Министерство нефтиной промыкленности ЕНИИСПІмефть

РУКОВОДЯЩИЯ ДОКУМЕНТ

МЕТОДЯКА
ОПРЕДЕЛЕНИЯ КОМИЧЕСТВА НОНДЕНСАТА,
ВЫПАДАЮЩЕГО В ГАЗОПРОВОДЕ
РД 39-0147103-311-86

Маккотеротво нефтяной промышленности Всесованый научно-исследовательский институт по сбору, подготовке и транспорту нефти и нефтепродуктов ВНИКСП нефть

YTBEFRIEH

ваместителем министра нефтяной прожименности С.М.Топломия 25 дехабря 1965 года

РУКОВОДЯЩИЯ ДОКУМЕНТ

и в тодика определения количества конденсата, выпадающего в газопроводе Рд 39-0147103-311-86 В настоямей методиле наложеми способы определения кодичества водиного в углеводородного монделестов, выпаданиях в гакопроводе за счет опичения температуры. Методы примения для прогисскых оценок или одучаев, могда непосредственный вкотрументальный вамер отсутствует.

Интодина пристояного опраделения реализована по опециальной программ на мине "бортуем IV" для — 87-1022.

"Методина..." преднативачена для проситики и поучно-носмедовательских организаций Минифтепрома.

По опециальному эмпросу предприятий илститут ВНЭКСПТВЕЙТЬ может представить для ЗВМ ВС-IO22 виструпцию и перфоварты программи ресчата количества конценсата, минального в газопровод 9 догодила которой основена на вспольнования уразмения Билга-Робинсова.

Екстоника "Методика..." равресстана авторским ислисктивом: од БЕБЕСПТНОФТА — Ганин И.Н., Эпитейн Г.З., Коркева К.Б., Красильиндова Г.Р., Овунискова Г.Г.;

or USON H III - Typenes f.P., Sprensoncres A.K.;

of Tathunius - Americanos M.M., Perm F.E., Chimpose B.A., Berrytzeros M.M.;

ст ШО Сонзинфтегналиреработии - Хусаннов Б.Х.

PYKOBOLIZHIMA JOSYMSHT

МЕТОДИКА ОПРЕДЗЛЕНИЯ КОЛИЧЕСТВА КОНДЕНСАТА, ВЫПАЛЬТИЕГО В ГАЗОПРОЗОДЕ

PR 39-0147103-311-86

BROWNER RUEDBUE

Срок действия с <u>1.03.86 г.</u> Срок действия до <u>1.03.89 г.</u>

Настоящая методика предназначена для определения количества конденсата, образумиргося из газа, тракспортируемого во промісловим газопроводам. и. соответственно, определения уменьшения количества транспортируемого газа в результате частичной конденсации, когда непосродственное инструментальное измерение не осуществинков Результати расчета не присмлеми для коммерческого учета

Методика является обязательной для проектных и научно-жоскудовательских институтов.

1. OFFINE HOMORESUS

I.I. Информация с количестве образующегся в газопроводе конценсата и, ссответственно, уменьнении за стет этого объема газа, транспортируемого по газопроводу, необходима или следующих пелей:

преектирования и эксплуателии соорних голопроводов; организации учета и использования конделсата.

1.2. Сведения о количестве образурщегося в газопроводе конценсата в, соответствено, уменьшения за счет этого объема газа при эксплуатации газопроводов могут быть получени одним из сладушим методов:

изверением количество обораниего в попремежденсять:

нопосредственным экструментальным измерением тронородитерусмого газа, воли величина уменьшених осъема больше погрежностя измерения:

ничествием по взычения концентраций намболее же: учих жомпоментов; расчетом с помощью уркамения состояния геловой смеси.

 1.3. Область грименения методов опроделения исличества конденсата:

на действующих газопроводах

взыгрением количества собранного в конденсатосоорниках конденсата.

вытолением по наменемии концантраций немослее летутк компонентов по лиме газопосопа:

на проектируемых газопроводах расчется с поиспыв уравнения состоямия газовой смесы Пенга-Робинсона.

- 1.4. При прогнозном определения количества запиданиям конденсата газопровод условно рассмативается как система местоступенчатой дифререшизальной конценсации газа. Ступенями конценсации примяты места установки конценсатосооринков. Парскадкостное равновесие по каждой ступени рассчитывается с помощью констант равновески, вычасления по методике, основанной на уровнении Пента-Робинсома. При этом термообрические условия каждой ступени конденсации вичаслением по РД 39-32-704-82 /3/, а состав газовой смеся для расчета составом раза (газа) и равновесной жидкости (кондексата) квинется составом раза весного гара правидущей ступени кондеменции.
- 1.5. В настоящей методике изложен могод прогложного определения количества образущителя в газопровода хоминеста. В пушмере расчета для также способ определения можества концессата и по разместы можестраций дегими моженество в начала в конце газопровода.

Таблица I Годорине обоздачения основных величин

Воличина	оосаначение Уолокное	измерения Миница
I	2	: 3_
PAROLAGI	P	Klia
Давление атмосферное	Pam	Mila
Давление газа в начале, покре исследуе- мого участки газопровода	Pm; Pm	Wa
Давтекие кратическое видениувального компениувального	Papi	Mis
Температура	T	X
Температура газа в начав "конценссивауе- мого участка газопровода	TH; TK	R
Теклература критическая видивидуального компонента вли франции компенсата	Tapi	ĸ

I .	2 ;	3
Температура кипения индивидуально-		
го компонента или средняя темпера-		
тура кипения фракции конденсата	T.	K
Коэффициент синмеемости газа	T _{kun i} Z	-
Универсальная газовая постоянная	R	M(KE/MOAS)K
Молярная (объемная) доля конденса-		
та в газоконденсатной смеси при		
условиях одноступенчатого равнове-		
СВЯ	Lĸ	-
молярная (объемная) доля конденсата		
в газоконденсатной смеси для усло-		
вий многоступенчатого равновесия	L	_
Объемный расход газа за сутки	G	M ³ /cytre
Объем газа, перешедшего в конден-	•	• •
сат за сутки	G_{κ}	M ³ /OFTEE
Объем углеводородного конденсата	Vik	M ₃
Объем водяного конденсата	Ven	π 3
Объем углеводородного конденсата,		
образующегося при конденсации		
I m³ rasa	9ĸ	M ³ /M ³
Сумма объемов углеводородного в	7^	•
водяного конденсатор	V _r	M ₃
Сумма объемов газа и водяных	' <i>K</i>	
паров	V	K 3
-ви в внатем кицентрация метана в на-		
чале, конце исследуемого участка	, ,,	
газопровода	C, '; C,"	\$
-ын а атока кицентрация авота в на-	•	
чале, конце исследуемого участка		
газопровода	$N_2'; N_2''$	*
Молярная концентрация индивидуаль-	• •	
ного компонента или фракции конден-		
CATA B CMCCB	\mathcal{D}_{i}	*
-аквудиванни видертненном венреком		
ного компонента или фракции конден-	.,	
сата в равновесной парогазовой фазе	\mathcal{Y}_{i}	-
Молярная концентрация видивидувльно-		
го компонента или франции конденсата		
в равновесной жидкой фаза	X;	_

<u> </u>	2	3
Молярная доля газовой (паровой) фази	e	
Константс. фавового равновесия (коэф-		
фициент распределения) индивидуаль-		
ного компонента или фракции конден-		
cara	K _i	_
Число компонентов или фракций смеси	r	
число итерационных циклов вычисле-		
HER K	${\mathcal S}$	
Молекулярная масса конденсата	M_{κ}	
Молекулирная масса газа в начале,	^	
конце исследуемого участка газопро-	. "	
вода	M';M''	-
Молекуляриая масса видивадуального		
компонента или фракции конденсата	M_i	***
Молекулярная масса равновесного га-	•	
sa (napa)	M_{α}	_
Влагосодержание газа в начале, конце	••	_
исследуемого участка газопровода	$W_n : W_{\kappa}$	rr/1000 mg
Апентрический фактор индивидуального	,	
компонента или фракции конденсата	ω_{i}	
Коэффициент в уравнениях подсчета	_	
$P_{\kappa\rho}$, $T_{\kappa\rho}$	A;	
Плотность индиминального компонен-		
та в кидком состояние или фракция		
конденсата	۶ι	r/cm ³
Поправочный коэффициент для перес-		
чета плотности жидких углеводородов	α	r/cm ³
Коэффициенты уравнения	_	6
Пенга-Робинсона для смеси	a	∏a ⋅ m ⁶
	В	(кг/моль)2
	A	м ³ /кг моль
	R R	
	B	-
Коэффициенты уравнения		
Пенга-Робинсова для индивидуального		•
компенента или фракции когленсата	a_i	Ila Mb
		(кг моль) ²

	2	: 3
	l:	x ³ /m xoxis
	-	- /
	α;	
	£i	- 6
при і 🕹 ј в смеси	a_j	/A • M
·	•	(at mosts)2
Дотучесть пилинидувального комплиятия		
ние франции вонденсата в ровновесной		
ERRED TORKE	I. (199)	XETin
Летучесть индиказувального компонекта	71	
зли франции кочоденсата в разволеской		
паровой (газовой) фазе	\$.(G)	MTa.
Номер втервиченного расчета	4	_
Конценонтый фактор	Č	r/ts
Конценсатный фактор одной ступени кол-	9	1/4
EGHCSTHE WALLOW COMME CLAMBE SOME	a	- /.a
Диоло ступеней коловновиим Деномого	§	7.7%
	L	_
Срежненивадритическия относительная		
POTPONICOCTS ON PROGRAMMENT OF SOME CONTROL OF	r'	*
денечин, образурнатуся в газопровода	$\mathcal{E}_{\mathcal{E}_{\mathbf{A}}}$	•
Среднениодратическая откосительных	6	*
вогренность изменен расхода геза	6	<i>F</i>
дистиссию высовтичный выпости		
пстравность определения комфитрация	E.	
HALLSHRITASTURENT KOPEAN MORLOG E OPACKE	\mathbf{b}_{n_i}	\$
Среднекватратическая отнозительная	•	
попрешность опредоления поистемым		
фаловодс размовесям	Ø,	*
Среднеисидраты пожил относительных		
погрению ста выникающи изоснюе доли	ø,	•
micoacii fasu	· .	\$

2. OMPRURISHES OSTAMA KOHURECATA, BEJIAJIADUETC B PASOUPOBOLIE

- 2. I. Эпределение объем угленодуродного кондексите, вышадатмего в голополюже
- 2. I. I. Объем газових углеводородних помпоновтов, въреходиятах в каделе соотоживе при известном расходе газа, спрадъделя по виравыжи:

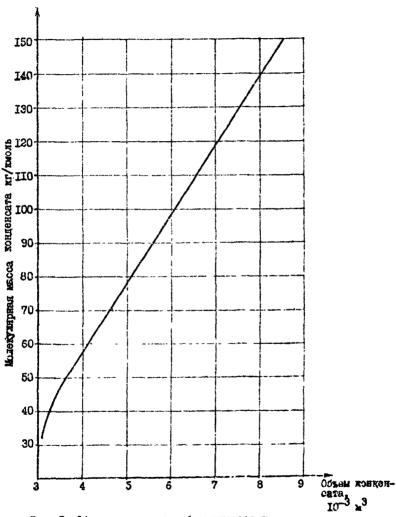
$$G_{z} = GL$$
 (I)

2.1.2. Молекулярную массу углеводородного понделовать по формуле:

$$M_{K} = \frac{M^{2} - M^{2}(1-L)}{L} \qquad (2)$$

2.1.3. Объем поинекситы, образующегося на углаводородних вомнометов така, вчемочнот по выражению:

$$\dot{V}_{rR} = G_{R} \cdot g_{R} \tag{3}$$


- 2.1.4. Объем углеводородного конценсота, образуваются из I w reac им переходе в живое состояние (g_x), находит ис графият (рес. I).
- 2.2. Спределение объями подимого менеромовата, винадамного в говогромод \bar{o}
 - 2.?. I. Объем водимого новденовте выходят по вырывению:

$$V_{L} = \frac{G \cdot W_{R} - G(1-L) W_{R}}{998.2}$$
, (4)

TAB 988.2 - RESTRUCTS ZORR END 20 °C.

2.2.2. Епистоплериялие гова и почина и повиде гелопровода паперсыя учеструповитально-

Вых этамующей не пробивающитом, не при узыкам отсутством обрани гаме рассчинания выпосоднующие гам в вечью воскихующиго участия гасовдомуда при \mathcal{C}_{χ} в \mathcal{T}_{χ} и в в меще при \mathcal{C}_{χ} и \mathcal{T}_{χ} во формуе»:

PMC. I. Совем монденсата, образуваетося из $I \, m^2$ газа

$$W_{HK} = \left(\frac{A}{10.1 \cdot P_{HK}} + B\right) \cdot K_1 \cdot K_2 , \qquad (5)$$

где А.В - коэффициенты, учитывающие текшературу газа;

к. – поправочний коэффициент, учитывающий плотность газа;

 κ_z — поправочных коеффициент, учитывающих соленость воды.

Значения поэффициентов A в B приведени в табл. 2, а коэффициентов κ_{ℓ} в κ_{ℓ} на рис. 2 сметиетственно для условий в начале и конце тавопровода.

2.3. Общий объем углянопородного и вогляюто концинсата, рагадаждего в газопровода, определяют по формула:

$$V_{\mathcal{E}} = V_{\mathcal{E}\mathcal{E}} + V_{\mathcal{E}\mathcal{E}} \qquad (6)$$

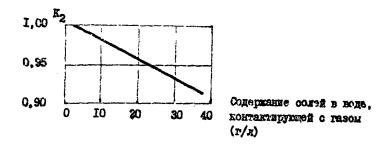

Основная задача при определении объема выпадающего конценсата в гезопроводе состоит в вычеслении молярной доли конденсата (\angle) в гезоконденсатной смеса. Методы для её определения изложени в глагах 3 м 4 ланного документа.

Таблица 2 Значение коэфјициентов А и В в уравнении влагосодержания углеводородного газа

Тэмпэратура, К	A	В
I	: 2	: 3
233	1,451 · 10 ⁻¹	3,470 · 10 ⁻³
235	1,780 · 10 ⁻¹	4,020 · 10 ⁻⁸
237	2,137 · 10 ⁻¹	4,650 · 10 ⁻⁸
239	2,670 · 10 ⁻¹	5,380 · 10 ⁻⁸
24 J.	3,235 · 10 ⁻¹	6,230 · IO-3
243	3,930 · IO I	7,100 · 10-8
245	4,715 · 10 ⁻¹	8,060 · 10 ⁻³
247	5,660 · 10 ⁻¹	9,210 • 10-3
249	6,775 · IC ^{-I}	1,043 • 10
251	8,090 · IOT	1,168 • 107
253	9,600 · 10 ⁻¹	I,340 · IC-
255	I,I44	1,510 - 17
257	1,350	1,705 - 10-
259	1,590	1,927 • 10

I	2	: 3
261	1,868	21,155 • 10-9
263	2,188	2.290 • 10 ²
265	2,550	2.710 · 10 ⁻²
267	2,990	3.035 • IO ⁻²
269	3,480	$3.380 \cdot 10^{-2}$
271	4,030	3,770 · 10 ⁻²
<i>2</i> 73	4,670	4.180 · 10 ⁻²
<i>2</i> 75	5,400	4,640 · IO-2
277	6,225	5,160 · 10 ⁻²
279	7 , I50	5,710 • 10-2
28I	8,200	6,300 · 10 ⁻²
28,3	9,390	6,960 · 10 ⁻²
2 85	1,072 • 10	7,670 • 10-2
287	I,239 · IO	8,550 · 10 ⁻²
289	I,394 · 10	9,3CO · 10 ⁻²
291	1,575 - 10	1,020 · 10 T
293	I,787 • IO	1,120 · 10 ⁻¹
295	2,015 - 10	I,227 · 10 ⁻¹
297	2,280 · 10	I,343 · 10 ⁻¹
299	2,550 · IO	I,453 · I(-I
30I	2,870 · 10	1,595 · 10 ⁻¹
303	3,230 • 10	1,740 · 10 ⁻¹
305	3,610 · 10	1,895 · 10 ⁻¹
307	4,050 · IO	2,070 · 10 ⁻¹
309	4,520 · 10	2,240 · 10-1
3I,	5,080 - 10	2.420 · 10-I
313	5,625 - IO.	2,630 · IOTI
315	6,270 · 10	2,850 · 10 ⁻¹
317	6,925 • 10	3,100 · 10 ⁻¹ 3,350 · 10 ⁻¹
319	7,670 • 10	3,630 · 10 -1
321	8,529 · IO	3,830 · 10 -
323	9,499 · 10	4,220 · 10 ⁻¹
325	I,030 · I0 ² I,I40 • I0 ²	4,540 · 10 ⁻¹
327	1,140 · 10 ²	4,370 - 10 ⁻¹
329 337	1,380 • 102	5,210 · 10 · 1
33I 222	1,520 · 10 ²	5,620 · It I
333	1,060 10	O, OMO TELL

I	2	: 3
3 35	1,665 · 10 ²	5,990 · 10 ⁻¹
337	1,833 · IO	6.450 · 10 ⁻¹
339	$2.005 \cdot 10^{2}$	6.910 · 10 ⁻¹
34I	2,190 · 10 ²	7.410 · 10 ⁻¹
343	2,385 · 10 ²	7.930 • IO ⁻¹
345	2,600 • 10 ³	8,410 · 10 ⁻¹
347	2,830 · 10 ²	$9.020 \cdot 10^{-1}$
349	2,060 · 10 ²	9,650 · 10 ⁻¹
35I	3,350 · 10 ²	1,023
353	$3,630 \cdot 10^2$	1,083
355	$3,940 \cdot 10^2$	I, I48
357	$4.270 \cdot 10^{2}$	1,205
359	4,620 • 102	1,250
36I	5,010 · 10 ²	1,290
363	5,375 · 10 ²	1,327
365	5,825 • 10 ²	1,329
367	6,240 · 10 ²	1,405
369	$6,720 \cdot 10^2$	I,445
37I	$7,250 \cdot 10^{2}$	1,487
373	$7,760 \cdot 10^2$	I,530
375	1,093 · 10 ³	2,620

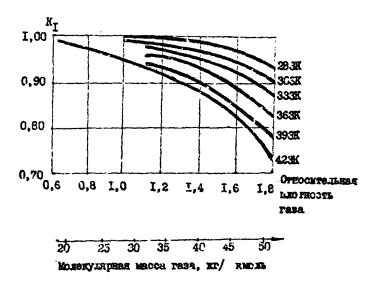


Рис. 2. Зимчение поправочных ковффильентси $R_{\mathrm{T}},~R_{\mathrm{Z}}$

3. РАСЧЕТ МОЛЕРНОЙ ДОЛИ КСНДНЕСАТА С ПОМОЛЬЮ УРАВНЕНИЯ СОСТОЯНИЯ ГАЗОВОЙ МОЗМО

3. І. Подготовка данзых для расчетов

В начале исследуемого участке газопродода отбирате пробу газа и проводят анализ молярной концентрации отдельных компонентов в газовой смеся. Отбор проб выполняют по ГОСТ 18917-73, анализ по ГОСТ 14920-73.

Чем точнее виполнен анализ газа, тем надежное результати расчетов. В случае, когда последний томповент но расшефровивается (жовначается С_{С+} вли С₇₊), то для повышения точностя расчетов проводят разбивку такого условного жомпонента на отдельные фракция. С этой целью строят график зависимости концентрации стдельных компонентов в смеся от их температури кинения. Проводиткрацир по точкам, экстраполируя ее до пересечения с эсых температур кинения или линией, отвечащей сумме контентраций компонентов, равной 100 %. Таким образом, графически определяется температура выник кинения лослед это компоненте пробы.

На участке от температуры кипения предпоследнего комповента до конца кипения пробы вибирают несколько температурных интервалов, по которым с помощью кривой зависимости содержания коммонентов в фракций от температуры кипения определяют концептрацию отдельных фракций и ях средние температуры кипения.

Пример подготовки материала приведен в вриложения.

Если когцентрации последнего компонента не превыдает 1,0 %, то разблеку на франции можно не производить, а принять для ресчета как франции с молекулярной массой IZI, температурой кипения I38°C.

3.2. Расчет индинидуальных спойств франций

Вичеськог свойства францый:

$$\dot{\mathbf{t}}_{i} = T_{xun_{i}} - 459,67 \tag{7}$$

$$M_{i} = 54,389 + 0,17566 \pm i + 12102 \cdot 10^{4} \pm i^{2} + 8,22885 \cdot 10^{-6} \pm i^{3};$$
(2)
$$\int_{181}^{282} = M_{i}(1,597 \cdot 10^{3} + 5,647 \cdot 10^{-6} \pm i - 1,333 \cdot 10^{16} \pm i^{2} - 1,762 \cdot 10^{-7} \pm i^{4});$$
(9)

Таблица 3 Константы и критические нареметры газов и жидкостей

Бещество	Молеку- лярная	Температур Ткчі	я кинсния, Г	Typa, Ix	ая темпера- р	кое дав-	TITON ZU YU I	Ацентри- ческий
Macca, M		°c	K	°¢	Ж	- ление, Ркр МЛа	Kr/m ³	, фактор, ധ
мета н	16,042	-161,49	III,66	-8I,49	I90,66	4,79	0,6681	0,013
Taf	30,038	-88,63	I 84,52	33,31	3 05, 4 6	5,04	1,2600	0,105
ролан	44,094	-42,07	23I,0E	97,75	369,90	4,39	1,8659	0,152
е-бутан	58, 12 0	-0,50	252,65	153,05	425,20	3,92	2,4947	0,201
esocytem	58,I2O	-II,73	261,42	I35,9 5	408,10	3,77	2,4911	0,192
н-пентан	72, ISE	36,07	309,22	19 7,35	469,50	3,48	3,1633	0,252
ТРОПЕНТАН	72,151	27,85	301,00	188,25	460,40	3,50	3,1633	0,206
ге ксая	86,I78	68,74	341,89	235,15	507,30	3,13	3,5849	0,290
retran	100,198	98,43	371,58	26 8, I 5	540,30	2,83	4,1679	0,352
oktah	314,220	125,66	398,82	296,45	568,60	2,58	4,6870	0,408
номан	128,250	I5I,85	424,00	322,45	594,60	2,28	5,3204	0,441
де қап	142,260	175,15	447,30	34 5,45	617,60	2.11	5,9075	0.486
3301	28,6I6	-195,80	77,40	-I45,95	126,20	3,51	1,1889	0,040
сероводород	34,082	-60,34	212,80	101,45	373,60	9,30	1,4311	0,100
двускись угле- рода	44.OII	-78,58	194,57	22,11	304,26	7,63	I.8346	0,420
ыслород	32,600	-I82,98	90,21	-II7,35	I54,80	5,24	1,3311	0,031

<u>...</u>

$$\rho_{arr}^{ses} = \rho_{ses}^{ses} - 4.400 \quad . \tag{10}$$

Величини О опроделяются на талины с.

THE

$$A_i = \frac{4465}{\rho^{\frac{223}{223}}} - 31.5 , \qquad (13)$$

$$\omega_{i} = \frac{3}{7} \cdot \frac{lg(P_{i}P_{i}P_{o}P_{o})}{I_{o}P_{i}} - 1 \qquad (20)$$

Некоторые внавращувание свойства отладыны компенстор и бракций кочценсата прадставлени в теба. 5.

3.3. Расчет пароживностного равновесыя

3.3.1. Рассчитывают начальное прибликскыя взачений колотант равновомы для условия ρ и $\mathcal T$:

$$K_{i}^{(0)} - \frac{P_{sp.}}{D} \exp \left[\frac{4372697}{14} + \frac{1}{4} \frac{1}{4} \frac{1}{4} \right]^{\frac{4}{3}}$$
 (15)

 $\begin{tabular}{lllll} T аблица 4 \\ T емпературные поправки к значениям плотности \\ n ефтепродуктов на I <math>^{O}$ C (по IOCT 3900-47)

20	:	20	:
4		4	
0,6900 - 0,6999	0,000910	0,8500 - 0,8599	0,000699
0,700 - 0,7099	0,000897	0,8600 - 0,8699	0,000686
0,7100 - 0,7199	0,000864	0,8700 - 0,8799	0,000673
0,7200 - 0,7299	0,000870	0,8800 - 0,8899	0,000660
0,7300 - 0,7399	0,000857	0,8900 - 0,8999	0,000647
0,7400 - 0,7499	0,000844	0,9000 - 0,9099	0,000633
0,7500 - 0,7599	0,000831	0,9100 - 0,9199	0,000620
0,7600 - 0,7699	0,000818	0,9200 - 0,9299	0,000607
0,7700 - 0,7799	0,000805	0,9300 - 0,9399	0,000594
0,7800 - 0,7899	0,000792	0,9400 - 0,9499	0,000581
0,7900 - 0,7999	0,000778	0,9500 - 0,9599	0,000567
0,8000 - 0,8099	0,000765	0,9600 - 0,9699	0,000554
0.8100 - 0.8199	0,000752	0,9700 - 0,9799	0,000541
0,8200 - 0,8299	0,000738	0,9800 - 0,9899	0 , 0005 2 8
0,8300 - 0,8399	0,000725	0,9900 - 1,000	0,000515
0.8400 - 0.8499	0,000712		

. Тармира 5 Основные свойства франций группы \mathbf{C}_{5+} высаве

Номер фракции	:Предели выз :пания, К	и-:Средняя темпера-: :тура кипения, К :	RECTROCTS.	: Молекуляр- : ная масов
I	HK-333	325	634	72
2	333-372	350	712	91
3	372-399	385	745	107
4	399-424	411	764	121
5	424-448	436	778	134
6	448-469	458	789	147
7	469-490	479	800	161
8	490-509	499	BII	175
9	509-527	518	822	190
10	527-544	535	832	206
II	544-560	552	839	222
12	560-576	568	847	237
13	576-590	583	852	251
14	590-604	597	857	263
15	604-617	610	862	275
16	617-630	623	867	231
17	630-642	836	872	305
DB	642-654	648	877	318
19	654665	65 9	881	33I
20	665-675	670	885	345
2I	675-686	680	889	359
22	686-696	691	893	374
23	696-705	700	896	388
24	705-714	709	889	402
25	714-723	728	902	416
26	723-732	727	906	430

3.3.2. Решают ураспение фазовых концентраций, находя молчрмую долю гезовой фази, при условии, что

$$\sum_{i=1}^{n} (y_i - X_i) = \sum_{i=1}^{n} \frac{\gamma_i (X_i - i)}{1 + \ell (X_i - i)} = 0 .$$
 (16)

Для нахождения винчения с , изменителеся в пределах от 0 до 1, используют метод хорд или метод деления отрезка поползы. 3.3.3. Вичисляют молярине состани индиой и паровой физ:

$$X_i = \frac{\gamma_i}{f + e(x_i - f)}, \quad y_i = X_i R_i^*.$$
 17)

3.3.4. Для наровой фази вичновиют поэффиционам ураниемыя осстольна:

$$a_i = 245724 \frac{R^2 T_{RPi}^2}{P_{RPi}} \alpha_i^2 (T)$$
, (18)

LIG

$$\alpha_{i}(T) = \left\{ 1 + \beta_{c} \left[1 - \left(\frac{T}{I_{co}} \right)^{2\delta} \right] \right\}^{2}; \tag{19}$$

$$\beta_i = 0.51464 + 1.54226 \omega_i - 0.26992 \omega_i^2$$
, (20)

$$\mathcal{E}_{i} = Q778 - \frac{R \cdot T_{coi}}{P_{coi}}; \qquad (21)$$

$$o_{ij} = (o_i \cdot a_j)^{ab}; (22)$$

$$\sigma = \sum_{i,j}^{n} \sum_{j,k}^{n} y_{i}.y_{j} \cdot \sigma_{i,j}; \qquad (23)$$

$$\mathcal{S} = \sum_{i=1}^{n} y_i \cdot \delta_i \; ; \tag{24}$$

$$A = \frac{\alpha P}{R^2 T^2}, \tag{25}$$

$$B = \frac{\beta P}{RT} \tag{26}$$

3.3.5. Режим уражнение по определении воеффициента симмасности газокой фали:

$$Z^{3} (1-B)Z^{2} (A-3B^{2}-2B)Z - (AB-B^{2}-B^{3}) = 0$$
 (27)

3.3.6. Вический дотучесть комполонгов и франций в равновесвой гезовой фазе:

$$\ln \frac{f_{i}^{(n)} \ln y_{i} P_{i} - \frac{B_{i}}{b} (Z-1) - \ln (Z-B) - \frac{A}{2\sqrt{2} \cdot B} \left[\frac{Z}{A} \frac{2y_{i} q_{i}}{Q} - \frac{B_{i}}{b} \right] \ln \left[\frac{Z + (1+\sqrt{2})B}{Z - (\sqrt{2}-1)B} \right].$$
 (28)

- 3.3.7. The regrot design much before hosphilms by preserve corrolling Q, B, A is B, the through mapping star (24) is (23) insocious \mathcal{Y}_{i} depends \mathcal{X}_{i} .
- 3.3.8. Рочнот уразвение (27) по определении пооффициенты синмоености типной бази.
- 3.3.9. Для випрого вомнонента в франция в равновочной ищиой фило ил вировании (20) вичислени летрость, бери X_L вичеству Y_L .
 - 3.3.10. Морриктитуется вначение ноястантя ревиспечия:

$$K_{i}^{(5)} K_{i}^{(5-1)} \cdot \frac{f_{i}^{(4)}}{f_{i}^{(4)}}$$
 (29)

S. 3. II. Проверают вераменство

$$\left| \frac{f_i(n)}{f_i(n)} - 1 \right| > 40^{-4}$$
 (30)

Если оно удовлетворяет котя см дли одкого компонента, то возврещают решение к 3.3.2, плинимая $K_L = K_L^{-(S)}$. В противном случае рассъятавные состави паравой и индест фез обявляются разнования.

3.3.12. Дия повоно постаном подоской (положей и харибё вфилом положения пол

$$M_n = \sum_{i \neq j}^n y_i M_i \quad (31)$$

$$M_{R} = \sum_{i=1}^{R} X_{i} M_{i} . \tag{322}$$

3.3.13. Бисполит молирую толо конденский для одноступинчатого ревновеска живооть-пар и конденский фактор одноступинчалого ревновеска – маюсу конденский, отнесенную и I н³ сисси:

$$\mathcal{L}_{\kappa} = f - \ell \quad ; \tag{33}$$

3.4. Расчет моженой доми моженские по результытим паримидиостиру доми моженские по результытим

3.4.1. В сдукт, когда по диале казопровода стоугствулу когдексатосориями и веся образувиваю концински поступасу на козец носледуемого участво, можерная доля концинских начисляется вых огразуватное первациюстное разносноем при участих состата гезсвий сызов в батаго гизопровода и термогарических услугий в конце теропловода:

$$L=f-e . (35)$$

3.4.2. Для одучил, погда из гласировому услановлени емести для обора монденсата, одоску народуществого ринеским далоским по составу равновеского газа от прадвидущей одушени расчета и гермобернующим условиям и таконновной рассматриваемого асправаемостосорияма. Для первого воздановленостика это есть состав газа в начале газопроводе — и 7, для 2-го ноядиновленосторияма у 7, для 2-го ноядиновленосторияма у 7, для 2-го ноядиновленосторияма

Рабонт привадят для всех полученовтосформиков, сумски послед ней ступению монец несолодуемого участки голодовода, для поторого

$$\eta_i^{(e)} = y_i^{(e-s)}, P_k u T_k.$$

Суммарная доля конденсации ресститивается по (?) или из вы-DOMERNE

$$L = \sum_{\ell=1}^{n} \sum_{\ell=1}^{n} e_{\ell-1} . \tag{36}$$

Сунмариля доля паровой фази вчуполяются по выражению

$$e = \iint_{l=1}^{n+l} e_{l} , \qquad (37)$$

Программа энчислений реализована или ЭВМ ЭС-1022 и имеется B BHOTHTYTE BHINCHTHEORL.

4. OUPERENE DOLLER DOLLER BRANCHER

4. І. При оценке погренности вическаний допускант следущие ABDOMERHELS:

составляющее погрещноств не высот коррадационеся святе между собей и сумтантся независимым друг от друга:

SEROH DICTORDERAGENE NOTORNACCTOR HOMENASCTOR HOMENAHAMA (saxos Taveca):

предольную догревность измерения принимают размой максималь--твобов бональтически ком наиздемки стонтярмонис итроничетой боя POC13 0.95, MDH STON 6-26

составляющим или совокупностью составляющих испревностав. ражим чак чекее 30 % рекультирующей погрешности, пренебрегают.

4.2. При расчете перомидиостного равновески принято, что

 $\mathcal{G}_{\mathcal{K}_{i}}=10~\text{f.}$ Средневледратическую погрениссть молярной доли пара опреде-AROT DO YDADEGERO

$$6e = \sqrt{\frac{6_{2i}^{2}}{e^{2}(\sum_{l=1}^{2i}\frac{K_{l}}{l+e(K_{l}-l)})^{2}} + 6_{K_{l}}^{2}} . (36)$$

Среднегвадратическую погремность можирые сунмарной долы KOHLERCATA PETESLENOT NO BEDANCHED

$$G = \frac{e}{1-e} G_e . \tag{39}$$

EMTRPATYPA

- РД 39-I-IZI3-84. Мотодические указания по определению технологических потерь нефтяного газа при оборе, подготовке и внутрапромесяюм транспортировании. - Уфа, ЕНИИСПІ нефть, 1984.
- РД 50-213-80. Правила немерения расхода газов и жидкостей отандартными сухамищими устройствами.—И. Мад-во стандартов. 1982.
- РД 39-32-704-82. Инструкция для расчета расходних карактеристик трубопровода при беспомпреосорном транспорте сырого нефтяного газа. -Краскодар, ВНИЛИ аэпереработна, 1982.

HPMMEP PACYETA

Исходные данные: $G = 10^5$; $C^{\dagger} = 49.8$; $C^{*} = 56.46$; $N_2' = 0.09$; $N_2' = 0.104$; $T_H = 313$; $T_1 = 278$; $P_H = 1.0$; $P_R = 0.201$; $M_{H} = 35$; $M_{H} = 28.75$.

 Расчет количества конценсата по разности концентраций летучих компонентов в начале и конце газопровода

$$\angle = I - \frac{49.8 + 0.09}{56,46 + 0.104} = 0.118$$
.

$$G_{\rm g} = 10^5 \cdot 0.118 = 11.8 \cdot 10^3 \, ({\rm m}^3/{\rm cyrren}).$$

$$M_{\kappa} = \frac{35 - 28 (I - 0.118)}{0.118} = 87.32$$

No rpaduky pag. I haxogom
$$g_{r} = 5.4 \cdot 10^{-3}$$

 $V_{r} = 11.8 \cdot 10^{3} \cdot 5.4 \cdot 10^{-3} = 63.72 \text{ (m}^{3}/\text{cytrm}).$

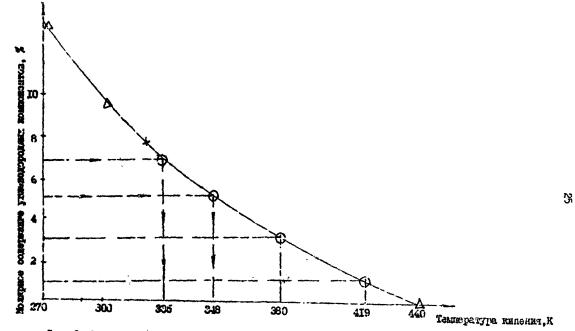
Принимая $K_j=1$, $K_2=1$ и газ без осущии, вичисляем влагосо-держание, найди из табл. 2 $A_{N}=5,625\cdot 10^3$; $B_{N}=2,63\cdot 10^{-1}$; $A_{K}=6,6875$; $B_{K}=6,005\cdot 10^{-2}$:

$$W_{\rm W} = \frac{5.625 \cdot 10}{10.1 \cdot 1.8} + 2.63 \cdot 10^{-1} = 5.83 \,({\rm kg/1000 \, m^3}).$$

$$W_{K} = \frac{6.6875}{10.1 \cdot 06201} + 6.005 \cdot 10^{-2} = 3.38 (kr/1000 m2)$$

$$V_{g_{\pi}} = \frac{100 \cdot 5.83 - 100 (I - 0.118) \cdot 3.38}{998.2} = 0.285 (m^3/cyrmn)$$

Общий объем конденсата


$$Y = 0.285 + 63.72 = 64.00 (m^3/cytem)$$
.

Находим объем газа в конце исследуемого участка:

$$G_{RBW} = G - G_{g} = 10^{5} - 11.8 \cdot 10^{3} = 88.2 \cdot 10^{3} \text{ (w}^{3}/\text{cytrm}).$$

2. Расчет количества конденсата с помощью урквиения состоя-

По длине газопровода установлено 4 конденсатосборника.

Рмс. 3. Зависимость моляристо содержания тяжелих фракций смеся от их среджей темперстури индения

Таблица 6 Термодинамические условия в мээтах установки кондейсатосборникав

й конделсатосборника	2	T
I	0,8	313
2	0,7	298
3	0,6	288
4	0,5	280

Таблица ? Компонентний состяв газа в начале газопровода

Компонент	Молярная концентрация
CO ₂	0,24503
•	0,09201
2 CH ₄	49,79700
Call _c	10,12342
c ⁴ ր10 c ³ ր ⁸ c ³ ր ⁹	19,31071
CAHTO	4,09858
CHTO	6,31089
CENTO	1,23017
с _й н _{го} с _б н _{га} с _б н _{га}	1,19717
c ₆₊	7,59422
	100,00000

Расчет приведен в виде распечатки с ЗВМ ВС 1022.

2. І. Подгстовка даниях

В связи с тем, что анализ проби газа виполнен до компонията. C_{6+} , концентрация которого 7,59 %, строится график концентрации отдельных компонентов и их температуры кинения (рис. 3). Экстранолируя кривую, соединяющую точки графика, находится монец кинения C_{6+} . Эта величина получается 440 К.

Для выполнения более точных определений средних температур империя, строится градих зависимости $T_{\rm KHH}$ и $\mathcal N$ для компенентов от $\mathcal L$ $\mathcal L_{\mathcal S}$ и выше, считая концом кишения бракции $\mathcal C_{\mathcal S+}$ 440 К.

KOMMORFFT :	•	-20	CTAB	1 *		I W
. 8EAH	COCTAE 1	MIT KOCAN	I TARA	I PABHO	I MYARGCYN	I RAPA
CG3	0.24503	2,2394	8.26832	F.281984	8 2.689212	6.8u3975
NŽ	8-85221	7.2016	0 . 18225	65.829357		2.002961
HETH	49.75654	2.2161	55.18426	24.832794		8 298826
ETHN	18.12342	2.1465	11.62355	5.127684		8.111617
PROP	19.31071	12.3766	20.10146	1.6:8587		8.298394
:-C4	4.89858	3.4618	3.74423	8.7213/3		8.877174
N-04	6.31889	11,2756	5.77164	8.529795		0.1:293
1 .05	1.23017	4.281>	0.9:641	3.228892		8.822253
N-CS	1.19717	4.6186	9.683.6	3 - 175265		8-819464
#1	1.59422	5.2776	B. 06822	C.166477		3.872826
F2	2.64876	13.7261	8.67451	0.249251		0.878216
FŠ	2.68826	17.2624	4.2722¢	2.015765		6.849791
F4	2.88820	19.8785	W-807\$3	0.883545		3.842784
HCUPHRE BOLK	100.66	18.1707	89.82925	7.20-00-00-		
DEPEHHRE WOUN	100.05	5.4581	99.56127			
MACCOBUE ACAM	189.08	23,7598	76.24816			
HCA. BFG	35.88	81.77	29.786			
nen e e e	7/109	91111	54.100	•		

WEGGE MTEPANNA ANA ORPENERCHAR WORCTART PARHOTECHES

KCHECHRATHER BAKTOP CTYPERM 8.38385659KT/HZ.

Ŋ

	KOHNOHELT			CTAB	1 K	1 1	§ W
	HA3B i	COCTAE	MATKOCAN	I DAPA	1 PA840	I MI. WYOCAN	1 PAPA
	CC?	P.26632	7.5437	8.27874	6.191176	4 8.329264	0.994275
	N Z	0.10223	r.eg15	£ - 18334	97.331967	2 8.223246	3.639977
	METH	55.18426	2.1956	55.75512	15.438583	4 #.*84825	9.305914
	ETHN	11.02659	2.3997	11.11927	4.438698	8 6.939262	0 - 114353
	PHOF	28.18146	15.8474	20,15952	1.346700		9.323977
	1-04	3.94423	7.2658	3.91661	1.554149		8.277737
	N-C4	5.77164	14.5665	5.6765	E.358186		2.112847
	1-05	3.91641	5,4196	9.86750	P. 168348		
	N-C5	3.89378	5.2876	8.75877	2.115499		8.4:8325
	6.5	2.86922	12.5264	0.75325	2.869735		8.278283
	FÇ	3.67491	16.6532	0.58277	2.434203	•	9.415149
	FS	3.27275	14.2615	g. 1237 g	2.845799		8.804335
	F 4	0.06753	5,4547	3.60915	0.021739		
HC/	APPRE SCIN	100.00	1.6458	98.93417	-		
	SEMPNE ATAN	.03.40	0,8358	99.96581			
H 4 (CCOPME MCUN	130.00	7,6198	\$7.38417			
	1. BEG	29.71	73.82	29.24			

S SECOND STEPAUM AND DESCRIPTION OF THE PARTIES OF

THE TOWARD CARTOR CTALENN . 6.83238186KETHS

Kancohert	1	180	CTAC .	1	, K	ı	*	1	×	
K1.30	. COCTAE I	MNSKOSYN	1 HAR#	1	PABHC	I	MANKOCIN	1	SAPA	
CC2	4.27974	0.2451	6.27246		5.0444212		4.465553	٠	8.864114	•
N2	0.19334	8.4613	8-18412	. •	8.4526947		9.023645		8 - 80 1988	
METH	45.75513	2.2699	56. 15456	2	7.1661377		8.32/858		9-311366	
ETHN	11.11953	2.4887	11.18547	_	4.5115783		3.318867		0-116727	
PROP	28.15592	16.6178	28.18253		1.2152891		8 - 126749		Ø.3#7548	
1 · C4	3.91861	8.1345	3.87836		3.4771751		6.6688.9		8-977898	
N-C4	> 67655	16.5682	5.59275		3.3296466		0 - 143679		8:112291	
1-35	9.36793	6.4125	8.82557		9.1268268		8.267466		W.020583	
N=C5	8.75677	7.4396	8.69971		A. 8541818		3.078198		8.317445	
Fi	0.75363	12.4662	9.46368		3 . 8532967		8 . 1429 5		2 - 8 : 8 2 6 2	
F 2	2.56277	17.1131	9.37957		0.8219791		0 - 217641		0.011446	
13	9,12372	9.1784	4.85664		0.8259597		c.1.6892		0.601935	
F4	. # . # 949	1.8985	31128.9		8.0216718		8.819598		356652	
	,									
HUNDHHE AGIN	100.00	2.7575	99.24260				•			
DESERMIE BOAN	199.06	6.6253	99.97915							
MACCOBYE ACAM	166.66	1.7780	98.22144							
RCA, BEC	29.24	68,64	28.939							
2 % 299	·	,								

HUCAS PTEPANNA ANA ORPERENTHA MONCTANT PABHORECUES 7

NOMBEHCA HER CARTON CTYRERY 6.22174743NF/MF

ŧ	«CHAGHER) :	. 1	:60	CTAB	1	ĸ	1	Nr.	1		
i 	н/33 .	F BATCOO	ANTROCES	Z PAPA	1	PABHC	İ	EVANOCTH	1	DAPA	
1	002	8.27746	2,6440	ÿ.2 ⁷ 373	6	.2163775		6.000241		9 944194	•
ŀ	N2	2-19412	2.5811	8.12465		.9468535		~. aggeu\$		0-801021	
L	neth	56.16456	148556	56,46582	3 €	.4436365		w. 824463		3.3:5317	
į.	ETIN	11.18547	2,4249	11.23429	. 4	•6338711		0.910932		9 117*81	
ŧ	P00P	20.18253	17,2639	20-19911	:	. 1762495		8-114133		0.310035	
	1-64	3.87836	と。フラフラ	3.85193	Ç.	.4389243		9.276467		8.8"7916	
i	N- 04	5.59873	18,5017	5.51982	2	.2977366		2.161576		0.1:1657	
	f-c5	9.8251	7,1975	2.79877	ŕ	.1113815		p. 276053		2.819857	
Ĭ	N-C5	. 2.69971	2.2589	55766.	a	. 8797562		0.969251		0.81652?	
Į.	- 1	0.66368	13,4886	3.59248	ę,	. 6439611		6.1591/1		6.2.674	
Ī	Fo	₫.37597	16.5344	9.28647	2	.4173389		A.218346		8.808785	
ı	F3	8.95464	5,5293	2.82437		. 2243991		3. 864945		3.028867	
I	-4 .	3.88115	1,1886	2 - 00 # 3 4	. 3	. 2807247		3.423467		0.000066	
,											••
•	ACUPPPE GOLN	193.88	2,2508	99,44916							
į	DEPENHEE TOUR	103.20	8.8123	99.90758							
٠	MACCEBRE MCUN	193.68	1.2496	98.73636							
i	HCA. BEC	28.94	66.7 ĝ	28,73#							

- NACO NEEDAMA AAR ONPERENEHUR KOHCEAHT PARHOECURE

KINGENGATHAN CARTOP CTYSERN B.R1536818KP/H3

ABBREHNE, ATA= 2.1PB TEMMEPETYPA C= 5.8EZ ***BEFORTHO, KFNTHUECKAR N/H QAHOOARHAR OSMADTh*** 2.83 ATH TEMMEPATYPA 278.18FRAPFCH KE/BBNA

`*	KONTOMERT	•	EO	CTAB	1	K	7 b	٠,	, ¥
	HA 38	COCTAR &	MASKOCAN	ARAU 1	1	PABHC	I MYAKOC	1 N 1	
	CO2	9.27373	8.2737	2.27373		1.0203222		# - ~	
	N2	3.14465	2.:047	1.10479			A . 62419	_	0.204193
	HETH	56.46588	56,4614	56.47016		:	0.0013.		8.801721
	ETHN	11.23488	11.2342	11.23382		1.8282819	8.3152		8-315359
	PROP	28.19911				1.3296000	6.1175		0.117566
	1-04	3.85123	20.2018	20.19728		2.9559974	8.31084	17	3.3:0020
	H-64	5.51982	3,6515	3.85868		8.959997£	8 . 6779	4	8-877927
	1-65		5.5248	5.51865		2.9779561	3 - 1116	1 1	8.111644
	N-C5	8.79877	6,3918	8.75856		6.4999952	. 0 . 6 198	· 3	3.0.9856
	P*C>	5.65788	2,638	4.6577:		0.9999945	8.8145		8 8 6 - 1 -
₹		4.59268	8.5929	9.55251		2.9999948	8.3162		8.2.6743
	12	. 8 • 25 547	0.2866	3.28637		2,9979925	9.8087		
	73	0.02438	8.8243	8 . 224:1		2.9599915			a.e.8732
	F4	3.84614	0.2551	4.22814			3.22286		8.8~8867
			-4	M + D X E] *		6.929928	0.2282		8.0-0726
X:	MEHLE SOLM	100.00	50.6688	58.02842					
	BETHEE REAM	103.00	49.5999						
	CCCBUE ACAM	185.08	58.8428	58.62885					
	A. SEC	28.73		49,99777					
***		44413	28.73	23.778					

MEGAG MTEPAUM EAR ORPERETENNA KONCERNT PARHORECARE &

$$T_{\text{KBH}} C_5 = 209.3, \quad 7 = 7.594 + \frac{1.197}{2} = 8.193.$$

Т. е. ордината, соответствующая температуро импения, должна пересеть середину стрезка, соответствующего содержанию компонента.

Координати следующей точки:

$$T_{\text{EMR }C_4} = 30I$$
, $Q = 7,594 + I,I97 + \frac{I,23}{2} = 9,406$.

Аналогично определяем координаты точки для #-Сл:

$$T_{\text{KMH}} C_3 = 272.7.$$
 $7 = 7.594 + +1.197 + 1623 + $\frac{6.31}{2} = 13.176.$$

через эти точки проесдум кризую. На графике косраинаты вичисленных точек обозначени треугольником (Δ).

Примем ренение, что францию C_{6+} необходимо разбить на 4 фракции. На кривой $\eta = f(T_{KUZ})$ этметим содержание франции $C_{6+} = (X)$. Оно, согласно анализу, составляет 7,594 %. Для удооства примем содержание I-ой франции (F_1) равним I,594 %, 2-й $(F_2) = 2$ %, 3-й $(F_3) = 2$ % и 4-й $(F_4) = 2$ %.

$$1.594 + 2 + 2 + 2 = 7.594$$

найдем на графике средняе температуры жинения фракций, как соотретствующие по координатам серединам отрезков, отвечающих со-

На оси η находим величиеу 6,797, проводим линию, парадлельную сси T, до пересечения о кривей $\eta = f(T)$. Точка пересечения обозначене очружностью (\circ). От точки пересечения опускаем перпенцикуляр на ось T и находим для f_{ij} среднюю температуру кицения — 325 К. Аналогично для f_{ij} от точки с содержанием 5 %— 348 К. для f_{ij} от точки о содержание 3 % имеем T=380 К. для $\eta=1$ % имеем T=419 К.

Талинда IЗ Компонентний состав газовой смеси

Компоненти	Молловая концентреция, %	T _{KHU} , ^K
I	: 2	·: 3
CC ₂	0,245	194,65
~	0.092	77,35
CH _a ;	49,796	III,85

I	: 2	: 3
63H8 63H8 65H9	TO, I23	254,55
C,H,	19,308	220,95
L-CAH _{TO}	4,098	2CI,50
#-C ₄ E ₁₀ i-C ₅ H ₁₂ #-C ₅ H ₁₂ F ₅	6,310	272,70
1-05H-2	1,230	301,00
#-C ₅ H _{T2}	1,197	309,30
£	1,594	325,00
ř.	2,000	348,00
ŕ.	2,000	380,00
F3 F4	2,000	419,00
7	100,000	

Расчет индивицуальное свойств фолмий выполнен на СВК ЕС IG22. Затем г полнивтся рысчет нарожильствого развовесяя для I-го, 2-го, 3-го и 4-го конденсьтосоорымог и термогорических усложий пония падепровода. При этом состав равновесной наровой фолм персого конценватосоорымам (y_i) есть состав смеся (R_i) для расчета парожилмостного равновески 2-го хонденсатосоорымам и г.д.

2.2. Расчетися определение объеми монденских в конценскихооборнятых

Воспользующих результатим расчета равнизация: для усисвий I понценовтосооряния: $\angle = 0.1017$; $M_{\rm g} = 91.77$.

Esquerone:

$$G_{g} = 190000 \cdot 0.1017 = 10.17 \cdot 10^{3} (u^{3}/sytem).$$
To tradinal proof I becomes $g_{g} = 5.2 \cdot 10^{-3}.$
Other tradeomorphisms inherences coordinate.

$$V_x = G_x \cdot g_x = 10.17 \cdot 5.2 \cdot 10^{-3} = 52.83 \text{ (m}^3/\text{spins)}.$$

Вическим илигосодоржание лизи в начале голопроводи:

$$W_{ij} = \frac{5.625 \cdot 10}{10.1 \cdot 1.0} + 2.63 \cdot 10^{-2} = 5.83 (22/1000 e^{2})$$
.

ПОСКОЛЬКУ ТИКИНТИЗУРА ТАВЕ ЗАД I— И БОЯДИКОПТООСОДИТКОМ ЕМ УТРА-КА, ПО ОРДИНЕНИЕ С ИЗМИЛНИЕ ТОКОПРОВОДА, В ДЕКИМИЕ СНИЗКИЛОВЬ, ТО ВЕЗГОООДЕДЖАВИЕ НЕ ИЗМИЛИЕТСЯ В, СВЕДОМИТЕЛЬНО, ВОЛИКУО ИМИВЕКОВ-ТО ИЕ ОУДЕТ. Ко 2-ку кондансэтооборыгыу поступает следующее голичество га... за:

То результатам расчета пархидиостного расновесяя для усковий 2-го инденсагосорииха $\angle = 0.0106$ в $M_c = 73.02$.

$$G = 39.83 \cdot 10^3 \cdot 0.0106 = 0.95 \cdot 10^3 (m^3/cytrs).$$

10 графику рис. I находим $g_1 = 4.75 \cdot 10^{-3}$.

Вычисляем:

$$V_c = 0.95 \cdot 10^3 \cdot 4.75 = 4.51$$
.

Егагородержание газа после I-го конденсатосоорима ооставляет $6.83~\mathrm{kr/IGOO}$ $\mathrm{m}^{5}.$

Вичестим влагосодержание гази над 2-им конценовтогоорижном:

$$A = 2,415 \cdot 10; \quad B = 1,398 \cdot 10^{-1}$$

$$W = \frac{2.415 \cdot 10}{10.1 \cdot 0.7} + 1.398 \cdot 10^{-1} = 3.56 (mr/1000 m8)$$

Определязи объем водяного конценсата:

Общий объем вочиенсама: V = 4.5I + 0.2I = 4.72 (м³/сутки).

Аналогично изваем вическовнее по 3-му конпомоатооборнику: $\mathcal{L} = J_1077576$; $\mathcal{M}_{\pi} = 69664$.

$$G \sim 89.83 \cdot 10^3 \text{ (I=0,0106)} = 88.88 \cdot 10^3 \text{ (m}^3/\text{cyrkm});$$

$$G_s = 88.88 \cdot 10^8 \cdot 0.007876 = 0.67 \cdot 10^3 (x^3/cyrma).$$

Определиен $g_{s} = 4.5 \cdot 10^{-3}$;

$$V_{\rm c} = 0.67 \cdot 10^3 \cdot 4.5 \cdot 10^{-3} = 3.03 \, (47/07792).$$

бичисьным вывтооодержание над 3-тм испроновлооборинком:

$$A = 1.3167710; B = 8.925 \cdot 10^{-2}$$

$$W = \frac{7.375 \cdot 70}{10.7 \cdot 0.6} + 8,925 \cdot 10^{-2} = 2,26 \text{ (m/1000 M}^{9}).$$

Определям объем водиного вогденомта:

$$V = 3.03 + 0.12 = 3.15 (m^3/cytre)$$

Выполняем вычисления для 4-го конденсатосоорника: L = 0.0056: $M_K = 66.7$.

$$G = 88.88 (I-0.007576) = 88.2I$$
:

$$G_K = 88.21 \cdot 0.0055 = 0.49 \cdot 10^3 (m^3/overm)$$
.

Находим:
$$g_{\kappa} = 4,47 \cdot 10^{-3}$$
;

$$V_K = 0.49 \cdot 4.4 = 2.14 \, (\text{m}^3/\text{cytre}).$$

Определяем влагосодержание:

$$A = 7.675;$$
 $B = 6.005 \cdot 10^{-2};$

$$W = \frac{7.675}{10.1 \cdot 0.5} + 6,005 \cdot 10^{-2} = 1,58 \text{ (ke/1000 k}^3\text{)};$$

$$V_{6\kappa} = \frac{88,21\cdot2,26-88,21(1-0,0055)\cdot1,58}{998,20} = 0.061 (m9/cytrm);$$

$$V = 2,14 + 0.06 = 2,20 \text{ m}^3/\text{cyricm}$$
).

В конце газопровода, согласно расчету, однофазное состояние, общее количество конценсата:

$$V = 52,88 + 4,72 + 3,15 + 2,2 = 62,95 (m3/cytem).$$

2.3. Если нет необходимости определять количество понденсата в каждом конденсатосоорнике, то можно воспользоваться виражением (7) или виражениями (37) и (38) для расчетов. Пример расчета по виражению (7) приведен выле.

По формуле (37) находим общую молярную долю конценсата:

Средний молекулярный вес конденсата:

$$M_{K} = \frac{35 - 28,728 (I-0,I228)}{0,I228} = 79,79$$
.

Находим:

$$g_{\kappa} = 5.15 \cdot 10^{-9}$$
;
 $g_{\kappa} = 100 \cdot 0.1228 = 12.28 \cdot 10^{3} (\text{m}^{3}/\text{cytkm})$;
 $V_{\kappa} = 12.28 \cdot 5.15 = 63.24 (\text{m}^{3}/\text{cytkm})$.

Объем водяного конденсата составляет: $V_{f_K} = 0.285 \, (\text{м}^3/\text{сутки})$. Общий объем конденсата $V = 63.240 + 0.285 = 63.525 \, (\text{м}^3/\text{сутки})$.

3. Определение погрешности вычысления

Расход газа определяется со среднеквадратичной погрешностью 5 %, концентрация метана — 5 %, концентрация азота — 10 %:

$$6(c_{1}-c_{2}) = \sqrt{\frac{49.8}{49.81} \cdot 5)^{2} + \left(\frac{0.1}{49.81} \cdot 10\right)^{2}} = 5\%.$$

Для случая вычислений по разности концентраций летучих комнопентов среднеквадратическая погрежность составит:

$$\mathcal{E}_{G_{K}} = \sqrt{\left(\frac{2 \cdot 49.81}{56.46 + 0.1 - 49.81} \cdot 5\right)^{2} + 25} = 52.4 \%.$$

Вичислям погрешности при варианте прогнозного определения коли - чества конценсата. Общую молярную долю пара найдем по формуле (38):

$$e = 0.8982 \cdot 0.9893 \cdot 0.9924 \cdot 0.9945 = 0.8777.$$

По виражению (41) вичеслим δ_{ℓ} , имея ввиду, что константу равновесия каждого компонента можно взять по одной из ступеней расчета:

$$\mathcal{E}_{\mathcal{E}} = \sqrt{\frac{5^2}{0.8777^2 \cdot 0.4486^2} + 10^2} = 16.16$$
;

$$\tilde{S}_{G_{\mathcal{K}}}^{-} \sqrt{\tilde{G}_{\mathcal{G}}^{2} + \tilde{G}_{\mathcal{L}}^{2}} = \sqrt{\tilde{S}^{2} + 116^{2}} = 116,11\%$$

COHEPRAHME

	Orp
І. Общие положения	3
2. Определение объема хочденсата, выпадавшего	
в газопроводе	8
3. Расчет молярной доля конденсата с помощью	
уравнения состояния газовой смеси	14
4. Определение погрежности вычислений	2.3
Литература	23
Приложение. Пример расчета	74

РУКОВОДЯВИЙ ДОНУМЕНТ

методика Спределения комичества конденсата, Выпадающего в газопроводе РИ 39-0147103-311-86

460055, Уфа, просп. Онтября, 144/3