ФЕДЕРАЛЬНОЕ АГЕНТСТВО

ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ **ΓΟCT P** 53734.5.1— 2009 (MЭΚ 61340-5-1:2007)

Электростатика

ЗАЩИТА ЭЛЕКТРОННЫХ УСТРОЙСТВ ОТ ЭЛЕКТРОСТАТИЧЕСКИХ ЯВЛЕНИЙ

Общие требования

IEC 61340-5-1: 2007
Electrostatics — Part 5-1: Protection of electronic devices from electrostatics phenomena — General requirements (MOD)

Издание официальное

Предисловие

Цели и принципы стандартизации в Российской Федерации установлены Федеральным законом от 27 декабря 2002 г. № 184-ФЗ «О техническом регулировании», а правила применения национальных стандартов Российской Федерации — ГОСТ Р 1.0—2004 «Стандартизация в Российской Федерации. Основные положения»

Сведения о стандарте

- 1 ПОДГОТОВЛЕН Открытым акционерным обществом «Всероссийский научно-исследовательский институт сертификации» (ОАО «ВНИИС») и Закрытым акционерным обществом «Научно-производственная фирма "Диполь"» (ЗАО «Научно-производственная фирма "Диполь"»)
 - 2 ВНЕСЕН Техническим комитетом по стандартизации ТК 072 «Электростатика»
- 3 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Приказом Федерального агентства по техническому регулированию и метрологии от 15 декабря 2009 г. № 1198-ст
- 4 Настоящий стандарт является модифицированным по отношению к международному стандарту МЭК 61340-5-1:2007 «Электростатика. Часть 5-1. Защита электронных устройств от электростатических явлений. Общие требования» (МЭК 61340-5-1:2007 Electrostatics Part 5-1: «Protection of electronic devices from electrostatics phenomena General requirements») путем изменения отдельных фраз (слов, значений показателей, ссылок), которые выделены в тексте курсивом

5 ВВЕДЕН ВПЕРВЫЕ

Информация об изменениях к настоящему стандарту публикуется в ежегодно издаваемом информационном указателе «Национальные стандарты», а текст изменений и поправок — в ежемесячно издаваемых информационных указателях «Национальные стандарты». В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ежемесячно издаваемом информационном указателе «Национальные стандарты». Соответствующая информация, уведомления и тексты размещаются также в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет

© Стандартинформ, 2011

Настоящий стандарт не может быть полностью или частично воспроизведен, тиражирован и распространен в качестве официального издания без разрешения Федерального агентства по техническому регулированию и метрологии

Содержание

1	Область применения
2	Нормативные ссылки
3	Термины и определения
4	Сокращения
	Безопасность персонала
	Программа ЭСР-управления
	6.1 Общие положения
	6.2 Организационные требования к программе ЭСР-управления
	6.3 Технические требования к плану программы ЭСР-управления
7	Упаковка
	Маркировка
П	риложение А (обязательное) Методы испытаний
	иблиография

Введение

Настоящий стандарт разработан с целью установления технических и организационных требований к программе управления электростатическими разрядами (программа ЭСР-управления), необходимой для работы с чувствительными к электростатическому разряду компонентами (ЧЭСР-компоненты), при ее разработке, утверждении, внедрении, выполнении и обучении персонала. В основе стандарта лежат следующие принципы управления электростатическими разрядами (ЭСР-управление):

предотвращение переноса заряда между несущими электростатический заряд токопроводящими объектами (персоналом и, особенно, автоматически управляемым оборудованием) и ЧЭСР-компонентами.

Это обеспечивается связью или электрическим соединением всех проводников, находящихся поблизости, включая персонал, с известным заземлением или специально устроенным заземлением (как это делается на борту корабля или самолета). Такое устройство формирует эквипотенциальное равновесие между всеми проводящими объектами и персоналом. Электростатическая защита может поддерживаться при разности потенциалов, отличной от «нулевого» потенциала напряжения земли, поскольку все проводящие объекты в системе имеют одинаковый потенциал;

- предотвращение переноса заряда между любыми несущими электростатический заряд ЧЭСР-компонентами (перенос заряда может произойти в результате прямого контакта/разъединения или при образовании поля). Диэлектрики не теряют свой электростатический заряд при контакте с землей. Ионизационные системы обеспечивают нейтрализацию зарядов диэлектриков (материалы схемных плат и упаковки некоторых изделий являются примерами диэлектриков). Оценка опасности электростатического разряда (ЭСР-опасность), формируемой электростатическими зарядами на диэлектриках, помещенных на рабочий стол, должна гарантировать, что предпринимаются меры в соответствии с имеющимся риском;
- применение защитной упаковки за пределами участка, защищенного от электростатического разряда (УЗЭ), где невозможно контролировать перечисленные выше явления. Защита от электростатического разряда может достигаться помещением ЧЭСР-компонентов в антистатические материалы, причем тип материала зависит от ситуации и назначения. Антистатические рассеивающие материалы могут обеспечивать адекватную защиту внутри УЗЭ. За пределами УЗЭ рекомендуется использовать материалы, экранирующие статические разряды. Несмотря на то, что такие материалы не рассматриваются в данном стандарте, необходимо понимать их различия.

У каждой компании свой производственный процесс, поэтому для создания оптимальной программы ЭСР-управления требуются различные элементы ЭСР-управления. Необходимо, чтобы способы контроля осуществлялись в соответствии со всеми требованиями и тщательно документировались в плане программы ЭСР-управления.

Обучение является важной частью программы ЭСР-управления и гарантирует компетентность персонала в работе, соответствующей плану программы ЭСР-управления, а также в вопросах эксплуатации оборудования и методиках. Обучение формирует представление о важности вопросов электростатических разрядов (ЭСР). Необученный персонал часто является главным источником риска, связанного с электростатическим разрядом (ЭСР-риск). Обучение сотрудников — это первый эффективный шаг защиты от повреждений, вызванных ЭСР.

Регулярные проверки и тесты гарантируют, что оборудование эффективно, а программа ЭСР-управления выполняется.

Формирование электростатического заряда происходит при физическом контакте, разделении или трении материалов, потоков твердых частиц, жидкостей или насыщенных взвесями газов. Наиболее распространенными источниками ЭСР являются: несущий электростатический заряд персонал, проводники, полимерные материалы и технологическое оборудование. Повреждение, вызванное ЭСР, происходит, если:

- человек или объект, несущий электростатический заряд, вступает в контакт с ЧЭСР-компонентами;
- ЧЭСР-компонент вступает в контакт с сильно проводящей поверхностью, находясь под воздействием электростатического поля;
- ЧЭСР-компонент, несущий электростатический заряд, вступает в контакт с проводящей поверхностью (безотносительно ее заземленности), имеющей иной электрический потенциал.

Примерами ЧЭСР-компонентов являются микросхемы, дискретные полупроводниковые приборы, толстопленочные и тонкопленочные резисторы, гибридные устройства, печатные платы и пьезоэлектрические кристаллы. Можно определить чувствительность компонентов, воздействуя на них моделируемыми ЭСР. Уровень чувствительности, определяемый испытанием с использованием моделируемых электростатических явлений, необязательно должен соответствовать уровню чувствительности в реальных условиях. Однако испытания используются для составления базы данных сравнительной чувствительности компонентов аналогичного типа разных изготовителей. Для определения чувствительности используются три модели ЭСР: модель человеческого тела (МЧТ), механическая модель (ММ) и модель заряженного устройства (МЗУ).

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

Электростатика

ЗАЩИТА ЭЛЕКТРОННЫХ УСТРОЙСТВ ОТ ЭЛЕКТРОСТАТИЧЕСКИХ ЯВЛЕНИЙ

Общие требования

Electrostatics. Protection of electronic devices from electrostatics phenomena.

General requirements

Дата введения — 2010—09—01

1 Область применения

Настоящий стандарт устанавливает организационные и технические требования к разработке, утверждению, внедрению и выполнению программы ЭСР-управления для производств, осуществляющих изготовление, технологическую обработку, сборку, монтаж, установку, упаковку, маркировку, обслуживание, испытание, проверку, транспортировку или какие-либо другие операции, выполняемые с электрическими и электронными деталями, узлами и оборудованием, восприимчивыми к воздействию ЭСР, равных 100 В или более в соответствии с МЧТ.

П р и м е ч а н и е — Руководство по применению настоящего стандарта приведено в ГОСТ Р 53734.5.2—2009 (МЭК 61340-5-2:2007) [1].

Требования настоящего стандарта не распространяются на взрывные устройства, горючие жидкости, газы и порошки.

2 Нормативные ссылки

В настоящем стандарте использованы ссылки на следующие стандарты:

ГОСТ Р 50571.26—2002 Электроустановки зданий. Часть 5. Выбор и монтаж электрооборудования. Раздел 534. Устройства для защиты от импульсных перенапряжений (МЭК 60364-5-534:1997, МОD)

ГОСТ Р 51350—99 Безопасность электрических контрольно-измерительных приборов и лабораторного оборудования. Часть 1. Общие требования (*МЭК 61010-1*—90, *MOD*)

ГОСТ Р МЭК 61140—2000 Защита от поражения электрическим током. Общие положения по безопасности, обеспечиваемой электрооборудованием и электроустановками в их взаимосвязи (МЭК 61140—97, IDT)

ГОСТ 12.1.030—81 Система стандартов безопасности труда. Электробезопасность. Защитное заземление, зануление

П р и м е ч а н и е — При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет или по ежегодно издаваемому указателю «Национальные стандарты», который опубликован по состоянию на 1 января текущего года, и по соответствующим ежемесячно издаваемым информационным указателям, опубликованным в текущем году. Если ссылочный стандарт заменен (изменен), то при пользовании настоящим стандартом следует руководствоваться заменяющим (измененным) стандартом. Если ссылочный стандарт отменен без замены, то положение, в котором дана ссылка на него, применяется в части, не затрагивающей эту ссылку.

3 Термины и определения

В настоящем стандарте используются следующие термины с соответствующими определениями:

- 3.1 общая точка заземления (Common Ground Point): Заземленное устройство или место, где соединяются проводники от двух или более элементов ЭСР-управления.
- 3.2 общая точка соединения (Common Connection Point): Устройство или место, где соединяются проводники от двух или более элементов ЭСР-управления, чтобы привести защитные элементы к одному и тому же потенциалу путем эквипотенциального соединения.
- 3.3 **эквипотенциальное соединение** (equipotential bond): Электрическое соединение открытых токопроводящих частей (или элементов, используемых для ЭСР-управления), обеспечивающее нахождение их под одним и тем же потенциалом, как в нормальных условиях, так и в состоянии и условиях неисправности.
- 3.4 **элементы ЭСР-управления** (ESD control items): Материалы или изделия, предназначенные для предотвращения образования электростатического заряда и/или распространения сформированных электростатических зарядов и для защиты ЧЭСР-компонентов от повреждения.
- 3.5 функциональное заземление (functional ground): Подключение к земле посредством клеммы в целях, отличных от электробезопасности.
 - 3.6 организация (organization): Компания, группа или орган, применяющие ЧЭСР- компоненты.
- 3.7 **защитное заземление** (protective earth): Подключение к земле посредством клеммы в целях электробезопасности.

4 Сокращения

В настоящем стандарте устанавливают следующие сокращения:

- ЭСР электростатический разряд;
- программа ЭСР-управления программа управления электростатическими разрядами;
- ЧЭСР-компоненты чувствительные к электростатическому разряду компоненты;
- ЭСР-управление управление электростатическим разрядом;
- ЭСР-опасность опасность электростатического разряда;
- УЗЭ участок, защищенный от электростатического разряда;
- ЭСР-риск риск, связанный с электростатическим разрядом;
- МЧТ модель человеческого тела;
- ММ механическая модель:
- M3У модель заряженного устройства;
- ЭСР-координатор лицо, отвечающее за все аспекты защиты от ЭСР;
- ЭСР-защита защита от электростатического разряда;
- ЭСР-защищенное рабочее место защищенное от электростатического разряда место.

5 Безопасность персонала

Методики и оборудование, применяемые на производстве, не должны подвергать персонал опасным воздействиям. Пользователи обязаны выбирать оборудование в соответствии с действующим законодательством, обязательными требованиями нормативных документов, а также внутренней и внешней политикой предприятия. Настоящий стандарт не может заменить или отменить какие-либо требования относительно безопасности персонала.

Необходимо принимать меры по снижению электрической опасности и выполнять инструкции по правильному заземлению оборудования.

6 Программа ЭСР-управления

6.1 Общие положения

6.1.1 Требования к программе ЭСР-управления

Программа ЭСР-управления, созданная с учетом требований настоящего стандарта, должна минимизировать повреждения изделий, чувствительных к воздействию электростатических разрядов, равных 100 В или более при использовании МЧТ согласно стандарту МЭК 60749-26 [2]. Программа должна включать как организационные, так и технические требования к методам и средствам ЭСР-управления соглас-

но настоящему стандарту. Организация должна разработать программу управления, выполнять ее, вести документацию, проверять программу на соответствие требованиям, изложенным в настоящем стандарте.

6.1.2 ЭСР-координатор

Организация должна назначить лицо, отвечающее за все аспекты ЭСР-защиты на предприятии, а также за выполнение требований настоящего стандарта, включая разработку, документирование, поддержание и проверку соответствия программы ЭСР-управления.

6.1.3 Внесение изменений

Данный стандарт или какая-либо его часть может применяться не ко всем задачам организации. Внесение изменений в программу ЭСР-управления осуществляется после оценки прикладной задачи, по результатам которой требования могут изменяться, добавляться или исключаться. Все решения по внесению изменений, включая причины и техническое обоснование, должны документироваться.

6.2 Организационные требования к программе ЭСР-управления

6.2.1 План программы ЭСР-управления

В плане выполнения программы ЭСР-управления должны быть предусмотрены следующие составные части:

- обучение;
- проверка соответствия;
- заземление;
- заземление персонала;
- УЗЭ;
- упаковка;
- маркировка.

План является основным документом для выполнения и проверки программы.

Цель плана заключается в создании комплексной программы, соответствующей требованиям системы управления качеством в организации.

6.2.2 План обучения

В плане обучения указывается весь персонал, который должен пройти обучение, а именно персонал, имеющий отношение к ЧЭСР-компонентам. План должен включать начальное обучение персонала, прежде чем будет начата работа с ЧЭСР-компонентами. В плане должны указываться тип и периодичность обучения. Он должен включать требования по хранению записей об обучении и требования к документу, в котором эти записи хранятся. Организация самостоятельно выбирает методы и способы обучения. План обучения должен включать описание методов обучения, чтобы гарантировать его адекватность.

6.2.3 План проверки соответствия

План проверки соответствия должен быть принят, чтобы гарантировать выполнение требований программы ЭСР-управления. Мониторинг процессов (измерения) должен осуществляться в соответствии с планом проверки соответствия, который определяет технические требования, пределы измерений и частоту проверки. В плане проверки соответствия должны указываться методы испытаний, используемые для мониторинга процессов и измерений. Если в организации используются методы испытаний, отличные от указанных в настоящем стандарте, необходимо доказать, что результаты этих испытаний соответствуют требованиям стандарта. Необходимо создавать и хранить записи проверки, которые подтверждают соответствие техническим требованиям.

Выбранное для испытаний оборудование должно выполнять измерения, определенные в плане проверки соответствия.

6.3 Технические требования к плану программы ЭСР-управления

Ниже приведены основные технические требования, которые необходимо учитывать при разработке программы ЭСР-управления.

Установленные пределы основываются на методах проверки или стандартах, приведенных в таблицах данного подраздела. План проверки должен содержать указания по оценке соответствия установленным пределам. Эти методы могут совпадать с методами проверки, приведенными в таблицах, так и отличаться от них. Методы проверки и пределы, отличные от методов, приведенных в таблицах 1—4, должны быть технически обоснованы. Некоторые технические элементы, перечисленные в таблицах 1—4, не имеют нижнего предела сопротивления. Тем не менее, минимальное значение сопротивления должно устанавливаться по причинам безопасности.

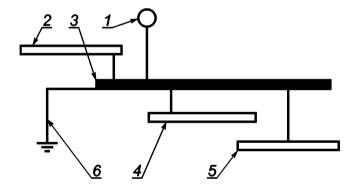
В этом случае рекомендуем принимать во внимание соответствующие требования действующих обязательных нормативных документов и/или стандартов ГОСТ Р МЭК 61140, ГОСТ Р 51350, МЭК/ТС 60479-1 [3], МЭК/ТС 60479-2 [4] и серии стандартов МЭК 60364 [5].

6.3.1 Системы заземления/эквипотенциального соединения

Чтобы исключить ущерб от ЭСР, необходимо устранить разность потенциалов между чувствительными к ЭСР элементами и другими проводниками, с которыми они могут соприкасаться, например персоналом, автоматизированным погрузочно-разгрузочным, стационарным и подвижным оборудованием. Чтобы устранить разность потенциалов, все проводящие и рассеивающие элементы должны соединяться с землей или друг с другом (эквипотенциальное соединение). Это может быть осуществлено тремя разными способами:

- заземление с использованием защитного заземления.

Первый и наиболее предпочтительный способ заземления — защитное заземление, если таковое имеется. В этом случае элементы ЭСР-управления и заземленный персонал подключены к защитному заземлению. Пример показан на рисунке 1:

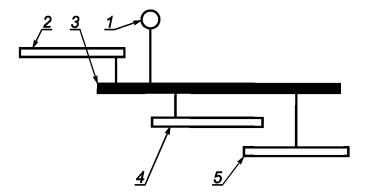

- заземление с использованием функционального заземления.

Второй допустимый способ заземления — это использование функционального заземления. Проводник может представлять собой заземляющий стержень или штырь, который используется для заземления элементов ЭСР-управления в производственном помещении. Чтобы устранить разность потенциалов между защитным заземлением и функциональным заземлением, настоятельно рекомендуется, чтобы эти две системы были электрически связаны друг с другом. Пример показан на рисунке 1;

- эквипотенциальное соединение.

Если в производственном помещении нет возможности для заземления, электростатическая защита может быть обеспечена путем соединения всех элементов ЭСР-управления в общей точке соединения. Пример показан на рисунке 2. Максимальное сопротивление между любым элементом защиты и общей точкой соединения должно соответствовать пределам, указанным для этих элементов защиты в таблицах 1 и 2.

Любая из систем заземления/устранения разности потенциала в настоящем стандарте будет именоваться «заземление».



Условные обозначения: 1 — антистатический браслет и провод; 2 — рабочая поверхность; 3 — общая точка заземления; 4 — напольное антистатическое покрытие; 5 — антистатический пол; 6 — функциональное заземление или защитное заземление (функциональное заземление должно соединяться с защитным заземлением)

Рисунок 1 — Схема УЗЭ с точками заземления

Т	аблиц	1 — Требования к заземлению/соединению
---	-------	--

Метод заземления	Метод испытания/стандарт	Требуемый предел	
Защитное заземление	ΓΟCT 12.1.030	Пределы, установленные в ГОСТ 12.1.030	
Функциональное заземление	ΓΟCT 12.1.030	Пределы, установленные в ГОСТ 12.1.030	
Эквипотенциальное соединение	См. прилагаемую технологию выполнения из таблиц 2 и 3	См. пределы для каждого элемента ЭСР-управления в таблицах 2 и 3	

Условные обозначения: 1 — антистатический браслет и провод; 2 — рабочая поверхность; 3 — общая точка заземления; 4 — напольное антистатическое покрытие; 5 — антистатический пол

Рисунок 2 — Схема системы эквипотенциального соединения

6.3.2 Заземление персонала

При работе с ЧЭСР-компонентами персонал должен иметь заземление или эквипотенциальное соединение в соответствии с требованиями, изложенными ниже. Если персонал находится на ЭСР-защищенном рабочем месте, сотрудники должны быть заземлены через антистатические браслеты.

Для работы стоя персонал может заземляться либо с помощью антистатических браслетов, либо с помощью системы заземления «напольное покрытие — обувь». Если используется система «напольное покрытие — обувь», необходимо соблюдать два условия:

- общее сопротивление системы (от сотрудника через обувь и покрытие к заземляющему оборудованию) должно быть менее 3,5 · 10⁷ Ом;
- максимальное создаваемое телом напряжение должно быть менее 100 B; общее сопротивление системы должно быть менее $1\cdot 10^9$ Oм.

Таблица 2 — Требования к заземлению персонала

Эле ме нт	Приемка продукции		Проверка соответствия	
ЭСР-управления	Способ измерений	Предел	Способ измерений	Предел
Провода антистати- ческих браслетов	МЭК 61340-4-6 [6]	< 5 · 10 ⁶ Ом или определяемое пользователем значение	пользова-	
Сопротивление ан-	MЭК 61340-4-6 [6]			
тистатического брас- лета	- внутри	$\leq 1 \cdot 10^5 \text{ Om}$	Не применяется	
	- снаружи	> 1 · 10 ⁷ Ом	Не применяется	
Антистатический браслет (см. приме- чание 1)	Не применяется		Приложение А.1	$R < 3.5 \cdot 10^7 \text{ Om}$
Обувь	МЭК 61340-4-3 [7]	Проводящая: < 1 · 10 ⁵ Ом Рассеивающая: 1 · 10 ⁵ ≤ <i>R</i> ≤ 1 · 10 ⁸ Ом	См. «Сотрудник—обувь»	
Система «сотрудник—обувь—пол» МЭК 61340-4-5 [8] R_g <3,5 · 10 7 Ом или R_g < 1,0 · 10 9 Ом и напряжение тела < 100 В (среднее из 5 самых высоких значений)		См. «Сотрудник—обу	ВЬ»	

Окончание таблицы 2

Элемент	Приемка п	Приемка продукции Проверка соответствия		оответствия
ЭСР-управления	Способ измерений	Предел	Способ измерений	Предел
Система «сотруд- ник—обувь»	Не применяется		Приложение А.1	R < 3,5 · 10 ⁷ Ом

П р и м е ч а н и е 1 — Если антистатическая одежда является частью системы заземления «Антистатический браслет», общее сопротивление системы, включающее сотрудника, одежду и провод заземления, должно быть менее $3.5 \cdot 10^7$ Ом.

Примечание 2 — Используемый в этой таблице символ R_g означает сопротивление относительно земли.

6.3.3 Участки, защищенные от электростатического разряда (УЗЭ)

Работа с ЧЭСР-компонентами без защитного покрытия или упаковки должна выполняться в УЗЭ. Перед входом в УЗЭ должны быть установлены хорошо видимые персоналу предупредительные знаки.

П р и м е ч а н и е 1 — УЗЭ может представлять собой все здание, помещение или единичное рабочее место.

Доступ в УЗЭ должен быть ограничен только персоналом, прошедшим обучение. Необученный персонал не должен допускаться к операциям с ЧЭСР-компонентами.

Все неосновные диэлектрики (пластик или бумага), такие как чашки, контейнеры для продуктов питания, личные вещи должны быть удалены с рабочих или других мест, где используют незащищенные ЧЭСР-компоненты.

ЭСР-опасность, связанная с необходимостью применения диэлектриков, должна быть оценена, чтобы гарантировать следующее:

- электростатическое поле в месте, где используются ЧЭСР-компоненты, не превышает 10000 В/м:
- электростатический потенциал, измеряемый на поверхности изоляторов, необходимых для работы, не должен превышать 2000 В, в противном случае рекомендуется размещать их на расстоянии минимум 30 см от ЧЭСР-компонентов.

Если измеренное электростатическое поле или потенциал поверхности превышает установленные пределы, необходимо использовать ионизацию или другие методы ослабления заряда.

При использовании ЧЭСР-компонентов создание УЗЭ необходимо. Однако существует множество разных способов формирования программы ЭСР-управления. Приведенная ниже таблица перечисляет некоторые из возможных элементов ЭСР-управления, которые можно использовать для управления статическим электричеством. Для тех элементов ЭСР-управления, которые выбраны для использования в программе ЭСР-управления, указанный диапазон становится обязательным.

П р и м е ч а н и е 2 — Если пределы, указанные в таблице 3, превышены, программа ЭСР-управления должна включать положение о внесении изменений в соответствии с требованиями, изложенными в 5.1.3.

Таблица 3 — Требования к УЗЭ

Элемент	Приемка продукции (см. примечание 1)		Проверка соответствия (см. примечание 2)	
ЭСР-управления	Способ измерений	Предел (см. примечание 3)	Способ измерений	Предел (см. примечание 3)
Рабочие поверхности, стеллажи хранения и тележки	МЭК 61340-2-3 [9]	R_{gp} <1 · 10 9 Ом R_{p-p} <1 · 10 9 Ом (см. примечание 6)	МЭК 61340-2-3 [9]	R _g < 1 · 10 ⁹ Ом
Пол	МЭК 61340-4-1 [10] (см. примечания 4 и 5)	R _{gp} < 1 · 10 ⁹ OM	МЭК 61340-4-1 [10]	R _g < 1 · 10 ⁹ Ом

Окончание таблицы 3

Элемент	Приемка продукции (см. примечание 1)		Проверка соответствия (см. примечание 2)	
ЭСР-управления	Способ измерений	Предел (см. примечание 3)	Способ измерений	Предел (см. примечание 3)
	МЭК 61340-4-7 [11]		МЭК 61340-4-7 [11]	
	Ослабление (1000 В до 100 В)	< 20 c	Ослабление (1000 В до 100 В)	< 20 c
	Напряжение смеще- ния	< ± 50 B	Напряжение смещения	< ± 50 B
Стул	МЭК 61340-2-3 [9] (измерения сопротивления до заземляемой точки — 8.6.3)	R _{gp} <1 · 10 ¹⁰ Ом	МЭК 61340-2-3 [9] (8.6.3 за исключени- ем измерения отно- сительно земли)	R_{gp} < 1 · 10 ¹⁰ Om
Одежда	MЭК 61340-4-9 [12]	$R_{p-p} < 1 \cdot 10^{12} \text{ Om}$	МЭК 61340-4-9 [12]	$R_{p-p} < 1 \cdot 10^{12} \mathrm{Om}$
Одежда (заземляе- мая) (см. Примечание 7)	МЭК 61340-4-9 [12]	R _{p-p} < 1 · 10 ⁹ Ом	МЭК 61340-4-9 [12]	$R_{p-p} < 1 \cdot 10^9$ OM

П р и м е ч а н и е 1 — При приемке продукции параметры окружающей среды при испытаниях должны быть 12 %-ной относительной влажности и 23 °C.

П р и м е ч а н и е 2 — Методы испытания при проверке соответствия относятся только к базовой методике испытания. Не ожидается, что метод испытания должен соблюдаться полностью.

П р и м е ч а н и е 3 — Символы, используемые в этой таблице: R_{p-p} — сопротивление от точки до точки, R_g — сопротивление относительно земли и R_{gp} — сопротивление до точки заземления.

Примечание 4 — Максимально допустимое напряжение, разрешенное для измерения, которое может использоваться в программе ЭСР-управления согласно требованиям настоящего стандарта, составляет 100 В.

Примечание 5— Если покрытие пола используется для заземления персонала, работающего с ЧЭСР-компонентами, см. соответствующие системные требования, указанные в таблице 2.

П р и м е ч а н и е 6 — В ситуациях, опасных с точки зрения разряда от заряженного устройства (модель МЗУ), рекомендуется установить нижний предел сопротивления от точки до точки в $1 \cdot 10^4$ Ом.

П р и м е ч а н и е 7 — Если заземляемая одежда используется как часть первичного пути заземления сотрудника (сотрудник соединяется с одеждой, которая соединяется с проводом заземления, прикрепленным к земле), тогда максимальное сопротивление от тела сотрудника до заземления должно составлять 3,5 · 10⁷ Ом.

7 Упаковка

Защитная упаковка должна отвечать требованиям заказчика и оговариваться в контрактах, заказах на покупку, чертежах и/или другой документации. Если заказчик не оговаривает требования к защитной упаковке, организация сама должна определить требования, предъявляемые к защитной упаковке ЧЭСР-компонентов в рамках разработанного плана. Требования к упаковке должны устанавливаться для перемещения ЧЭСР-компонентов внутри УЗЭ, между УЗЭ, за пределами УЗЭ и для транспортирования к заказчику (см. Введение).

При выборе материала упаковки и методов испытаний следует использовать данные таблицы 4.

Таблица 4 — Упаковка

Элемент управления ЭСР (материал упаковки)	Метод испытания (см. примечание 2)	Требуемый диапазон
Статически рассеивающий	МЭК 61340-2-3 [9]	1 · 10 ⁵ ≤ <i>R_s</i> < 1 · 10 ¹¹ Ом (см. примечание 1)

FOCT P 53734.5.1—2009

Окончание таблицы 4

Элемент управления ЭСР (материал упаковки)	Метод испытания (см. примечание 2)	Требуемый диапазон
Проводник	МЭК 61340-2-3 [9]	$1 \cdot 10^2 \le R_s < 1 \cdot 10^5 \text{ Om}$
Диэлектрик	МЭК 61340-2-3 [9]	$R_s \ge 1 \cdot 10^{11} \text{Om}$
Экранирующий разряд (пакеты)	МЭК 61340-4-8 [13]	< 50 нДж

П р и м е ч а н и е 1 — См. МЭК 61340-2-3 [8]; используйте методику для поверхностного сопротивления (R_s) , чтобы выполнить эти измерения.

8 Маркировка

Маркировка ЧЭСР-компонентов, оборудования и упаковки должна соответствовать требованиям заказчика и оговорена в контрактах, заказах на покупку, чертежах и/или другой документации. Если заказчик не оговаривает требования к маркировке, организация при разработке плана программы ЭСР-управления должна сама принять решение о необходимости применения маркировки. Если определено, что маркировка требуется, это должно документироваться как часть плана.

П р и м е ч а н и е 2 — Для приемки материалов упаковки испытание должно проводиться при следующих параметрах окружающей среды — 12 % и относительной влажности 23 °C.

Приложение А (обязательное)

Методы испытаний

А.1 Метод испытания браслета¹⁾

Наденьте антистатический браслет на руку и подключите свободный конец провода к измерительному прибору. Пластину, соприкасающуюся с рукой, следует прижать, чтобы убедиться, что значение сопротивления браслета находится в допустимых пределах. Для измерения может использоваться прибор или другое оборудование, позволяющее измерять сопротивление в диапазоне от $5.0 \cdot 10^4$ Ом до, как минимум, $1 \cdot 10^8$ Ом. Напряжение разомкнутой цепи тестера должно составлять от 9 до 40 В. Пример типичного устройства тестирования показан на рисунке A.1.

Измерительный прибор

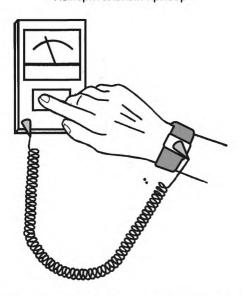
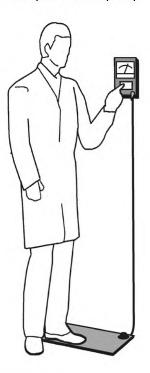


Рисунок А.1 — Испытание антистатического браслета


¹⁾ Испытания антистатического браслета проводятся в составе системы «человек — браслет» и в условиях, предусмотренных требованиями по безопасности.

ГОСТ Р 53734.5.1—2009

А.2 Методика испытания обуви (пример)

Встаньте одной ногой на проводящий электрод. Пластину, соприкасающуюся с рукой, следует прижать, чтобы убедиться, что сопротивление системы «сотрудник — обувь» находится в допустимых пределах (см. рисунок А.2). Измерительным прибором может быть тестер или другое оборудование, позволяющее измерять сопротивление в диапазоне от 5 · 10⁴ Ом до, как минимум, 1 · 10⁸ Ом. Напряжение разомкнутой цепи тестера обычно составляет от 9 до 40 В. Пример типичного устройства тестирования показан на рисунке А.2.

Измерительный прибор

Электрод для измерения обуви

Рисунок А.2 — Тестирование обуви (пример)

Библиография

[1] FOCT P 53734.5.2—2009 (MЭK 61340-5-2:2007)	Электростатика. Защита электронных устройств от электростатических явлений. Руководство пользователя
[2] MЭK 60749-26 (IEC 60749-26)	Приборы полупроводниковые. Методы механических и климатических испытаний. Часть 26. Испытание чувствительности к электростатическому разряду. Модель человеческого тела (Semiconductor devices — Mechanical and climatic test methods — Part 26: Electrostatic discharge (ESD) sensitivity testing — Human body model (HBM)
[3] MЭK/TC 60479-1 (IEC/TS 604 79- 1)	Воздействие тока на людей и домашних животных. Часть 1. Общие положения (Effects of current on human beings and livestock — Part 1: General aspects)
[4] MЭK/TC 60479-2 (IEC/TS 60479-2)	Воздействие тока на людей. Часть 2: Специальные аспекты (Effects of current on human beings and livestock — Part 2: Special aspects)
[5] MЭK 60364 (IEC 60364)	Электрические установки зданий (Electrical installations of buildings)
[6] MЭK 61340-4-6 (IEC 61340-4-6)	Электростатика. Часть 4-6: Методы испытаний для прикладных задач Антистатические браслеты. (Standard test methods for specific applications — Wrist straps)
[7] MЭK 61340-4-3 (IEC 61340-4-3)	Электростатика. Часть 4-3. Методы испытаний для прикладных задач. Обувь (Standard test methods for specific applications — Footwear)
[8] MЭK 61340-4-5 (IEC 61340-4-5)	Электростатика. Часть 4-5. Методы испытаний для прикладных задач. Методы оценки электростатических свойств обуви, напольного покрытия в комбинации с человеком. (Standard test methods for specific applications — Methods for characterizing the electrostatic protection of footwear and flooring in combination)
[9] MЭK 61340-2-3 (IEC 61340-2-3)	Электростатика. Часть 2-3. Методы определения электрического сопротивления твердых плоских материалов, используемых с целью предотвращения накопления электростатического заряда (Methods of test for determining the resistance and resistivity of solid planar materials used to avoid electrostatic charge accumulation)
[10] MЭК 61340-4-1 (IEC 61340-4-1)	Электростатика. Часть 4-1. Методы испытаний для прикладных задач. Электростатические характеристики напольных покрытий и системы полов (Standard test methods for specific applications — Section 1: Electrostatic behavior of floor coverings and installed floors)
[11] MЭK 61340-4-7 (IEC 61340-4-7)	Электростатика. Часть 4-7. Методы испытаний для прикладных задач. Ионизация (Standard test methods for specific application — Ionization)
[12] MЭK 61340-4-9 (IEC 61340-4-9)	Электростатика. Часть 4-9. Методы испытаний для прикладных задач. Одежда (Standard test methods for specific application — Garments)
[13] MЭK 61340-4-8 (IEC 61340-4-8)	Электростатика. Часть 4-8. Методы испытаний для прикладных задач. Экранирование разрядов. Пакеты (Standard test methods for specific applications — Discharge shielding — Bags)

ΓΟCT P 53734.5.1—2009

УДК 621.316.9:006.354

OKC 29.020

Ключевые слова: электростатика, разряд, компонент, ЭСР-управление

Редактор Т.М. Кононова Технический редактор Н.С. Гришанова Корректор Ю.М. Прокофьева Компьютерная верстка В.И. Грищенко

Сдано в набор 02.02.2011. Подписано в печать 15.02.2011. Формат $60x84^{1}I_{8}$. Бумага офсетная. Гарнитура Ариал. Печать офсетная. Усл. печ. л. 2,32. Уч.-изд. л. 1,45. Тираж 141 экз. Зак. 100.

ФГУП «СТАНДАРТИНФОРМ», 123995 Москва, Гранатный пер., 4.
www.gostinfo.ru info@gostinfo.ru
Набрано во ФГУП «СТАНДАРТИНФОРМ» на ПЭВМ.
Отпечатано в филиале ФГУП «СТАНДАРТИНФОРМ» — тип. «Московский печатник», 105062 Москва, Лялин пер., 6.