2	Смесь № 1 Вода дистиллированная	10 до 100	1 000	1,4
3	Смесь № 1 Вода дистиллированная	5 до 100	500	1,4
4	Смесь № 2 Вода дистиллированная	25 до 100	250	1,6
5	Смесь № 2 Вода дистиллированная	10 до 100	100	1,6
6	Смесь № 2 Вода дистиллированная	5 до 100	50	1,6
7	Смесь № 5 Вода дистиллированная	25 до 100	25	1,8
8	Смесь № 5 Вода дистиллированная	10 до 100	10	1,8
9 .	Смесь № 5 Вода дистиллированная	5 до 100	5	1,8

6. Выполнение измерений

Одновременно анализируют не менее двух аликвотных порций воды. Если ожидаемая концентрация нитрита в пробе превышает $1~{\rm Mr/дm^3}$, то ее разбавляют, помещая $5~{\rm cm^3}$ пробы в мерную колбу вместимостью $25~{\rm cm^3}$ и доводя содержимое до метки дистиллированной водой.

Подготавливают три мерные колбы вместимостью 25 см³.

В первые две мерные колбы помещают аликвотные порции по 5 см³ анализируемой пробы (исходной или разбавленной при высокой концентрации нитрита). В первую колбу (раствор № 1) приливают 2,5 см³ раствора 2,3-диаминонафталина такой же концентрации, как и при построении градуировочной зависимости. Во вторую мерную колбу (раствор № 2) приливают 2,5 см³ раствора соляной кислоты по п. 5.2.1. В третью мерную колбу (раствор № 3) помещают 2,5 см³ раствора соляной кислоты по п. 5.2.1*.

Через 5 мин во все колбы вводят по 5 см³ раствора гидроксида калия по п. 5.2.2, доводят до метки дистиллированной водой, перемешивают и приступают к измерениям.

Измеряют массовую концентрацию нитрита в растворе № 1 в режиме «Измерение» (C_1 , мкг/дм³). Полученное значение может потребовать внесения поправки на собственную флуоресценцию примесей, содержащихся в пробе. Для ее нахождения измеряют интенсивности флуоресценции растворов № 2 и 3 в режиме «Измерение». Регистрируемые прибором значения выражаются в единицах концентрации нитрита и поэтому могут быть названы условными концентрациями нитрита в соответствующих растворах (C_2 и C_3 , мкг/дм³). Они могут выражаться отрицательными числами. Если расхождение между измеренными значениями C_2 и C_3 не

Если расхождение между измеренными значениями C_2 и C_3 не превышает 10 % от их среднего значения, то внесения поправки на собственную флуоресценцию примесей не требуется. В этом случае приступают к обработке результатов измерений по формуле (2) п. 7.

При большем расхождении между величинами C_2 и C_3 находят величину поправки

$$\Delta_C = C_2 - C_3 \tag{1}$$

Если величина Δ_C не превышает 50 % от измеренной массовой концентрации нитрита в пробе (т. е. C_I), то в этом случае также приступают к вычислению результатов измерений по формуле (3) п. 7. В противном случае необходима дополнительная очистка пробы в соответствии с п. 10.

Примечания.

1. Операции контроля влияния флуоресцирующих примесей требуются, как правило, лишь для сильно загрязненных проб вод, а также некото-

^{*} При анализе серии растворов достаточно приготовить один раствор № 3.

рых типов поверхностных вод с высоким содержанием органических веществ и малым содержанием нитрита. Если для определенного типа проб установлено, что поправку на собственную флуоресценцию примесей вводить не требуется, то растворы № 2 и 3 можно не готовить.

- 2. При измерении каждого из растворов делают не менее двух отсчетов и вычисляют среднее арифметическое.
- 3. При необходимости (см. примечание к п. 5.3) объем добавляемого раствора гидроксида калия увеличивается; объемы раствора щелочи, добавляемые в градуировочные растворы и растворы проб должны совпадать.

7. Обработка результатов измерений

Массовую концентрацию нитрита при отсутствии поправки на собственную флуоресценцию пробы вычисляют по формуле:

$$X = 0.001 \cdot C_1 \cdot Q_1,$$
 где (2)

X – массовая концентрация нитрита в пробе, мг/дм³;

0,001 – коэффициент согласования размерности единиц концентрации;

 C_I – массовая концентрация нитрита в растворе, приготовленном по п. 6, мкг/дм³;

 Q_I — коэффициент разбавления пробы по п. 6 при концентрации нитрита выше 1 мг/дм³, равный соотношению объема разбавленной пробы (25 см³) и аликвотной порции исходной (5 см³). Если пробу не разбавляют, то Q_I = 1.

Если требуется внесение поправки на собственную флуоресценцию примесей, то массовую концентрацию нитрита вычисляют по формуле

$$X = 0.001 \cdot (C_1 - \Delta_C) \cdot Q_1, \, \text{где}$$
 (3)

 Δ_C — поправка к измеренной концентрации нитрита, вычисленная по формуле (1), мкг/дм³.

8. Оформление результатов измерений

За результат анализа (\overline{X}) принимают среднее арифметическое результатов параллельных определений X_1 и X_2 ($\overline{X}=(X_1+X_2)/2$), расхождение между которыми не превосходит значений норматива контроля сходимости d. Значения норматива контроля сходимости приведены в прилож. Б. Значение d выбирают для среднего арифметического \overline{X} .

Результат количественного анализа в документах, предусматривающих его использование, представляют в виде:

- результат анализа \overline{X} (мг/дм³), характеристика погрешности δ (%), P = 0.95 (табл. 1)
 - $\bar{X} \pm \Delta$, мг/дм³, P = 0.95, где

$$\Delta = \frac{\delta \cdot \overline{X}}{100} \tag{4}$$

Результат измерений должен оканчиваться тем же десятичным разрядом, что и погрешность. Результаты измерений регистрируют в протоколах, в которых указывают:

- ссылку на настоящий документ;
- описание пробы (номер, источник, дата отбора и анализа и т. п.);
- отклонения от текста методики при проведении измерений, если таковые имелись, и факторы, отрицательно влияющие на результаты анализа;
 - результат измерения и его погрешность;
 - фамилию исполнителя.

9. Контроль точности измерений

Контроль точности измерений (воспроизводимости и погрешности) проводят в соответствии с алгоритмом, изложенным в прилож. Б. Нормативы контроля также приведены в прилож. Б.

10. Очистка проб от флуоресцирующих и окрашенных примесей

Отбирают 25 см³ пробы (исходной или разбавленной в соответствии с п. 6) в термостойкий стакан вместимостью 100 см³ и приливают 5 см³ раствора соли алюминия по п. 5.2.5. Контролируют рН полученной смеси при помощи универсального индикатора и в случае необходимости добавляют по каплям раствор соляной кислоты по п. 5.2.1 до достижения значения рН 3—4.

Добавляют по каплям разбавленный (1:1) раствор аммиака до достижения значения рН 7—8. Раствор с выпавшим осадком гидроксида алюминия выдерживают 10-15 мин (для ускорения коагуляции осадка содержимое стакана можно подогреть до 60-70 °C) и фильтруют через фильтр «красная лента» в мерную колбу вместимостью 50 см 3 . Фильтр 2-3 раза промывают дистиллированной водой

и присоединяют промывные воды к основному фильтрату. Содержимое колбы разбавляют до метки дистиллированной водой и далее анализируют по п. 6.

Аналогичным образом проводят анализ холостой пробы, для проведения которого отбирают 25 см³ дистиллированной воды вместо анализируемой пробы и проводят через все стадии, начиная с добавления раствора соли алюминия.

Концентрацию нитрита вычисляют по формуле:

$$X = 0.001 \cdot (C_1 - C_{xox}) \cdot Q_1 \cdot Q_2$$
, где (5)

X – массовая концентрация нитрита в пробе, мг/дм³;

0,001 - коэффициент согласования единиц размерности концентрации;

 C_I – массовая концентрация нитрита в растворе, приготовленном по п. 6, мкг/дм³;

 C_{xon} – массовая концентрация нитрита в холостой пробе, мкг/дм³;

- Q_I коэффициент разбавления пробы по п. 6 при концентрации нитрита выше 1 мг/дм³, равный соотношению объема разбавленной пробы (25 см³) и аликвотной порции исходной (5 см³). Если пробу не разбавляют, то $Q_I = 1$;
- Q_2 коэффициент разбавления пробы при очистке, равный соотношению объемов очищенной (50 см³) и исходной пробы (25 см³).

Примечание. Очистка при помощи гидроксида алюминия, как правило, полностью устраняет мешающее влияние окрашенных и флуоресцирующих примесей. При необходимости можно провести оценку этого влияния по п. 6. Если оно сохраняется, то необходимо или повторить обработку пробы, увеличив объем раствора соли алюминия, или ввести поправку в результат измерения:

$$X = (C_1 - C_{ror} - \Delta_C) \cdot Q_1 \cdot Q_2 \tag{5}$$

Приложение А (рекомендуемое)

Подготовка химической посуды для выполнения измерений

При выполнении измерений массовой концентрации алюминия необходимо тщательно соблюдать чистоту химической посуды, руководствуясь следующими правилами.

- 1. Для мытья химической посуды разрешается использовать концентрированную серную кислоту или концентрированную азотную кислоту. Категорически запрещается использовать для мытья соду, щелочи, все виды синтетических моющих средств, хромовую смесь.
- 2. Посуда предварительно отмывается водопроводной водой, затем в нее наливают приблизительно на ¹/₂ объема кислоту (п. 1) и тщательно обмывают ею всю внутреннюю поверхность, а затем выливают в специальный сосуд. Пипетки при помощи груши несколько раз заполняют кислотой выше метки. После промывания посуды дистиллированной водой (не менее 5 раз) ее окончательно споласкивают бидистиллированной водой (2—3 раза).
- 3. Для каждого раствора необходимо использовать свою пипетку. Раствор из колбы наливают в стаканчик и из него набирают в пипетку. Запрещается погружать пипетку во весь объем раствора во избежание загрязнения.
- 4. Рекомендуется иметь отдельный набор посуды, который используется только для определения алюминия.

Приложение Б (обязательное)

Контроль точности измерений

1. Контроль воспроизводимости измерений

Периодичность контроля воспроизводимости измерений зависит от количества рабочих измерений за контролируемый период и определяется планами контроля.

Образцами для контроля являются пробы природных и питьевых вод. Объем отобранной для контроля пробы должен соответствовать удвоенному объему, необходимому по методике для проведения анализа.

Отобранный объем делят на две равные части и анализируют в точном соответствии с прописью методики, максимально варьируя условия проведения анализа, т. е. измерения проводят либо в разных лабораториях, либо в одной лаборатории разными исполнителями или одним исполнителем, но в разное время. Результаты контроля признаются удовлетворительными, если выполняется условие:

$$|\overline{X}_1 - \overline{X}_2| \le 0.01 \cdot \overline{X} \cdot D$$
, rge (B.1)

 \overline{X}_I – результат анализа рабочей пробы, мг/дм 3 ;

 \overline{X}_2 — результат анализа этой же пробы, полученный другим аналитиком с использованием другого набора мерной посуды и других партий реактивов, мг/дм 3 ;

 \overline{X} – среднее арифметическое \overline{X}_1 и \overline{X}_2 , мг/дм³;

D — норматив контроля воспроизводимости измерений (табл. Б.1), %.

Значение D выбирают для среднего арифметического \overline{X} .

При превышении норматива контроля погрешности воспроизводимости процедуру контроля повторяют. При повторном превышении указанного норматива выясняют причины, приводящие к неудовлетворительным результатам контроля, и устраняют их.

Таблица Б.1 **Нормативы контроля сходимости и воспроизводимости для доверительной вероятности** P=0,95

	Нормативы контроля			
Диапазон измерений, мг/дм ³	сходимости	воспроизводимости		
	d(n=2), %	D(m=2), %		
Алю	миний			
от 0,01 до 0,05 включительно	42	55		
свыше 0,05 до 0,2 включительно	20	35		
свыше 0,2 до 5,0 включительно	15	25		
Ü	инк			
от 0,005 до 0,1 включительно	28	34		
свыше 0,1 до 2,0 включительно	14	20		
İ	Бор			
от 0,05 до 0,1 включительно	35	60		
свыше 0,1 до 0,5 включительно	20	40		
свыше 0,5 до 2,5 включительно	10	20		
свыше 2,5 до 5,0 включительно	5	12		
M	<i>l</i> едь			
от 0,005 до 0,01 включительно	25	60		
свыше 0,01 до 0,1 включительно	15	30		
Желез	о общее			
от 0,05 до 1,0 включительно	18	25		
свыше 1,0 до 5,0 включительно	14	20		
Hui	прит			
от 0,005 до 0,01 включительно	25	50		
свыше 0,01 до 0,05 включительно	15	25		
свыше 0,05 до 1,0 включительно	12	20		
свыше 1,0 до 5,0 включительно	7	14		
Фторид				
от 0,1 до 0,5 включительно	15	20		
свыше 0,5 до 1,0 включительно	12	17		
свыше 1,0 до 2,5 включительно	8	11		
Фе	нолы			
от 0,0005 до 0,001 включительно	50	80		
свыше 0,001 до 0,005 включительно	35	55		
свыше 0,005 до 0,02 включительно	20	34		

Продолжение таблицы Б.1

,	Нормат	Нормативы контроля		
Диапазон измерений, мг∕дм ³	сходимости d (n = 2), %	воспроизводимости $D(m=2), \%$		
свыше 0,02 до 25,0 включительно	10	14		
	(инк			
от 0,005 до 0,1 включительно	28	34		
свыше 0,1 до 2,0 включительно	14	20		
A	ПАВ			
от 0,025 до 0,1 включительно	50	65		
свыше 0,1 до 1,0 включительно	25	40		
свыше 1,0 до 2,0 включительно	15	25		
Форм	альдегид			
от 0,02 до 0,5 включительно	24	34		

2. Контроль погрешности измерений

Периодичность контроля погрешности измерений зависит от количества рабочих измерений за контролируемый период и определяется планами контроля.

Образцами для контроля являются пробы природных и питьевых вод. Объем отобранной пробы для контроля должен соответствовать удвоенному объему, необходимому для проведения анализа по методике.

Отобранный объем делят на две равные части, первую из которых анализируют в точном соответствии с прописью методики и получают результат анализа исходной рабочей пробы — X, а во вторую часть делают добавку определяемого компонента и анализируют в точном соответствии с прописью методики, получая результат анализа рабочей пробы с добавкой — X'.

Результаты анализа исходной рабочей пробы и рабочей пробы с добавкой получают по возможности в одинаковых условиях, т. е. их получает один аналитик с использованием одного набора мерной посуды, одной партии реактивов и т. д.

Величина добавки должна составлять от 50 до 150 % от содержания алюминия в исходной пробе. Если содержание алюминия в исходной пробе меньше нижней границы диапазона измерений $(0,01\ \text{мг/дм}^3)$, то величина добавки должна в 2—3 раза превышать нижнюю границу диапазона измерений.

Величину добавки (C_o , мг/дм³) рассчитывают по формуле:

$$C_o = \frac{C_o \cdot V_o}{V}$$
, где (Б.2)

 C_o – концентрация алюминия в стандартном образце (аттестованной смеси), использованном для внесения добавки, мг/дм³;

 V_o – объем стандартного образца (аттестованной смеси), внесенного в качестве добавки, см³;

V – объем пробы, см³.

Объем добавки не должен превышать 5 % объема пробы. Решение об удовлетворительной погрешности принимают при выполнении условия:

$$|X'-X-C_{\partial}| \leq K_{\partial}$$
, где (Б.3)

X – результат анализа рабочей пробы, мг/дм³;

X' – результат анализа рабочей пробы с добавкой алюминия, мг/дм³:

 C_{∂} – значение добавки алюминия, мг/дм³;

 K_0 – норматив контроля погрешности измерений, мг/дм³.

При внешнем контроле (P=0.95) норматив контроля вычисляют по формуле:

$$K_{\phi} = \sqrt{\Delta_X^2 + \Delta_{X'}^2}$$
, где (Б.4)

 Δ_X , Δ_X — характеристика погрешности измерения массовой концентрации алюминия в исходной пробе и пробе с добавкой алюминия соответственно, мг/дм³:

$$\Delta_X = 0.01 \cdot \delta_X \cdot X$$
; $\Delta_{X'} = 0.01 \cdot \delta_{X'} \cdot X'$, где (Б.5)

 δ_{χ_2} , δ_{χ_2} — характеристика относительной погрешности измерения массовой концентрации алюминия в исходной пробе и пробе с добавкой алюминия соответственно (табл. 1), %.

Норматив контроля погрешности при внутрилабораторном контроле (P = 0.90) вычисляют по формуле:

$$K_{\partial} = 0.84 \cdot \sqrt{\Delta_X^2 + \Delta_{X'}^2} \tag{5.6}$$

При превышении норматива контроля погрешности процедуру контроля повторяют. При повторном превышении указанного норматива выясняют причины, приводящие к неудовлетворительным результатам контроля, и устраняют их.