ГОСУДАРСТВЕННЫЙ КОМИТЕТ СОВЕТА МИНИСТРОВ СССР ПО ДЕЛАМ СТРОИТЕЛЬСТВА / ГОССТРОЙ СССР /

типовые конструкции, изделия и узлы зданий и сооружений

Серия 1.440 - 2

СВОРНЫЕ ЖЕЛЕЗОБЕТОННЫЕ КОНСТРУКЦИИ ПЕРЕКРЫТИЙ $2^{\mathbf{X}}$ ЭТАЖНЫХ ПРОИЗВОДСТВЕННЫХ ЗДАНИЙ ПОД НАГРУЗКУ ДО 5,0 тс/м 2

Выпуск 2

РЕВРИСТЫЕ ПЛИТЫ ПЕРЕКРЫТИЙ ШИРИНОЙ 1,0 м и 1,5 м и ВЫСОТОЙ 0,5 м СО СТЕРЖНЕВОЙ ПРЕДВАРИТЕЛЬНО НАПРЯЖЕННОЙ АРМАТУРОЙ ИЗ СТАЛИ КЛАССОВ АШВ, AV, AV, AT V

DABOUNE UEDIEMN

<u>15489</u> Ценя 1-65

ЦЕНТРАЛЬНЫЙ ИНСТИТУТ ТИПОВОГО ПРОЕКТИРОВАНИЯГОССТРОЯ СССР

Москва, А-445, Смольная ул., 22

Сдано в печать 1978 года

Заказ № //4/5 Тираж 4/40 экз

ГОСУДАРСТВЕННЫЙ КОМИТЕТ СОВЕТА МИНИСТРОВ СССР ПО ДЕЛАМ СТРОИТЕЛЬСТВА / ГОССТРОЙ СССР /

типовые конструкции, изделия и узлы зданий и сооружений

Серия 1.440 - 2

СБОРНЫЕ ЖЕЛЕЗОБЕТОННЫЕ КОНСТРУКЦИИ ПЕРЕКРЫТИЙ 2^{X} ЭТАЖНЫХ ПРОИЗВОДСТВЕННЫХ ЗДАНИЙ ПОД НАГРУЗКУ ДО 5,0 TC/M 2

Выпуск 2

РЕБРИСТЫЕ ПЛИТЫ ПЕРЕКРЫТИЙ ШИРИНОЙ 1,0 м и 1,5 м и высотой 0,5 м СО СТЕРЖНЕВОЙ ПРЕДВАРИТЕЛЬНО НАПРЯЖЕННОЙ АРМАТУРОЙ ИЗ СТАЛИ КЛАССОВ АIII в, AIV, AV, A_T V

DABOURE UEDTERN

РАЗРАБОТАНЫ ЦНИИПРОМЗДАНИЙ при участии ниижь и нииск Утверждены и введены в действие гостроем СССР с 01.12.78 г.

Постановление N 161 от 09.08.782.

	<u>содержани в</u>	, -				٠.	2
		Листа	Czp.			Inct	Crp.
	Содержение		3+14		Плиты перекрытий размером I,5x5,55(5,05)м, I,0x5,55(5,05)м, I,5x5,45(4,95)м высотой 500 мм. Армирование	15	33
			5+14 I5+18			16	34
	Номенклатура		4		Узлы I,2	.=	35
	Показатели на одну плиту	I	19		Узлы 345	17	
	Рядовые и межколонные плиты размером I,5x5,55 м высотой 500 мм. Опалубочный				Каркасы КРІ+КР6	18	36
į	vėprež	2	20		Kapkacu KP7+KPI4	19	37
	Рядовые и межколонные плиты размером 1,5x5,45 м высотой 500 мм. Опалубочный		·		Cetru CI+C7	20	38
	veprex	3	2I :		Cerku C8+C14	2I	39
	Рядовые и межколонные плиты размером I,5x5,05 и высотой 500 мм. Опелубочный			•	Зэкледные детали МНІт(МНІн),МН2т(МН2н)	22	40
	чертеж	4	22		Закладные детали МНЗт(МНЗн). Составная позиция СПГ	23	4I
	Рядовые и межколонные плиты размером 1,5х4,95 м высотой 500 мм. Опалубочный чертеж.	5	23		Поз.81+88, 91, 92, 94, 95. Спецификация стали на одно арматурное изделие и на одну заготовку закладной детали	24	42
	Плиты перекрытий размером I,5x5,55 м (I,5x5,45 м) высотой 500 м. Опалубочный чертех	6	24		Спецификация позиций арматурных изделий на эльбом. Спецификация позиций закладных деталей на эльбом	25	43
	Плиты перекрытий размером I,5x5,05 м (I,5x4,95 м) высотой 500 мм. Опалубочный чертеж	7	25		Спецификация марок арматурных изделии на плиту	26+28	44+46
	Плиты перекрытий размером I ,0x5,55 м высотой 500 мм. Опалубочный чертеж	8	26	•	Выборка стали на одну плиту	29+32	47+50
	Плиты перекрытий размером I ,0x5,45 м высотой 500 мм. Опалубочный чертеж	9	27		Пример образования отверстий в плитах перекрытий шириной I,5 м	. 33	51
	Плиты перекрытий размером I,0x5,05 м высотой 500 мм. Опалубочный чертеж	.10	28		Детали плана I и 2. Сетки для отверстий размером 1000x1000 мм и 500x500 мм	34	52
	Плиты перекрытий размером I,0x4,95 м высотой 500 мм. Опалубочный чертеж	II	29		Пример образования отверстий в плитах перекрытий шириной I м	35	53
	Опадубочный чертеж. Узлы 145	12	30			·.	
	Опалубочный чертеж. Узлы 6,7. Стержневая арматура классов АШа, АІУ, АУ, АТУ.						
	Летали приварки шамо к напрягаемом арматуре.	13	. 3I				
	Плиты перекрытий размером I,5x5,55 (5,05 м), I,0x5,55 (5,05 м), I,5x5,45(4,95)м Армирование.	14	32				
				T 197	Содержание		EPUR 1.440-2 binyek 2

ปูเ เกิน เษยห**อง ปรากกห**า

І. ОБЩАЯ ЧАСТЬ

Рабочие чертеми железобетонных ребристых плит для производственных перекрытий двухэтажных зданий с укрупненной сеткой колони верхнего этажа под нагрузку до 5 % разработаны в соответствии с планом типового проектирования на 1975 г.

Альбои содержит рабочие чертежи плит высотой 500 мм для перекрытий бескрановых зданий с железобетонным каркасом, бескра новых зданий со смещанным каркасом (двухэтажные колонны — металлические, все остальные конструкции — кроме стропильных — железобетонные) и зданий со смещанным каркасом, оборудованных мостовыми кранами.

В основу разработки плит настоящей номенклатуры положен принцип изготовления плит одной ширины, высоты и одной номинальной длины (6,0 м или 5,50 м) в единой опалубочной форме.

Плиты перекрытий двухэтажных зданий с железобетонным каркасом имеют ширину 1485 мм и длину - 5550 мм (основные) и 5050 мм (торцевые).

Для зданий со смешанным каркасом разработаны чертежи плит шириной 1485 мм и 985 мм, длиной 5550, 5450, 5050 м 4950 мм, изготовляемых в опалубках основных и торцевых плит перекрытий зданий с железобетонным каркасом с применением различных вкладышей.

Опирание плит предусмотрено на полки ригелей.

В работе дан пример решения в полке плит квадратных отверстий для пропуска вертикальных коммуникаций (см.листы 33-35).

Марки плит и нагрузки, на которые эти плиты рассчи(стр. 10-14)
таны, приведены в таблице I.У Данные по несущей способности
плит с отверстиями, в зависимости от размера и местоположения отверстий, приведены в разделе II настоящей пояснительной записки.

Марка плити представляет из себя дробь, первая часть числителя которой состоит из буквенного индекса и порядкового номера типоразмера плити. Вторая часть числителя обозначает несущую способность плити. Индекс третьей части числителя обозначает разновидность плити, вызванную наличием дополнительных закладных деталей, отверстий и т.д. В знаменателе марки указывается класс стали напрягаемой вриатуры.

Полная марка плиты выглядит следующим образом:

 $\frac{\Pi I - 8}{A - I J}$ - плита длиной 5550 нг, высотой 500 мм, запроектированная под унифицированную нормативную нагрузку - 4000 кг/м2, армированная стержнями из стали класса A - I J.

Ребра плит рассчитаны как шарнирно опертые однопролетные балки таврового сечения. Расчет произведен в соответствии с требованиями главы СНиП П-В.І-62* с учетом "Указаний по применений в железобетонных конструкциях стержневой арматуры" (СН 590-69) и "Указаний по проектированию антикоррозионной защиты строительных конструкций" (СН 262-67). Плити рассчитани как конструкции 3 категории трещиностойкости. Ширина раскрытия нормальных трещин в плитах, предназначеных для эксплуатации в среднеагрессивной среде и армированных стержнями из стали класса АГУ, и в плитах', эксплуатируемых в условиях слабой агрессии и армированных стержнями из стали класса АУ - 0', I мм; ширина раскрытия нормальных трещин в плитах, эксплуатируемых в обычной (неагрессивной) газовой среде, армированных стержнями из стали класса АТ-У - 0,2 мм.

Предел огнестойкости плит в соответствии со СНиП П-A.5-70 - составляет не менее 0.75 часа.

Плиты изготовляются из бетона марок 200, 400.

В качестве предварительно напрягаемой арматуры продольных ребер плит принята:

- I. Сталь стержневая периодического профиля к ласса А-Шв, упрочненная вытяжкой с контролем удлинения, по ГОСТ 5781-75. Предельное удлинение для этого класса стали не должно превышать 4,5% для стали марки 35ГС и 3,5% для стали марки 25Г2С.
- 2. Сталь стержневая горячекатаная периодического профиля класса. A-IV по ГОСТ 5781-75.
- S. Сталь стержневая горячекатаная периодического профиля класса А-У по ГОСТ 5781-75.
- 4. Сталь стержневая термически упрочненная периодического профиля класса Ат-У по ГОСТ 10884-71. Ребра и полка плит армируются сварными каркасами и сетками, изго-

товляемыми: при диаметре стержней до 5 мм включительно - из холоднотянутой обыкновенной арматурной проволоки класса В-I по ГОСТ 6727-55*, при диаметре 6 мм и более - из горячекатаной арматурной стали периодического профиля класса А-Ш по ГОСТ 5781-75.

В закладных деталях применяется сортовой прокат из стали класса ВСтЗ по ГОСТ 380-71*.

Марки стали арматуры и закледных деталей должны устанавливаться в проекте конкретного объекта в зависимости от температурных условий эксплуатации конструкций и характера нагрузок, в соответствии с требованиями действующих нормативных документов.

При применении плит в условиях воздействия слабо- и среднеагрессивной газових сред в проекте конкретного объекта должны быть указаны специальные условия по изготовлению плит, вытекавщие из характера агрессивной среды и требовании СН 262-67.

Плиты проверены на нагрузку от одного электропогрузчика 3П-0,5, грузоподъемностью 500 кг, при отсутствии по в и одного автопогрузчика типа 4004А,грузоподъемностью 750 кг, при толщине пола 50-100 мм. Наибольшая нормативная нагрузка от давления одного колеса принята Р = 1190 кг. Расстояние между колесами принято равным 760 мм. При этом нагрузка от напольного транспорта и равномерно распределенная длительная нагрузки приняты действурщими разновременно.

TK 1976

Пояснительная записка

CEPUA 1.440-2 BOINSCK 2 На перекрытиях допускается применение погрузчиков большей грузоподъемности. При выборе его марки в проекте конкретного объекта должна быть произведена проверка несущей способности плит.

П. Технические требования к изготовлению, приемке и испытанию плит

При изготовлении плит необходимо выполнять требования действующих нормативных и инструктивных документов.

Осуществление предварительного напряжения арматуры предусмотрено электротермическим способом; допускается также и механический способ натяжения. Величины предварительного напряжения и усилий натяжения одного стержня рабочей арматуры в каждом продольном ребре приведены в таблице 2 (стр 11÷12).

При: натяжении термически упрочненной арматуры электротермическим способом должны производиться контрольные испытания образцов стержней после электронагрева, в соответствии. с "Указаниями по применение в железобетонных конструкциях стержневой арматуры" (СН 390-69).

В случае необходимости приварки коротншей в качестве временных внкеров к концам стержней термически упрочненной вриатуры следует предусматривать мероприятия, предотвращающие перегрев основного металла стержней.

к моменту передачи усилия предварительного напряжения на плиту кубиковая прочность сетона должна быть не ниже 75% проектной прочности (для плит из бетона N-400).

Отпуск арматуры необходимо производить плавно (миновенная передача усилий не допускается), после чего ее следует приварить электродами 350A-Ф к опорным закладным деталям через шайбы, одетые на концы стержней.

Плоские каркасн и сетки должны изготовляться при помощи контактной точечной электросварки. Замена контактной точечной электросварки на электросруговую не допускается.

Дуговая сварка арматурных стержней из стали класса A-II со стальными закладными деталями из листовой стали, а также сварка закладных деталей должна выполняться электродами, выбор типа которых должен производиться на основании указании СН 593-69.

Сталь для изготовления плит должна приниматься тех марок, которые заданы в проекте конкретного объекта.

При изготовлении плит для зданий со слабо- и среднеагрессивной средами обязательно выполнение специальных требований, указанных в проекте конкретного здания.

Отклонение размеров плит от проектных, отклонения от проектного положения закладных деталей и отклонения от размера толщины защитного слоя бетона до арматуры не должны превышать величин, указанных на рабочих чертежах и в ГОСТе 13015-75. При этом толщина защитного слоя до поперечной арматуры должна быть не менее 15 мм с учетом нормированных допусков (при учете осадки стержней при контактной сварке).

Внешний вид и качество поверхности плит должни удовлетворять требованиям ГОСТ 13015-75 для конструкций производственных зданий, предназначенных под окраску.

Для обеспечения требуемой величины защитного слоя при изготовлении плит должны применяться подкладки из пластмасс или цементно-песчаного раствора; применение металлических фиксаторов, выходящих на поверхность бетона, не допускается.

Для предохранения лицевых поверхностей закладных деталей от ржавления при транспортировании и хранении все эти поверхности должны быть покрыты цементно-казеиновой обмазкой слоем 0,5 мм, кроме тех деталей, которые в соответствии с требованиями СН 262-67 и СНиЦ П-28-73 должны быть защищены цинковым или другим (равнозначным) покрытием.

До начала производства плит завод-изготовитель должен разработать технические условия и технологические правила, определяющие основные способы производства в контроля качества изготовления изделий.

При изготовлении плит должен быть обеспечен пооперационный технологический контроль на всех стадиях производства, а также систематический контроль прочности бетона и арматуры и регистрация всех отклонений от проекта, согласованных с проектной организацией.

Для оценки качества изготовляемых плит необходимо систематически проводить их испытания в соответствии с ГОСТ 8829-66 "Изделия железобетонные сборные. Методы испытаний и оценки прочности, жесткости и трещиностойкости".

Оценку квчества изготовления плит 3-ей категории трешиностойкости следует производить по показателям прочности, жесткости и трешиностойкости. Оценка плит по прочности производится по величине разрушающей нагрузки; жесткости - по величине контрольного прогиба продольных ребер, а трещиностойкости - по величине раскрытия трещин.

Величина контрольных нагрузок при испитании плит на прочность ($P_{K} \bowtie P_{K}$), жесткость (P_{np}) и трещиностой-кость, а также величины контрольных прогибов (f_{K}), приведены в табл.3(стр.13).

Ширина раскрытия трещин при испытаниях плит не должна превышать более чем на 50% величин приведенных в табл.4.

Таблица 4

Ko	напольная мм в	нигикэв имди имди	а раскри енении	аскрытия трещин нии плит:							
				Сивно	реднеагрес ной газо- среде						
Нори.	Накл.	Норм.	Накл.	Нори.	Накл.						
0,2	0,2	0,1	0,1	0,05	0,1						
0,2	0,2	0,1	0,1	0,05	0,1						
0,1	0,2	0,05	0,1	, - .							
0,1	0,2	. —	-	-	•						
	в неаг газово Норм. 0,2 0,2	В мм В неагрессивной газовой среде Норм. Накл. 0,2 0,2 0,2 0,2 0,1 0,2	В мм при приз в неагрессивной в слас газовой среде газово Норм. Накл. Норм. 0,2 0,2 0,1 0,2 0,2 0,1 0,1 0,2 0,05	В мм при применении в слабовгресствовой среде газовой среде настранции в слабовгресствовой среде настранции в слабовгресствовой среде настранции в слабовгресствовой среде настранции в слабовгресство в слабовгр	газовой среде газовой среде сивновой с Норм. Накл. Норм. Накл. Норм. 0,2 0,2 0,1 0,1 0,05 0,2 0,2 0,1 0,1 0,05 0,1 0,2 0,05 0,1 -						

TK |

Пояснительная записка

CEPUA 1.440-2 Bbinyck 2 Порядок использования плит, не выдержавших испытания регламентируется ГОСТ 8829-66.

Величина отпускной прочности бетона устанавливается в соответствии с пунктом 1.4 ГОСТа 13015-75.

На обковой грани плиты (на расстоянии не более I м от торца) должны быть обозначены несмиваемой краской марка плиты, штамп ОТК, дата изготовления, вес плиты в кг., марка предприятия-изготовителя.

В. Указания по применению плит

Назначение марок плит производится в проекте конкретного объекта в зависимости от условии эксплуатации.

В спецификациях к рабочим чертежам илит указан только класс стади, без указания марки стади.

В проектах конкретных зданий должны быть указаны марки сталы арматуры и закладных деталей плит. Назначение марок сталы должно производиться в зависимости от температурных воздействий, условий эксплуатации и характера нагрузок (статические, динамические) в соответствии с требованиями действующих нормативных документов.

Цлити настоящего альбома допускается применять в условиях систематического воздействия высоких положительных температур (до $+50^{\circ}$ C) и нормального влажностного режима.

Устройство в средней панели полки плит шириной 1,5 м отверстия размером 1,0х1,0 м запрещается. При устройстве в крайней панели полки квадратного отверстия размером 1,0х1,0 м или в средней панели — отверстия размером 0,5мх0,5 м, несущая способность продольных ребер, укаванная в таблице I (графы 4 и 5) для плит под нагружки ряда 4000 кг/м2 и 5000 кг/м2 снижается на 200 кг/м2. При устройстве в крайней панели отверстия размером 0,5х0,5 м несущая способность продольных ребер не снижается. В плите шириной I,0 м допускается устройство отверстия в крайней панели полки размером 0,5х0,5 м.

При действий многократно повторяющихся и динамических нагрузок назначение марок плит должно производиться на основе соответствующего расчета с соблюдением требований СНиП Π -B.I-62 $^{\times}$ и "Инструкции по проектировании и расчету несущих конструкций зданий под машины с динамическими нагрузками".

В случае применения плит для нагрузок, отличающихся от равномерно распределенных, принятых при расчете плит настоящего альбома, назначение их марок следует производить на основе специального расчета, используя при этом типовые плиты необходимой несущей способности (см. таблицу I).

Приведенная в настоящем альбоме номенклатура плит позволяет использовать их как в условиях неагрессивной, так и слабо- и среднеагрессивной газовых средах. Плиты, армированные стержнями из стали классов АШв и А-ІУ, могут приме-

TK 1976

Пояснительная записка

CEPUA 1.440-2 Bbinyck 2 При применении плит в зданиях, эксплуатируемых в условиях слабо- и среднеагрессивной газовой среды, в соответствии с конкретными условиями эксплуатации и требованиями СН 262-67 должны быть дополнительно указаны:

- а) требования по плотности бетона с указаниями марки по водонепроницаемости и водоцементного отношения;
- б) марка и расход цемента, состав заполнителей и применяемых добавок:
- в) види защити и способи их нанесения на поверхность плити и стальних закладних деталей;
 - г) требования к качеству бетонной поверхности.

Показатели плотности бетона, характеризуемые маркой по водонепроницаемости, приведены в таблице 5 СНиП П-28-73.

Плиты предназначенные для применения в условиях воздействия агрессивной среды, низких или высоких температур, подвергарщихся воздействир подвижных или виброможем ционных нагрузок и изготавливаемые с учетом соответствурщих требований, в проектах конкретных объектов должны иметь маркировку; отличнур от маркировки плит, предназначенных для обычных условий.

"Н" - при изготовлении конструкции с нормальной плотностью бетона;

- *П" при изготовлении конструкции с повышенной плотностью бетона;
- "О" при изготовлении конструкций с особо плотным бетоном.

Например. Если применяется плита марки $\frac{\Pi 8-9}{\text{AIY}}$, то при требуемом особо плотном бетоне марка будет выглядеть следурщим образом $\frac{\Pi \ 3-9}{\text{AIY}}$ — 0.

Іў. Указания по приемке, храненив, транспортированив и монтажу плит

Приемка плит должна производиться в соответствии с требованиями ГОСТ 13015-75, ГОСТ 8829-66 и рабочими чертежами плит. При приемке следует обращать особое внимание на правильность маркировки плит, особенно для случая, когда проектной организацией оговорены дополнительные условия их эксплуатации.

Транспортирование и хранение плит производится в горизонтальном (рабочем) положении.

Подъем плит следует производить таким образом, чтобы нагрузка от ее веса распределялась равномерно между четырымя петлями.

Плиты должны храниться в штабелях, с установкой деревянных прокладок, рассортированные по типоразмерам, маркам и партиям. Прокладки устанавливаются под торцами продольных ребер, в местах расположения опорных закладных деталей, строго по вертикали.

Высота штабеля плит в соответствии со СНиП Ш-А.II-70* "Техника безопасности в строительстве" не должна превышать 2,5 M.

При транспортировании плит допускается смещать прокладки от торпа плити не более чем на 0,5 м, не нарушая вертикальности их расположения.

При перевозке плит автомобильным транспортом следует руководствоваться "Временными указаниями по перевозке унифицированных сборных железобетонных деталей и конструкций промишленного строительства автомобильным транспортом" (НИИОМТП, Строииздат, 1966 г.).

Перевозка плит железнодорожным транспортом должна осуществляться в соответствии с "Руководством по перевозке железнодорожным транспортом сборных крупноразмерных железобетонных конструкций промышленного и жилищного строительства" (НИИОМТП, Стройиздат, 1967 г.).

Монтаж плит должен производиться в соответствии с требованиями главы СНиП 11-16-73 и "Инструкцией по монтажу сборных железобетонных конструкций проиншленных зданий и сооружений" (СН 319-65).

Пояснительная записка

CEPUA 1.440-2 BUINSCK 2

_				_
Тο	Λ,	IND	•	- 7

1														
	Размер плити,	Марка плиты	Назначе- ние пли-	Равном наг	ерно рас рузка (пределенн кг/м²)	RAI	I	2	3	4.	5	6	7
	H		TH	на прод реб Расчет- ная	ольное О	ва пол	iky		13-8 ; 16-8 ; 13-8 ; 16-8 AIF		-			
ŀ	I	2	8	4	5	6	7		$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		5530	4640	5255	4390
		III-8 II5-8 III-8 II5-8 AIB AIF AI		5530	4640	5255	4590	50,5 x 2,05		перекрития	6730	5640	6455	5390
18 1376'L	. I.5 x	ATY II - 9	межколоняме пляты перекрытив	6730	5640	e 6 455	5390	ı,		и межколонные плиты перек	5530	4640	5255	4890
ockba dama sbinycka	I,5 x 5,45		Рядовые в межко	5580 6780	4640 5640	5255 6455	4390 5890	I,5 x 4,95	Ay Ay Ay Ay Aly Aly Ay Ay Ay Ay Aly Aly	Рядовие	6730	5640	6455	5390
110		112-9-I AY : 112-9-I ATY						TK		9 3014	ска		, ,	UR 1.440-2

	_	<u> </u>	
50108			19761
Jan -	1		SOINYCHA:
TA. UHK. NP.TO			40ma 8611
			Mockba

1	2	3	4	5	. 6	7
55); 55);	<u>п7-9</u> , <u>п8-9</u> , <u>п9-9</u> , <u>п10</u>	-9 B 9,HH	6795	<i>5</i> 700	6455	5390
0x5,55(I,0x5,45) 0x5,05(I,0x4,95)	117-9 ; 118-9 119-9 1110 AIY	I: XE	6795	<i>5</i> 700	6455	5890
5,55(]	117-9; 118-9; 119-9; 1110-AY	-9 ke	6795	5700	6455	5390
i, o,	17-9 ; 18-9 ; 19-9 ; 1100 ATY	. Вядов плити	6795	5700	6455	5390

Примечания:

Нагрузки, указанные в графах 4 и 5, включают нагрузку от собственного веса плиты, равную 390 кг/м2 (нормативная) и 480 кг/м2 (расчетная) — для плит шириной I,5 м и 450 кг/м2 (нормативная) и 495 кг/м2 (расчетная) — для плит шириной I,0 м. Нагрузки, указанные в графах 6 и 7, включают нагрузку от собственного веса полки, равную I40 кг/м2 (нормативная) и I55 кг/м2 (расчетная).

Нагрузки, указанные в графах 4,5,6,7 включают также постоянную нагрузку от веса пола и перегородок, равную 250 кг/м2 (нормативная)и 275 кг/м2 (расчетная).

	<u> </u>		ТАБЛИЦА 2					
Размер плиты в м	Иарка плити	Расчетный диаметр (мм) н ком-во стержней в одном ребре	Предвари- тельное напряже- ние " С.", кг/см2	Усилия на- тяжения " No " на один стержень кг				
I	2	3	4	5				
	III-8 III-8-I II2-8 ANB II2-8-I II5-8 ANB AN	2,625	4500	22100				
5,45 M	III-9 III-9-I II2-9 ANB II2-9-I II5-9 ANB ANB ANB ANB AND	2,628	4500	27700				
I,5 x 5,45	<u>III-8</u> ; <u>III-8-1</u> ; <u>II2-8</u> <u>AIY</u> ; <u>AIY</u> <u>II2-8-1</u> ; <u>II5-8</u> <u>AIY</u>	5½ 22	5100	I9400				
, 55 ×	HI-9; HI-9-I; H2-9 AIY; AIY M2-9-I; H5-9 AIY; AIY	2,625	5100	24900				
I.5 x 5,55	MI-8; MI-8-1; MI-8; MI-8-1							
i i		2,620	6500	20 400				
	HI-9; HI-9-I; HI-9; AY; AY							
		5\\$2	6500	24700				
TK 1976	Пояснительна	A 3anucka		CEPUR 1.440-2 BbINYCK 2				

				•						
	I	2	3	4	5	I	. 2	3	4	5
			2,622	4500	17100	,55(1,0x4,95)	17-9 18-9 All All All B	2622	4500	17100
		ABB			-	55	17-9 i 18-9	2 # 20	5100	16000
		ПЗ-9; ПЗ-9-1; П4-9; П4-9-1 АПВ; АПВ; АПВ П6-9	2,625	4500	22100	I,0x5,	117-9 ; 118-9 ; 117-9 ; 118-9 ATY	2 % I8	6500	16500
	95 M	AMB 113-8 113-8-1 114-8 114-8-1				55;	119-9 • 1110-9 All B • All B	2/20	4500	14100
П	I,5 x 4,9		2,620	5100	16000	(I,0x4,9	19-9 ; 110-9 Aly Aly	2 ∮ 18	5100	12950
19761	,05 M,	H3-9 H3-9-1 H4-9 H14-9 A17 A17 A17	2,622	5100	19400	I,0x5,@5(I,0x4,95);	19-9 AF 110-9 ATF ATF	2 6 16	6500	13100
\$6103CKQ:	×		2 6 I8	6500	16500	Прі	имечания: I. Величины предвар усилия натяжения термического, та натяжения армату	и Роп _{Ді} Кидля мехі	ны как для	электро-
		116-8 : 116-8 AF AFF					 Величины предвар усилия натяжения 			
11 dama		<u>ПЗ-9;</u> <u>ПЗ-9-1;</u> <u>ПЗ-9;</u> <u>ПЗ-9-1</u> АУ ; АТУ ;			•	1	потерь от дефорі фермы.			-
3 10 10 10 10 10 10 10 10 10 10 10 10 10		$\frac{\Pi 4 - 9}{A y}$; $\frac{\Pi 4 - 9 - 1}{A y}$; $\frac{\Pi 4 - 9 - 1}{A y}$	2,620	6500	20400				,	
וו טו יט סכאפע		<u>п6-9</u> ; <u>п6-9</u>	:						•	
)							Пояснитель	бная запис	κα	Серия 19 Вып чс

Cepur 1440-2 Bbin yck 2

Тволица 3

	размер плиты в плане (м)	Марка плиты	контроль стойкост:	ные равног ные прогис и плит при + 7	йн " 🕂 к " 1. возраст	ВСМДЛ	я оценк	и жестко	сти и тре тания в с	-OHNE	мерно р оценки	ьные равно- аспределен- рузки для прочности т,кг/м2
i			Pnp	f k	Pnp	j ĸ	Pre	∮ _k	Pne	łĸ	PK 11 pu C=14	PK 17 PM C = 1.6
	I	2	3	4	5	6	7	- 8	9	10	II	12
		$\frac{\Pi I - 8}{A \Pi B}$; $\frac{\Pi I - 8 - I}{A \Pi B}$; $\frac{\Pi 2 - 8}{A \Pi B}$; $\frac{\Pi 2 - 8 - I}{A \Pi B}$; $\frac{\Pi 5 - 8}{A \Pi B}$	5180	1,18	5180	1,20	5200	I , I5	5100	I,04	7300	8400
Ì		$\frac{\Pi I - 9}{A \Pi B}$; $\frac{\Pi I - 9 - I}{A \Pi B}$; $\frac{\Pi 2 - 9}{A \Pi B}$; $\frac{\Pi 2 - 9 - I}{A \Pi B}$; $\frac{\Pi 5 - 9}{A \Pi B}$	6500	I,47	6500	1,53	6500	1,50	6280	I,35	8980	10305
\top	¥ 54°	$\frac{\Pi I - 8}{AIY}$; $\frac{\Pi I - 8 - I}{AIY}$; $\frac{\Pi 2 - 8}{AIY}$; $\frac{\Pi 2 - 8 - I}{AIY}$; $\frac{\Pi 5 - 8}{AIY}$	5300	1,21	5300	1,43	5140	1,59	42 50	1,15	7300	8400
19161	I,5x5,45	$\frac{\Pi I - 9}{AIY}$; $\frac{\Pi I - 9 - I}{AIY}$; $\frac{\Pi 2 - 9}{AIY}$; $\frac{\Pi 2 - 9 - I}{AIY}$; $\frac{\Pi 5 - 9}{AIY}$	6570	I,58	6570	1,81	6570	1,90	52 50	I,58	8980	I0305
1:2	І, 5х5,55 м;	$\frac{\Pi I - 8}{AY}; \frac{\Pi I - 8 - I}{AY}; \frac{\Pi 2 - 8}{AY}; \frac{\Pi 2 - 8 - I}{AY}; \frac{\Pi 5 - 8}{AY}$ $\frac{\Pi I - 8}{ATY}; \frac{\Pi I - 8 - I}{ATY}; \frac{\Pi 2 - 8}{ATY}; \frac{\Pi 2 - 8 - I}{ATY}; \frac{\Pi 5 - 8}{ATY}$	5100	I,45	4850	1,59	4630	I,33	4250	I,23	7500	8400
Lama Ebinyexa	I,	III-9 III-9-I II2-9 II2-9-I II5-9 AY AY AY AY III-9 ATY III-9 ATY III-9-I ATY ATY ATY ATY	6570	1,97	6510	2,04	6090	1,90	5250	I,64	8980	10305
		$\frac{\Pi \Im - 8}{A \square B}$; $\frac{\Pi \Im - 8 - I}{A \square B}$; $\frac{\Pi 4 - 8}{A \square B}$; $\frac{\Pi 4 - 8 - I}{A \square B}$; $\frac{\Pi 6 - 8}{A \square B}$	5330	1,09	5310	1,01	5320	0,97	5 27 0	0,95	7300	8400
Se L	5x5,05w;	<u>ПЗ-9</u> ; <u>ПЗ-9-1</u> ; <u>П4-9</u> ; <u>П4-9-1</u> ; <u>П6-9</u> дШв	6520	0,98	6500	0,98	658 0	0,93	6310	0,87	8980	10305
Mock	HH XŽŽ	$\frac{\Pi \Im - 8}{\text{AIY}}$; $\frac{\Pi \Im - 8 - I}{\text{AIY}}$; $\frac{\Pi 4 - 8}{\text{AIY}}$; $\frac{\Pi 4 - 8 - I}{\text{AIY}}$; $\frac{\Pi 6 - 8}{\text{AIY}}$	5280	0,83	5015	0,79	4720	0,75	4250	0,67	7300	8400
Mockea					TK		Пояс	нителы	чая за	ημεκα		B6104CK 2

	1
1	Ł
,	7

	I			2	1	3	4	5	6	7	8	9	10	II	I 5
		13-9; <u>13-9-1;</u>	<u>п4-9</u> ;	<u>114-9-1</u> Aly	; <u>П6-9</u>	6550	1,07	6550	1,19	6350	1,16	5250	0,96	8980	10305
	95 и	$\frac{13-8}{AY}; \frac{13-8-1}{AY};$	$\frac{\Pi 4-8}{AY}$;	$\frac{14-8-1}{AF};$	<u>П6-8</u>	4930	0,77	4760	0,74	4590	0,71	4250	1,0	7300	8400
	I, 5x4,95	<u>ПЗ-8;</u> <u>ПЗ-8-1;</u>	<u>п4-8</u> АтУ	; <u> 14-8-1</u> ATY	, <u>П6-8</u> АтУ										
	I,5x5,05 M;					6570	1,07	6570	1,19	6350	I,I6	5250	0,96	8980	10305
14	25	117-9 : 118-9 All B All B				6000	1,53	5960	I,49	5840	I,45	5270	1,37	8980	1034 0
19761	I,0x5,55 (I,0x5,45)	$\frac{\Pi 7-9}{\text{Aly}}$; $\frac{\Pi 8-9}{\text{Aly}}$				6080	I,64	5820	I,58	5610	I ,53	5250	I,43	900	10340
11	(I,	$\frac{\Pi 7-9}{AY}$; $\frac{\Pi 8-9}{AY}$;	<u>117−9</u> Ay	<u> 118−9</u>		5880	I,57	57 2 0	I,53	5570	I,48	5250	I,4I	900	10340
8610 ycxa :		<u>П9-9</u> , <u>ПІО-9</u> АШВ			•	6070	0,94	6010	0,90	6080	0,87	5420	0,80	900	10340
	I,0x5.05 (I,0x4,95)	$\frac{\Pi 9-9}{\text{AIY}} \div \frac{\Pi 10-9}{\text{AIY}}$				5930	0,85	5780	0,82	5550	0,79	5250	0,75	900	10340
Aama	I O	<u>∏9-9</u> ; <u>∏10-9</u> Ay	<u>П9-9</u> АтУ	; <u>III0-9</u>		5800	0,7	5670	0,67	5510	0,61	5250	0,59	900	10340

1. Величины контрольных нагрузок не включают в себя нагрузки от собственного веса плит, равные:

для плит шириной 1,5 м -360 кг/м2; для плит шириной 1,0 м -430 кг/м2.

2. Допускаемие отклонения действительного прогиба от контрольного не должны превыпать 20%.

TK 1976

Пояснительная записка

Серия 1,440-2 Выписк 2

3	Номенклотура	γ	1							15
		Mapka	Teomi po	empuyi 3MEpb	POKUE	Μαρκα	Pocx. Momep	บฮาอช	Bec	Na
	Эскиз	ΠΛΟΓΠΟΙ	E MM	8 mm	h mm	бетона	Бетон M3	Emanb K2	Ke	nuema
50.00			5550	1485	500	400	117	2231 2664 2039 2444 1923 2252 1923 225,2 2241 2674 2049 2454 1933 226,2 2248 267,6	292	2
UNWINDOMSORINI Dicumento o Stand	B B	18:9 18:9	5450	1485 Ham	500 EHK/I	400 TOTHY P	1,16	2056 2460 1944 2272 1944 2272 2258 2666 2066 2470 1954 2280	2.91 Ceous Boil Vicin	3 71.440.2 71.440.2

دن)	Номенклап	πυρα				-			-	16
	Эскиз	Марка	reome,	тричес размер	:КИ е 61	Марка	матер	сход шалов	Вес	Nº
		MM UMBI	e	8 MM	h mm	Бетона	Бетон м ³	Сталь кг	кг	ЛИСТА
		73-8 A W B 73-9 A F B						179.3 214.4		
	<u>/</u>	A \$7 8 03 - 8 A \$7 03 - 9						168.5 196.8		
		13-8 13-8 13-9						15.9 3 186.0		
		73-8 A,\$ 73-9	5050	1485	500	400	1,09	159,3	2,72	4
	1 8	77 \$ 13-8-1 A# B 13-9-1						186.0		
	e	13-8-1 A'''	1					215.4 169,5		
								197.8 160.3		
								187.0		
976								187.0		-
-		1 7 8 - 1 7 8 - 1 7 8	1					216,1		
נס:	<u> </u>	74-9 74-8	1					198.9		
10 SC		A F						161.8	2-1	
88	6	AT T - 14-9 - AT Y	4950	1485	500	400	1,08	161.8	2,71	5
ame		74-8-1 A = B -14-3-1 A = 3						182.4		
1	ε		}					172.0		
a		<u> </u>	1					162.8		
tyn		14-8-1 Arr 14-9-1 Arr						162.8		
7		Arī		l		<u>'</u>		189.5	Cepus	9 1.440-2
) }				HOM	e HKJ	amypi	7		Boing	CK 2
		1976						1548.		7

	Но	менклатур	σ α , , ,					•				17
	Эскиз		Марка		етри разм		le.	Марка Ветона	Pa. Mami	сход ериалов	Bec	Nº
ļ			NAUM61	e, mm	Ez MM	B MM	/z MM		Беллон м ³	Сталь Кг	KZ	листа
			15-8 A vii 8							226,3		
										269,3		
. 1										207,1		
,				ssso	5 450				1,16	247,5	2,91	6
			75-8 A F							195,7		
	<i>€</i> ,	1-1	<u>ns-9</u> AŸ							228.3		
			15-8		,					195,7		
ء ا ا ا	20 NETT THE THE TENT OF THE TE		Ar <u>Y</u> 15-9 Ar <u>Y</u>			•				228,3		
50.72° 1976a	<u> </u>	8	N6-8	-		1485	500	400	·	182,7		
7777	ez t		A TE 8 116-9						`			
ta:) 		A TE 8 116-8							217.6		
35.67			A (\overline{V}) 16-9	5050	4950				100	172.1	2,72	7
1.00			16-8	3030	7330				1,09	200,2	-,/-	'
game			AĪ						_	162,9		
كاللكا			16-9 AI		,					189,6		
			<u>/16-8</u> A ₇ ₹							152,9		
10.13			<u>16-9</u> Ar∑							189,6		
UHHHIIPDIIZAAIIIII Mockea			TKI		<i>U</i> =						Cepun	91.440·2 EK 2
=			1976		HOM	CHK	וון שוני	Jul		15489	Лист	

	Номенклат	Υ ρα								13
Ī	Эскиз	Марка	reome A	триче Сазмер	61	Марка	Рас. матери	<i>Laлов</i>	Bec	N.º
		រារាជកាម	e mm	8 mm	MM	бетона	Semon M3	Cmass K2	Ke	Листа
		<u> 17-9</u> A <u>w</u> b						177,2		
ı		77-9 A 1\$\overline{Y}	5550			\	0,96	165,6	2,4	8
	e 17	<u> 17-9</u> A <u>v</u>	3330				0,96	155,2	6,4	
		<u>17-9</u> Ar <u>Y</u>						155.2		
	<u>2-2</u>	<u> 18-9</u> A <u>u</u> 8						179,2		
		18-9 A <u>IV</u>	5450				0,95	167,6	2,37	9
\dashv	P. 1-2	<u>178-9</u> A <u>v</u>						157,6		
19761		<u> 18-9</u> A T <u>V</u>		985	500	300		157.6		
	· 13 3-3	19-9 A <u>m</u> 8						153,3		
. Ku :		<u> 19-9</u> A 1 <u>Y</u>	5050				0,89	142,5	2,22	10
61090	$e^{\frac{\delta}{3}}$	<u>19-9</u> A <u>V</u>					0,03	/33,3		2 2
		<u>19-9</u> Ar <u>T</u>						133,3		
amo	⊢ ⁴ 4–4	7710-9 A <u> </u>				:		155.6		
14		<u>110-9</u> A∑] , , , ,					145,2		
		<u> 10-9</u> A <u>T</u>	4950				0,88	136,0	2.20	11
2000	 	<u> 190-9</u> A T <u>Y</u>				Ĭ.		136.0		·
Me		TK		Home	פאאחם	mypa			CepuA 8610.	1.440.2 4CK 2

DEBEM Packod

225,2

227,2 159,3 186,0 161.8 188.5 1933

160,3

162,8

189,5

228,3 162,9

189.6

157,6

133,3

бетона

M3

1,16

1,16

1,09

1,08

1,09

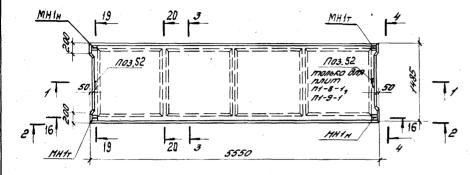
0,96

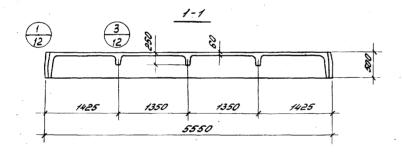
0,95

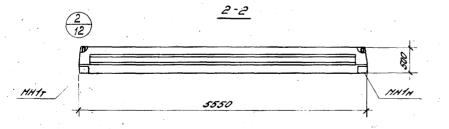
0,89

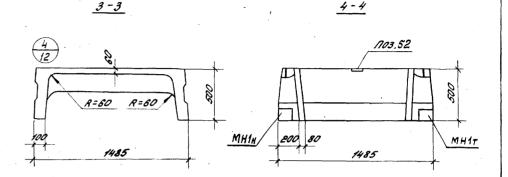
300

Марка


бетона


400


Марка ПЛЦТ61	Bec, T	Марка Ветона		Packod cmanu, KE	Марка ПЛИ ты	Bec,	Марка бетона	Semoun	Packod cmanu, KE.		Марка Плит61	Bec, T	Марка Бетона	0 6 ге м Бетона, м 3		Марка Плит6і	80
A1-8 A \(\vec{B} \) A \(\vec{B} \)	2,92		1,17	223.1 266.4	11-8 A 12 11-9 A 12	2,92		1,17	203.9 244.4		71-8 A 2 71-9 A 2	2,92		1,17	192,3 225,2	71-8 A T T 11-9 A T T	2
12-8 A m B 12-9 A m B	2,91		1,16	224.8 263,6	12-8 A 17 12-9 A 12	2,91		1,16	205.6 246,0		1-2-8 A I 12-9 A I	2,91		1,16	194,4 227,2	12-8 Ar V 12-9 Ar V	2
13-8 A m B 13-9 A m B	2,72		1,09	179,5 214.4	13-8 A 14 13-9 A 15	2,72		1,09	168,5 196,8		13-8 A V 13-9 A V	2,72		1,09	159,3 186,0	73-8 A7 ¥ 73-9 A7 ¥	2
74-8 9 w 8 74-9 A w 8	2,71		1,08	181.4	<u> 74-8</u> <u> A \overline{x}</u> <u> 74-9</u> <u> A \overline{y}</u>	2,71		1,08	171.0 198,9		74-8 A¥ 74-9 A¥	2,71		1,08	161,8 188,5	74-8 A7 Y 14-9 A7 Y	ž
11-8-1 A m 8 11-9-1 A m 8	2,92	400	1,17	224,1 267,4	<u> 171-8-1</u> <u> 171-9-1</u> <u> 170-9-1</u>	2,92	400	1,17	2049 245,4		11-8-1 AY 11-9-1 AY	2,92	400	1,17	193.3 226.2	11-8-1 A+ ¥ 11-9-1 A+ ¥	2
12-8-1 A # 8 12-9-1 A # 8	2,91	700	1,16	225, 8 268,6	<u> </u>	2,91		1,16	205,6 247,0		112-8-1 AV 112-9-1 AE	2,91.		1,16	195.4 228.0	12-8-1 A+ 0 12-9-1 A+ 0	2
<u> 113-8-1</u> <u>A ni 8</u> 113-9-1 A ni 8	2,72		1,09	180,3 215.4	<u> 13-8-1</u> <u> 13-9-1</u> 12 12	2,72		1,09	169.5 197,8		13-8-1 A v 13-9-1 A v	2,72		1,09	160.3 187.0	<u>M3-8-1</u> A+ ? <u>M3-9-1</u> A+ ?	2
14-8-1 A m B 14-9-1 A m R	2,71		1,08	182.4 217.1	<u> 14-8-1</u> <u> 14-9-1</u> 14-9-1	2,71		1,08	172,0 199,9		14-8-1 A \$ 14-9-1 A \$	2,71		1,08	162.8 1895	<u> </u>	۾ ج
15-8 A II 8 15-9 A II 8 16-8	2,91		116	226.3 269.3	15-8 A \$ 15-9 A \$	2,91		1,16	207,1 247,5		15-8 AV 15-9 AV	2,91		1,16	195.7	15-8 ATE -15-9 ATE	جے ا
16-8 A#8 16-9 A#8	2,72		1,09	182.7 217.6	<u> 16-8</u> <u> 16-9</u> <u> 16-9</u>	2,72		1,09	172,1 200,2		76-8 A V 76-9 A V	2,72		1,09	162,9 189,6	76-8 A7 \$\overline{J}\$ A7 \$\overline{J}\$	2,
17-9 A m 8 178-9	2,4		0,96	177,2	77-9 A 18-9 A 18	2,4 2,37		0,96	165,6 167,6	•	77-9 A <u>V</u> 78-3 A <u>V</u>	2,40	300	0,96	155.2 157.6	77.9 A7.7 18-9	2,
A W 8 10 - 9 A W 8 10 - 9 A W 8	2,37 2,22 2,20	300	0,95 0,8 9 0,88	179.2 153.3 155,6	A \(\vec{y} \) \[\lambda \(\sigma \) \]	2,22	300	0,89	142.5 145,2		<u> </u>	2,22		0,89	133.3 136,0	Ar <u>v</u> <u>Ar v</u> <u>Ar v</u> <u>Ar v</u> Ar v	2,

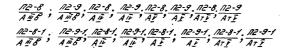

ЦНИИПРОМЗДАНИЙ С. Москва

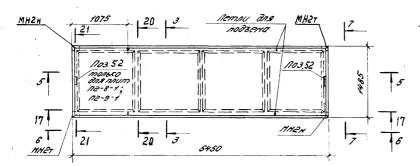
Cepua 1.440-2 861046K2 Показатели на одну плиту

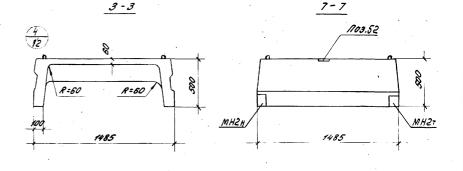
Спецификация нарок закладных деталей на одну плиту

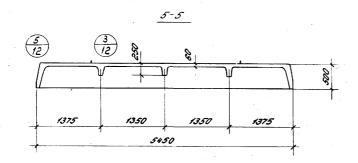
Mapka nnumsi	Mapra Demanu	Kanu4. Wm.	Nº Nucria
11-8 : 11-9 11-8 11-9 . ATB ' ATB' AT ' AT' ' AT' ' 11-8 : 11-9 .	חחוד	2	
A E : A E :	MHIN	ڃ	22

RPUMEHONUA:


- 1. Указания по изготовлению плит даны в пояснительной записке настоящего альбона.
- 2. Разрез 16-16 дан на листе 14, Разрезы 19-19 и 20-20 даны на листе 15.

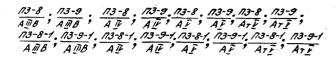

TK |

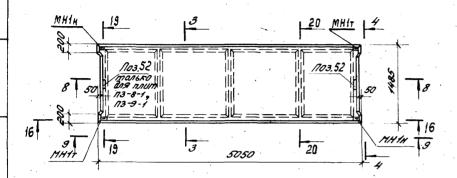

Рядовые и нежколонные плиты разнероп 1,5+5,55 n, высотой 500 мм. Ополубочный чертёж.

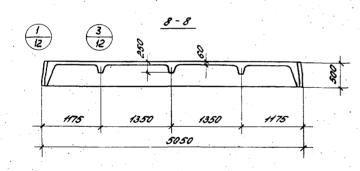

CepuA 1.440-2 86104CK 2 Sucm 2

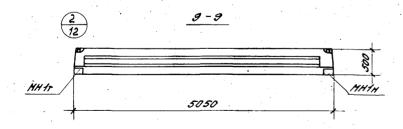
Cregupurayun napar закладных деталей на одну плиту

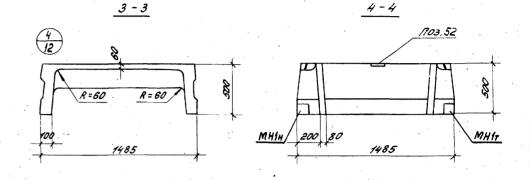
Mapra nsums	Mapra Remanu		Nºº Nicma
12-8. 12-9. 12-8. 12-9 AMB: AMB: AB: AB: AB 12-8. 12-9. 12-8. 12-9	MHZT	2	
$\begin{array}{c} \frac{RE-\delta}{A\bar{E}}, \frac{RE-\delta}{A\bar{E}}, \frac{RE-\delta}{A\bar{E}}, \frac{RE-\delta}{A\bar{E}}, \frac{RE-\delta}{A\bar{E}}, \frac{RE-\delta}{A\bar{E}}, \frac{RE-\delta+\delta}{A\bar{E}}, \frac{RE-\delta+\delta+\delta}{A\bar{E}}, \frac{RE-\delta+\delta+\delta}{A\bar{E}}, \frac{RE-\delta+\delta+\delta+\delta}{A\bar{E}}, \frac{RE-\delta+\delta+\delta+\delta+\delta}{A\bar{E}}, \frac{RE-\delta+\delta+\delta+\delta+\delta+\delta+\delta}{A\bar{E}}, RE-\delta+\delta+\delta+\delta+\delta+\delta+\delta+\delta+\delta+\delta+\delta+\delta+\delta+\delta+\delta+\delta+\delta+\delta+\delta+$	MHZN	2	22


	6-6	
$\frac{6}{13}$		
		 <u>s</u>
		4
MHET	5450	 MHEN


ROUMEHONUS:

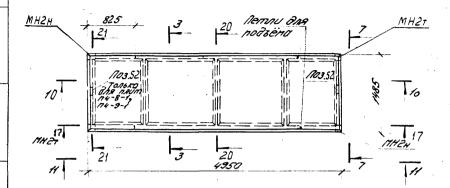

- 1. Указания по изготовлению плит даны в пояснительной записке настоящего альбона
- 2. Разрез 17-17 дан на листе 14. Разрез6 20-20 и 21-21 даны на листе 15.

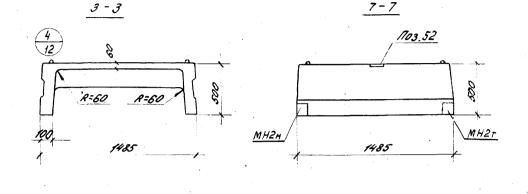

Рядовые и межколонные плиты разпероп 1,5×5,45м, высотой 500мм. Опалубочный чертеж,

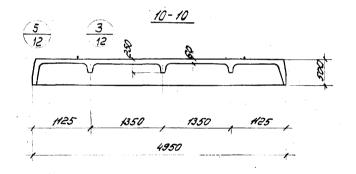

CEPUR 1.440-2 Bbinyck 2

Cneuupukauun napok закладных деталей на одну плиту

		Nº Nucma
MH1T	2	
	مے	22
	<i>HH1</i> 7	


ROUMEHAHUR:


- 1. Указания по изготовлению тит даны в полскительной записке настоящего альбола,
- 2. Разрез 16-16 дан на листе 14. Разрезы 19-19 и 20-20 даны на листе 15.


TK

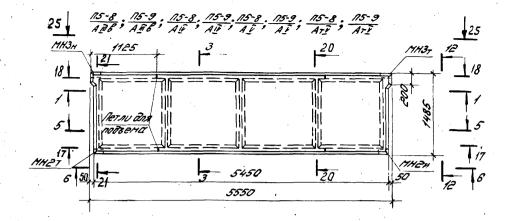
Рядовые и межколонные плиты розперонцыя, от высотой 500 км. Опалубочный чертёж.

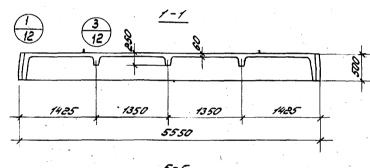
Cepua 1.440-2

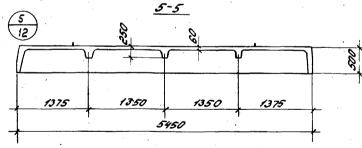
Cnegupukayun napak закладных

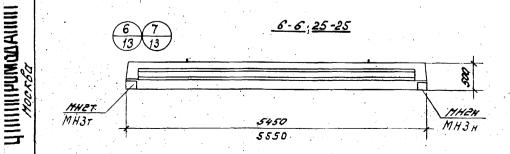
Марка ппиты	Mapra Demanu	Kanu 4. WM.	Nº suoma
14-8.14-9.14-8.14-9. All 8' A mill' All' All'	MHZT	و	
\(\frac{\partial 4.8 \cdot 8.4 \cdot 9.10 - 8 \cdot \frac{74 - 8}{4\overline{E}} \cdot \frac{74 - 9}{4\overline{E}} \cdot	MHZN	2	22

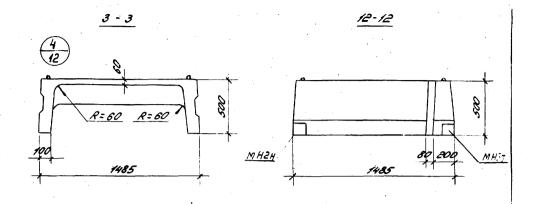
6	11-11	
13		
MHZT		MASA
-	4950	


THINTIPOMANAHIII


RPUMEHOHUA.

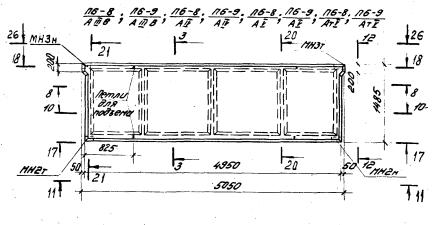

- 1 Указания по изготовлению плит даны в пояснительной записке настоящего альбота.
- 2. Разрез 17-17 дан на листе 14. Разрезы 20-20 и 21-21 даны на листе 15:

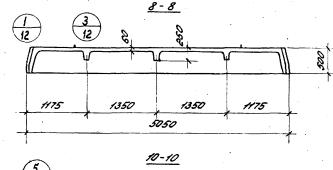

ТК Рядовые и пежколонные плиты розпероп 1,5 × 4,95 п выпуск 2 выпуск 2 пист 5

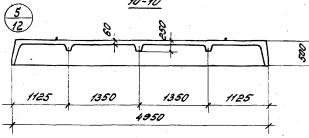


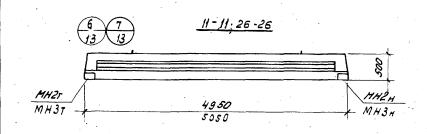
Creuvpurayus παροκ 30κλαδ**κο**ιχ βεταλεύ κα οδκу πλυπή,

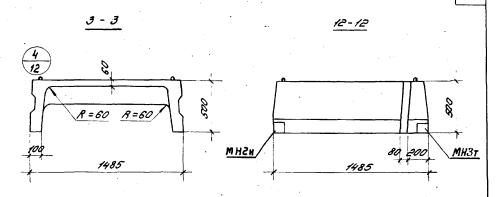
Mapra	Марка	Konu4,	Nº
nnum 61	детали	wm,	Nucma
$ \frac{75-8}{A \overline{M} 6}; \frac{75-9}{A \overline{M} 6}; \frac{75-8}{A \overline{L}}; \frac{75-9}{A \overline{L}}; \frac{75-9}{A \overline{L}}; \frac{75-9}{A \overline{L}}; \frac{75-9}{A \overline{L}}; $	MH2z+11H2n MH3r+11H3n	l .	22 23


ROUMEHOHUA:


- 1. Указания по изготовлению прит даны в пояснительной записке настоящего альбока.
- 2 Разрезы 17-17 и 18-18 даны на листе 14. Разрезы 20-20 и 21-21 даны на листе 15.


TK 1976 Numu neperpumud pasnepan 1,5 ×5,55 n (1,5×5,45 n) Bucamoù 500 n.n. Orany Bounud uepmëx:

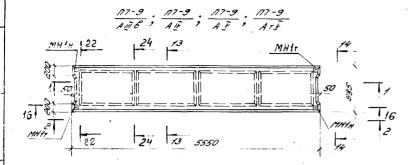

Cepus 1.440-2
Bbinsex 2
Nucm 6

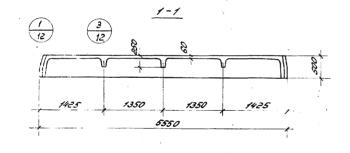


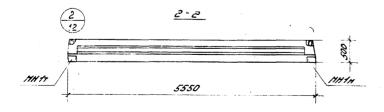
HMMNDDMIJAHMM Com unxerres Trocked demo Esmu

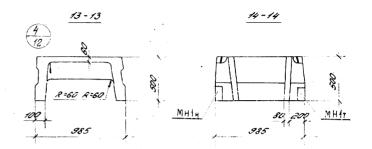
επαρού και παροκ σακπαθηδικ Θεπαπεύ κα οθης πηυτος

Марка ппиты	Mapra Jemanu	Колич. шт.	ü Nucma
16-8 : 16-9 : 16-8 ; ABB : ABB : AB	MHZ+MHZH	1+1	22
10-9 16-8 1C-9	1413r + 14113n	1+1	23


ROUMEHOHUA;


1. Указания по изготовлению плит даны в пояснительной записке настоящего альбона,

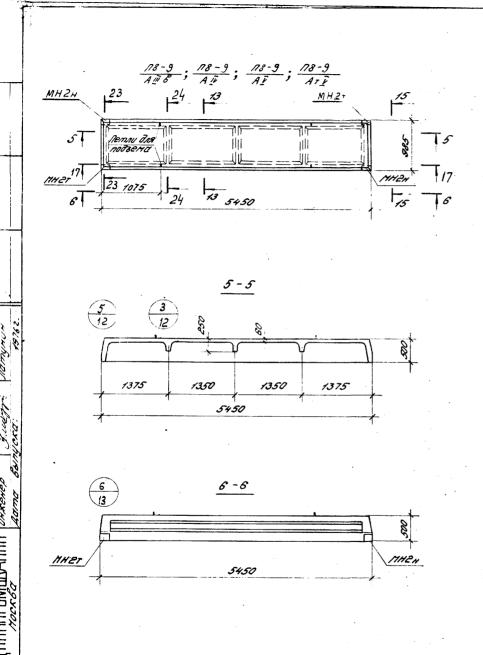

2. Разрезы 17-17 и 18-18 даны на листе 14. Разрезы 20-20 и 21-21 даны на листе 15.

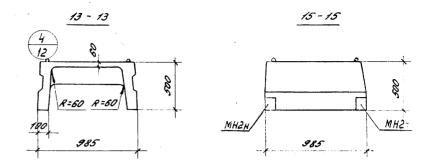

TK | ในบทผ перекрытий разпероп 1,5×5,05/1,5×4,95 N)
высотой 500 мп. Опапувочный чертёж.

Cepua 1. 440-2 Bbinyck 2 Aucm 7

Спецификация парок закладных деталей на одну плиту

190pxa nnumsi	Марка детали	Колич. шт.	Nº sucma
$ \frac{177-9}{A\overline{D}E}; \frac{177-9}{A\overline{E}}; \frac{177-9}{A\overline{E}}; \frac{177-9}{A\overline{E}} $	MHITHIA	2+2	22

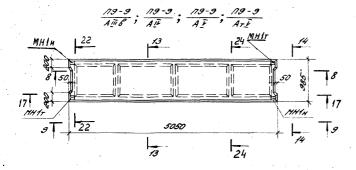

ROUMEHOHUA:

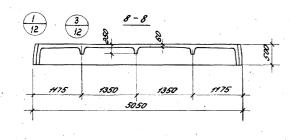

22-22 2. Разрез 16-16 дан на листе 14. Разрез61 24-24 даны на листе 15.

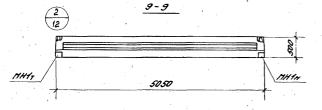
TK
1,0x5,55 n высотой 500 nn. Ополубочный чертёх.

CEPUR 1.440.2

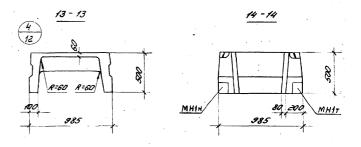
Bucm 8


Спецификация нарок закладных demaneù na odny mumy


Парка	Hapsa	Колич,	Nº
плиты	वेशवाग	шт.	nucrna
$\frac{1/8-9}{A\overline{x}^{2}}, \frac{1/8-9}{A\overline{x}^{2}};$ $\frac{1/8-9}{A\overline{x}^{2}}, \frac{1/8-9}{AT\overline{x}^{2}}$	/१भटेन +/१भटेन	2+2	22


ROUNCHONUA:

- у Указания по изготовлению плит даны в пояснительной
- 30 nucre Hoomasuezo Ontbora. 2 Paspes 17-17 dan na nucme 14, Paspesti 23-23 u 24-24 danti na nucme 15.


	DUANT HE STECHTE 15.		
TK			1.440-2 c 2
1976	1,0 x 5, 45 H , 66/20/110U 300 HH. Undayou4H61U 4Epmex.	sucm	Э
	/ = .	_	

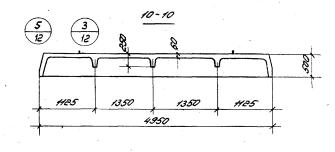
THE MANAGE

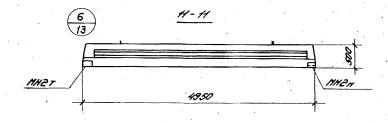
Спецификация парак закладных demanes na odny noumy

Mapra	Hapka Jemanu	Konu4, wm.	Nº Nucma
$\frac{\cancel{19-9}}{\cancel{\cancel{A}\cancel{\cancel{1}}\cancel{\cancel{6}}}}; \frac{\cancel{\cancel{19-9}}}{\cancel{\cancel{A}\cancel{\cancel{1}}\cancel{\cancel{2}}}}; \frac{\cancel{\cancel{19-9}}}{\cancel{\cancel{A}\cancel{\cancel{1}}\cancel{\cancel{2}}}}; \frac{\cancel{\cancel{19-9}}}{\cancel{\cancel{A}\cancel{\cancel{1}}\cancel{\cancel{2}}}};$	/1H fr + 1HH fr	212	22

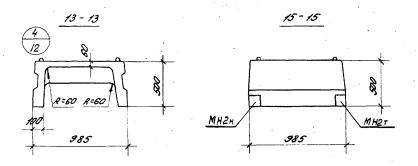
PROMEHONUA:

- 1. Указания по изготовлению плит даны в пояснительной
- 30NUCKE MOCMORULEZO ANBÔNIO. 2. Paspes 17-17 dan na nucme 14. Paspesbi 22-22 424-24 дань на листе 15.


\	,	7.11
6	1,0 ×5,05 M	60


иты перекрытий размером Высотой 500 пм. Опапубочный чертёж.

CEPUA 1.440-2

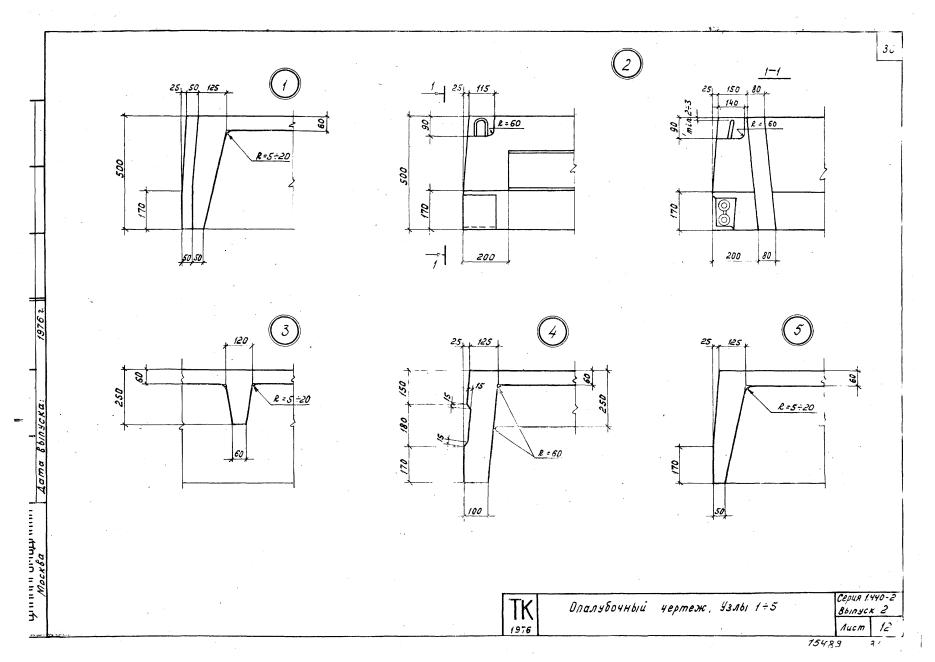

Bbinyck 2

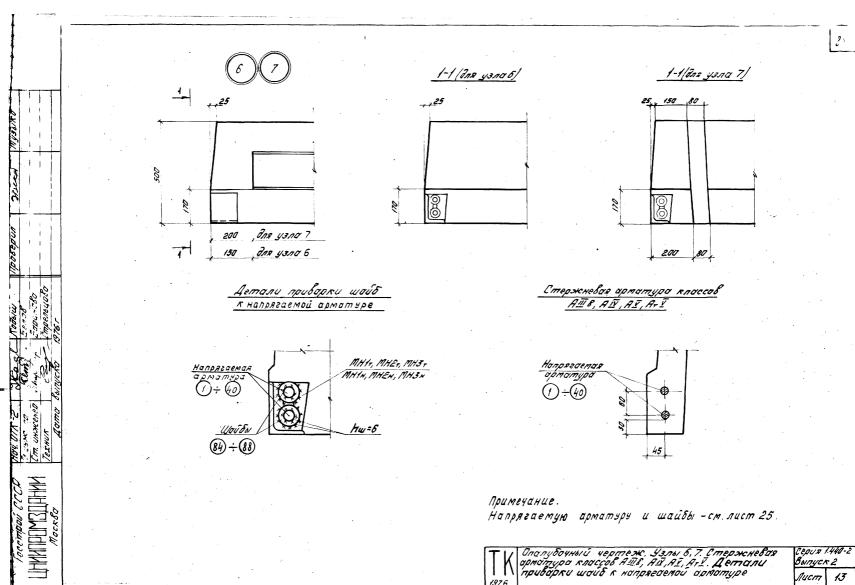
CONSTRUCTION OF THE CONTROL OF THE C

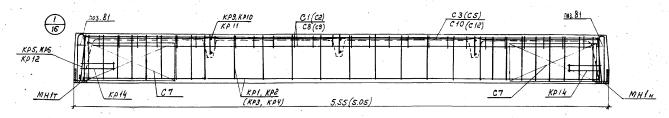
Спецификация парок закладных деталей на одну плиту

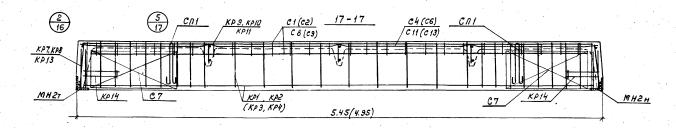
			
Mapra nnumu	Mapka Demanu	Колич. шт.	Nº Nucma
$\frac{110-9}{110}, \frac{110-9}{110}, \frac{110-9}{110}, \frac{110-9}{110}$	/IH2+1M2v	2+2	22

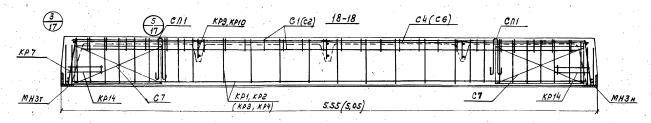
Припечания:


1. YROSONUS NO USEOMOBREHUM DOUM DONS & NOSCHUTENSHOÙ


30 nucke nocmosujezo antiona. 2. Paspes 17-17 dan na nucme 14, Paspes 23-23 u 24-24 Bahti na nucme 15.

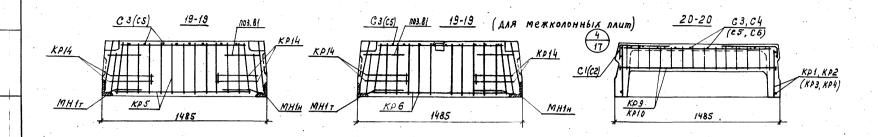

TK
1,0x4,35 M bicomoù 500 MM. Ononysounsu veomex.

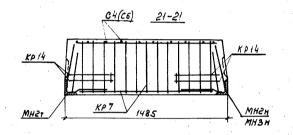

Cepua 1.440-2
86104CK 2

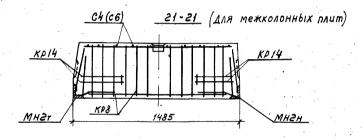

X. Nucro 11

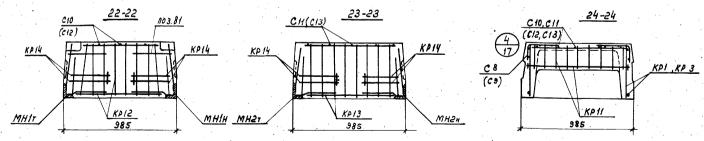
3. Спецификация марок арматурных изделий на плиту см. листы 26÷28.

Примечания:


- 1. В разрезах на листе 14 напрягаетая артатэра эсловно не показана Место расположения напрягаетой артатэры ст. лист 13. 2. Каркаеви и сетки, тарки которых указаны в скобках, даны для плит длиной 5,05m и 4,35m.


TK	1,0
1976	


Плиты перекрытий размером 1,5×5,55 (5,05) m ,0×5,55 (5,05) m, 1,5×5,45/4,95) m высотой 500 mm. Армирование


CEPUA 1.440-2 BOINYCK 2 hucm

15489

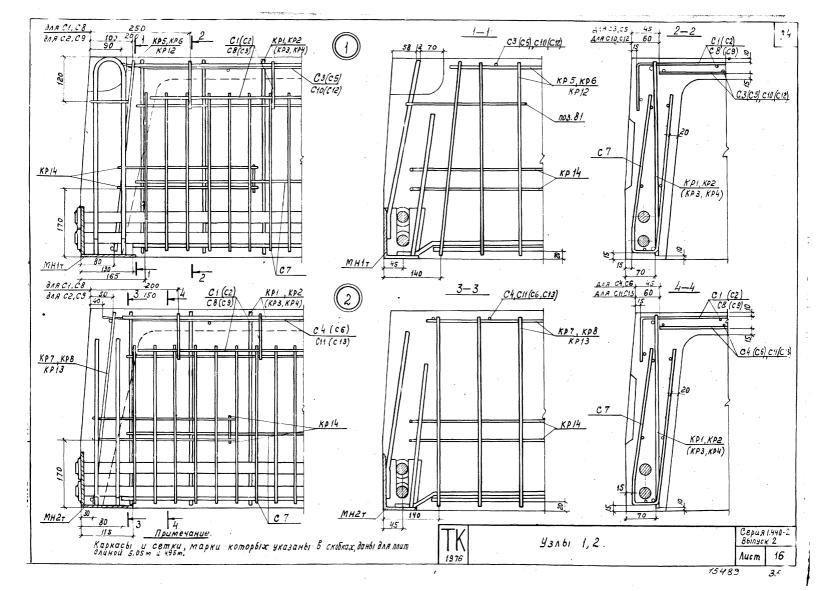
Примечания:

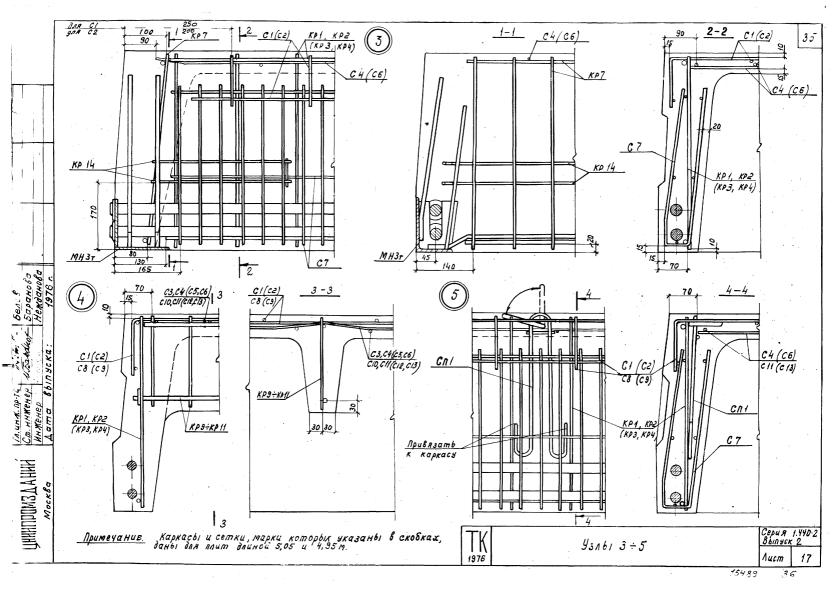
анова пунин 1976 г

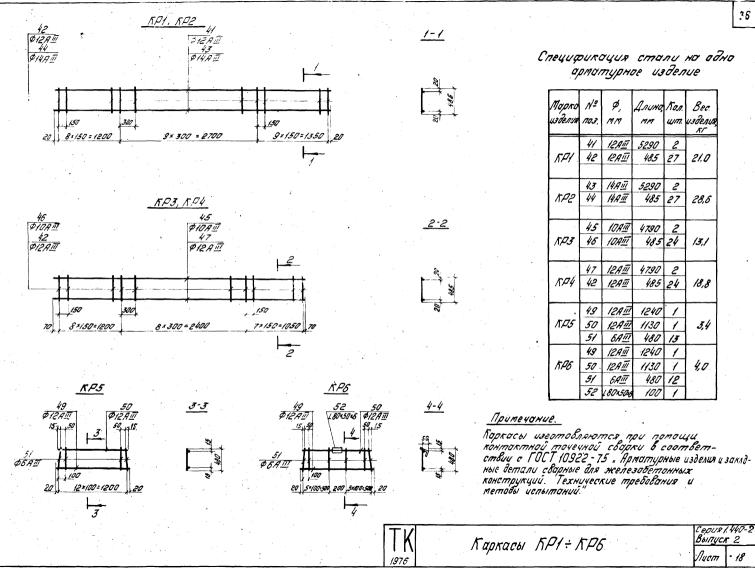
LIHIHITIPOM3AAHIH

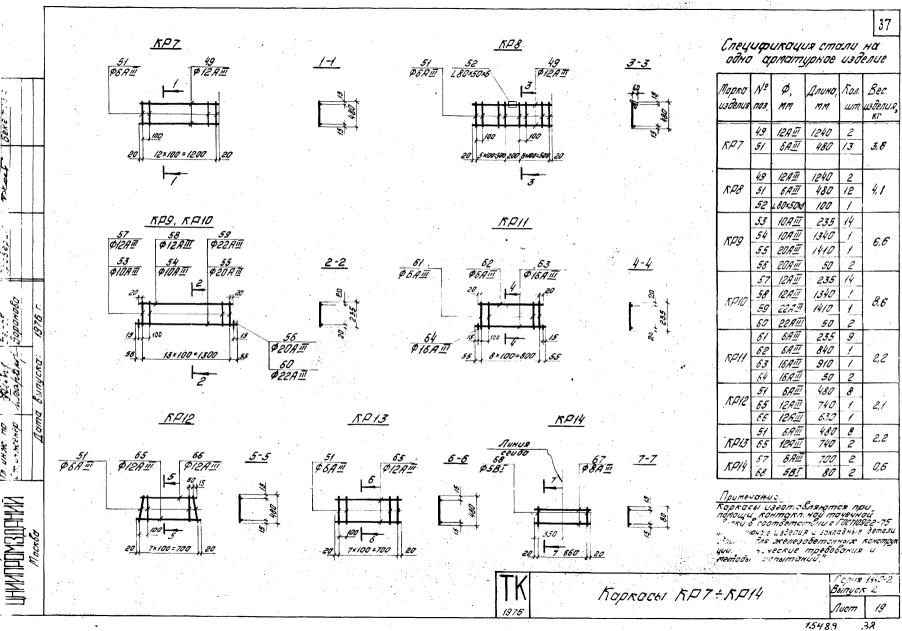
- 1. В разрезах на листе 15 напрягаемая арматура условно не показана.
 Место расположения напрягаемой арматуры см. лист 13.
 2. Каркасы и сетки, марки которых указаны в скобках, даны для плит
- длиной 5,05m и 4,95m.
- 3. Спецификация марок арматырных изделий на плиту CM. JUCMBI 26 - 28.

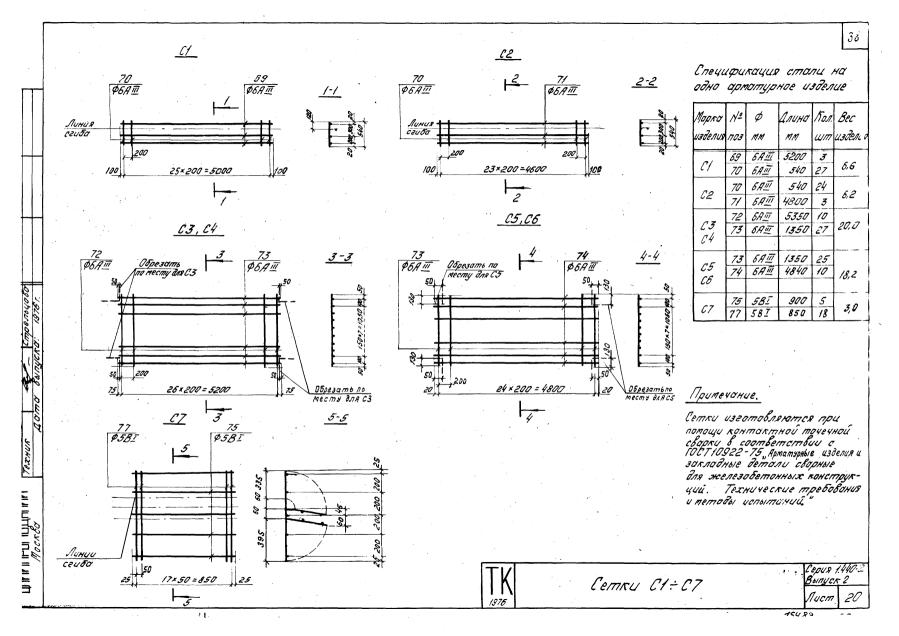
NAUMbi перекрытии размером 1.5×5,55 (5.05)m, 1.0×5,55 (5.05)m, 1.5×5,45 (4.95)m высотой 500 mm. Армирование 1976

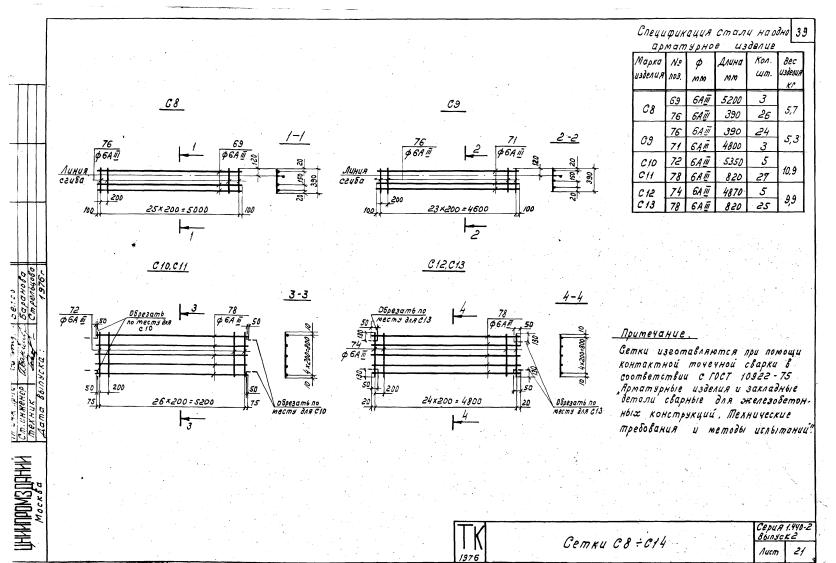

15489

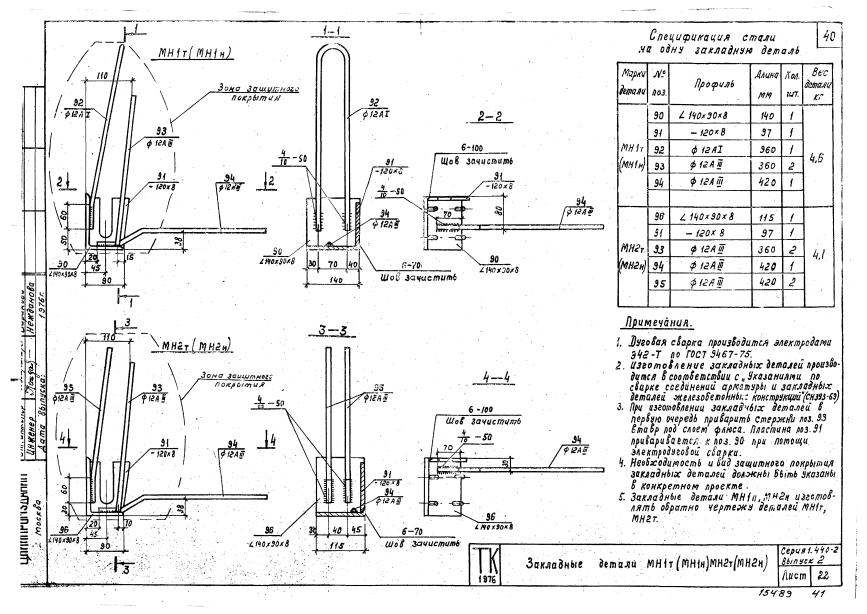

15

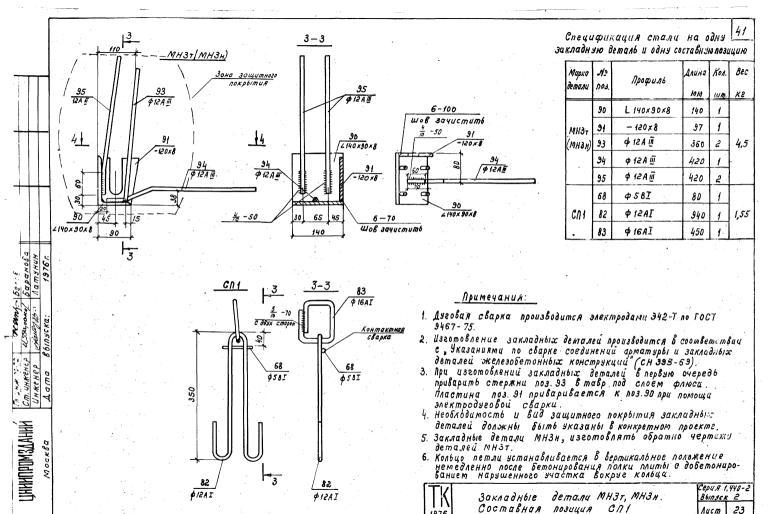

Cepun 1.440-2

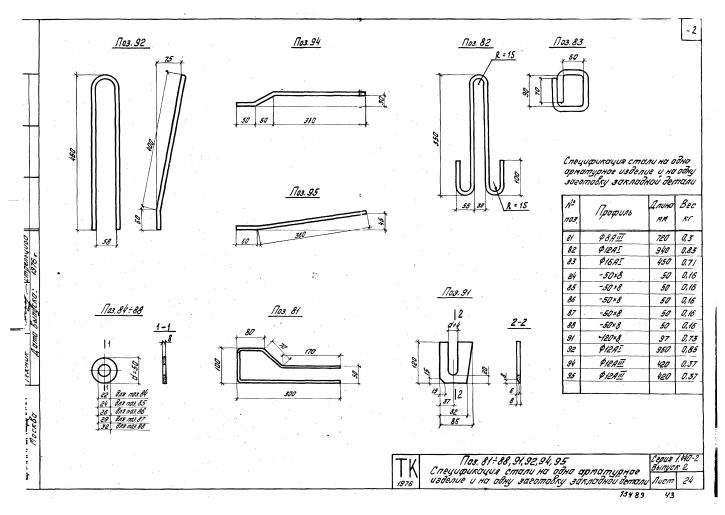

BUINGER 2


Aucm









15400

. 100

Спецификация позиций арматырных

Спецификация позиций закладных деталей на альбом

N.º	фили	Длина,	Bec,		Nº	\$ UNU	Длина,	Вес,
	сечение.					сечение,		
<i>1</i> 103.	MM	MM	KS		1703.	MM	MM	Кĉ
1	22A# 8	5580	16,7		23	20A7 ¥	5480	13,5
2	25A@B	<i>SS</i> 80	21,5		24	22AT !	5480	16.4
3	28A E 8	5580	27,0		25	22A ji 8	5080	15,2
4	20A18	5580	13,8	ŀ	26	25A @ B	5080	19,6
5	ZZAIŽ	5580	16,7	1	27	20AUT	5080	12.5
6	25AIV	5580	21,5		28	22A19	5080	15,2
7	18A¥	5580	11,2	Ì	29	18A₹	5080	10.2
8	20AI	5580	13.8		30	20A V	5080	12,5
9	22A T	5580	16,7		31	18A7 ₹	5080	10.2
10	18A7 ¥	5580	11,2		32	20A7 Y	5080	12,5
11	20A7 ¥	5580	13.8		33	22A 11 8	4980	14.9
12	22A1¥	5580	16,7		34	25A jii B	4980	19,2
13	22A 1118	5480	16,4		35	20AIV	4980	12,3
14	25A [1] 8	5480	21,1		36	22A [V	4980	14.9
15	28Am 8		26,5		37	18A ¥	4980	10.0
16	20AT	5480	13,5		38	20A ¥	4980	12,3
17	22A1	5480	16,4		39	18A7_	4980	10,0
18	25AIV	5480	21,1		40	20A7¥	4980	12,3
19	18AZ	5480	11,0		41	12A 🗓	5290	4,8
20	20AV	5480	13,5		42	12AU	485	0,4
21	22A Ý	5480	16,4		43	14A <u>I</u> I	5290	6,4
22	18ATY	5480	11.0		44	14A 🗓	485	0,6

ШКИПРОМЗДАНИЙ *Ст. чи*

И	3de1u	u H	g a	1000
N٥	фили сечение,	Длина,	Bec.	
ЛΟ3.	MM	MM	KZ	
45	10 A III	4790	3,0	lL
46	1DA Ū	485	0,3	
47	12A 🗓	4790	4,3	
				ΙΓ
49	12A III	1240	1,1	l [
50	12AĒ	1130	1,0	
51	6A∭	480	0,1	
52	1 80×50×6	100	0,6	
53	10A 🗓	235	0,1	
54	10A 🗓	1340	0,8	
55	20A 🗓	1410	3,5	
56	20A 🗓	50	0, 1	
57	12A ₩	235	0,2	
58	12A 🗓	1340	1,2	F
<i>s</i> 9	22A m	1410	4,2	·
60	22A <u>m</u>	50	0,2	
61	6A Ų	235	0,1	-
62	6A Ū	840	0,2	
63	16A <u>m</u>	910	1,4	
64	16A 🗓	50	0.1	-

Nº	φυλη	Длина,	Bec,
103.	Сечение, ММ	мм	кг
67	8A <u>™</u>	700	0,3
68	58I	80	0,01
69	6A jij	5200	1,2
70	6A III	540	0,1
71	6AJI	4800	- 1,1
72	6A JII	5350	1,2
73	6A III	1300	0,3
74	6AII	4840	1,1
75	58]	900	0,1
76	6A Ū	390	0,1
77	58Ī	850	0,/
78	6A ∰	820	0,2
81	8A <u>™</u>	720	0.3
82	/2AI	940	0,8
83	16AI	450	0.7
84	-50x8	50	0,16
85	-50x8	50	0,16
86	-50×8	50	0,16

		4,,,,,	0111
Nº	Профиль	Длина	Bec.
Λ03.		MM	Kr
90	∠ 140×90×8	140	1,97
91	- 120×8	97	8,73
عو	φ 12AI	960	0,85
93	ф 12A <u>II</u>	360	0,32
94	φ 12 A <u>ī</u> li	420	0,37
95	\$ 12 A III	420	0,37
96	L 140 x 90 x 8	115	1,62

Примечание. Марку стали необходимо принимать в соответствии с чказаниями, приведенными в рабочих чертежах конкретного объекта .

Спецификация позиций арматярных изделий на альбот. Спецификация позиций закладных деталей на альбот Лист

0,16 416

Серия 1.440-2 Выпуск 2

7			2 (
Спецификация	MODOK	בושאקעודוסאקט	UBDENUU	HO	nnumy.

Mapra	Mapra	Non.	Nº		
MAUMO	บริติกบร	!			
	UNU 1703.	417.	SUCTO		
Harpszaema	apmomyoc	UU	00 61		
171-8	2	4	25		
ATTI8	87	8	24		
171-8 AIV	. 5	4	25		
AIT	85	8	24		
171-8 AV	8	4	25		
	85	8	24		
171-8 Ar <u>v</u>	11	4	ی		
Ar V	85	8	24		
	Арматурн	610 43	denus		
171-8	KP1	2			
<u>171-8</u> A <u>II</u> 8	TP5	2	18		
171-8 AN	KP9	3			
AN	KP14	4	19		
171-8 A =	C1				
AV	C3	2	20		
171-8 ATV	C7	4	- "		
ATY	81	4	24		
Напрягаема	a apmany	04 4	μούδοι		
11-8-1	2	4	25		
A III 8	87	8	24		
11-8-1	5	4	25		
AIV	85	8	24		
11-8-1	8	4	25		
AY	85	8	24		
171-8-1	11	4	25		
Ary	85	8	24		
	Арматурные изделия				
11-8-1	KP1	2			
DIE	SP6	2	18		

67844	P UKQY	(48	Map
Mapra	Mapra usdenus	Kan.	Nº
IIIIIIII	UNU 1103.	ШТ.	sucmo
171-8-1	RP9	3	
RIV	KP14	4	19
11-8-1 AV	21	2	
AT	23	1	20
171 8-1 Ar <u>V</u>	<i>C7</i>	4	
	81	4	24
Hangazaemak	opnamy		เมอบ์ชม
171-9	3	4	25
ATT8	88	8	24
111-9	6	4	25
niv	87	8	24
11-9	9	4	ی حے
AŸ	86	8	42
71-9 71-9 71-9	12	4	25
Ary	86	8	4 ہے
71-0	Aproamyp	NOVE 4	3 denur
171-9 ATT 8	KP2	2	18
7/-0	RP5	2	70
<u>171-9</u> <u>RI</u>	RPIO	3	19
	KP14	4	13
71-9	C1	2]
AY	23	1 /	20
771-9	<i>C7</i>	4	L
ATY	81	4	24
Hanpazaeme	as apriari	ypo c	140051
171-9-1	3	4	25
A1118	88	8	4ع
11-9-1	6	4	.25
AIV	87	8	24
		L	<u> </u>

K OPMON	משאחקעד	r U	3deno
Mapra	Mapra	Non.	Nº
ואחונותו	บริชิยภบล		ľ
	UNU 1103.	417.	sucmo
171-9-1	9	4	.25
RY	86	8	24
171-9-1	12	4	25
Ar	86	8	24
	Арматур	14818	us denus
11-9-1	KP2	2	
AIII8	KP6	2	18
11-9-1	KPIO	3	/2
AIV	KP14	4	19
11-9-1	CI	2	
AT	23	/	20
11-9-1	27	4	l '
11-9-1 Ar ¥	81	4	24
ľ			
Напрягаем	משמש אני	מ שפעים	นายบิชิม
112-8	14	4	25
AM8	87	8	24
172-8	17	4	25
AIV	86	8	24
112-8	20	4	25
AT	85	8	24
112-8	23	4	25
Ary	85	8	24
112-8	Apriamy p.	HOIE L	<i>зделия</i>
DITE	KPI	2	18
172-8 AN	RP7	2	
12-8	KP9	3	ه ر ا
AV	KP14	4	19
112-8	C1 C4	2	20
ATY	C4	1	1 20

ממ	ע אט חתו	umy.		
2	Μορκα πηυπο	Mapra usdenus	Non.	Nº
70		UNU 1103,	417.	nuemo
5		<i>C7</i>	4	20
,		0111	4	24
,				
4	Напрягаеми	OR OPMON	ע מפנע	เมตบ์ชิง
14.9	12-8-1	14	4	25
	AIII 8	87	8	24
3	172-8-1	17	4	25
\Box	AIV	86	8	24
7	12-8-1	20	4	25
	AT	85	8	24
,	112-8-1	23	4	25
	Ar V	85	8	24
4		Арматур		зделия
	172-8-1	KPI	2	18
(TEI)	AIII8	KP8	2	
5	172-8-1	KP9	3	19
	RIV	KP14	4	1 1
5	12-8-1	01	2	
,	AZ	C4	1	20
	172-8-1	27	4	
4	Ar	6171	4	23
5				
4	Напрягает	מו ממתם מני	ypa L	waite
149	112-9	15	4	25
8	AITTE	88	8	24
	112-9	18	4	25
9	AIY	87	8	24
J	172-9	21	4	25
20	AZ	86	8	24
٠ ١				

			<u> </u>
Mapro	Марка изделия	Nan.	Ŋº
	UNU 1103.	417.	sucmo
112-9	24	4	25
ArŸ	86	8	24
	Apmamyp,	4618 4.	3 denus
112-9	KP2	2	18
AII8	RPT	2	
112-9	KPIO	3	19
AIV	KP14	4	
112-9	CT	2	
AY	C4	1	20
172-9	C7	4	
ATV	C171	4	23
Hanpseaem	וסאקט אם	שמעני	เ เมตบ์ชิม
112-9-1	15	4	25
AIII8	88	8	24
112-9-1	18	4	25
AN	87	8	24
112-9-1	21	4	25
AZ	86	8	24
172-9-1	24	4	25
Ary	86	8	24
_	Apricinyp	H618 4	3 <i>0e108</i>
112.91	KP2	2	18
ATTE	K 170		

К Специрикация марак орматурных изделий на плиту выпуск 2

20

KP8 *KP10 KP14*

2					
Спецификация	MODOK	DOMOMOUDHBIX	UBOPALIII	HM	ווחווחחו
	,	4/2//		///	inioning

Mapro	Mapsa	Ran.	Nº
ำ กวาบกาชา	UBBEAUR		
	414 1103.		
Напрягаеми	a aprilang		<u>woite</u>
173-8	25	4	25
· AII8	85	8	24
173-8	27	4	25
AIV	85	8	24
173-8	29	4	25
AZ	84	8	24
173-8	31	4	25
ATY	84	8	24
	Артатур	HOIP U	эделих
173-8	RP3	2	/0
AII8	15.P.5	2	18
113-8	KP9	3	
AIV	KP14	4	19
173-8	12	2	
AZ	<i>C5</i>	1	20
173-8	. 27	4	20
Ary	81	4	24
71/2		<u> </u>	-/-
Hanpseaend	18 DOMONIO	100 11	บเกมีย
173-8-1	25	4	25
AIIB	86	8	24
13-8-1	27	4	25
AIV	85	8	24
13-8-1	29	4	25
AV	84	8	24
13-8-1 AT \$\overline{V}	31 84	8	25 24
77.2	доматурк		
· · ·	KP3	2	18.

negugo	///	, ,,	σροί
Mapro	Mapsa	Kan.	Nº
חחטודונו	บร์ซิยกบล		
	UNU 1193.	WT	JUETTO
173-8-1	KP6	2	18
A III 8	RP9	3	
173-8-1	KP14	4	19
AIV	<i>C2</i>	2	
<u> 173-8-1</u>	<i>C5</i>	1	20
AV	C7	4.	
173-8-1	81	4	24
Ary			
Напрягает	an apmon	מ מפעני	เ เบอบ์ชิง
173-9	25	4	25
AIII8	87	8	24
113-9	28	4	25
AIV	86	8	24
173-9	30	4	25
AY	85	8	4 فے
73-9	32	4	25
Ar	85	8.	24
	Арматур	HWE U	3821118
173-9	NP4	2	
ATTI8.	NP5	2	18
173-9	RPIO	3	
AIV	KP14	4	19
17.3-9	<i>C2</i>	2	
13-9 A <u>v</u>	<i>C5</i>	1	20
7.3-9	C7	4	
73-9 Ar V	8/	4	24
Haran anna	re apman	ypa u	WOUGN
שויוששאיבערווטו			
13-9-1	25	4	25

OPMON	בוטאסקצי	. 0	30en
Марка плиты	Mapra usdenus	Non.	Nº
	UNU 1703,	ШТ	suemo
173-9-1	28	4	25
AN	85	8	24
173-9-1	30	4	25
A₹	85	8	24
173.9-1	32	4	25
Ar	85	8	24
	Арматурн	618 03	denun
<u> </u>	NP4	2	18
AII8	RP6	2	
<u> </u>	RPIO	3	19
AIV	TP14	.4	
13.9.1 A7	. C2	2	
AZ	<i>C5</i>	1	20
173-9-1	<i>C7</i>	4	
ATY	81	4	24
Напрягаем	an apmani	1000	
174-8	33	4	25
AITS	85	8	24
174-8	35	4.	25
AIV	85	8	24
174-8	27	4	25
$A\underline{\bar{y}}$	84	8	24
174-8	39	4	25
ATT:	84	8	24
7/. 0	Apnamypr	16/8 4	3 BENUR
<u>174-8</u> <u>A</u> <u>m</u> 8	KP3	2	18
	KP7	2	
174-8 A <u>v</u>	KP9	3	19

NUC	V HO M	מחומו		
7	Mapro	Марка	Kon.	1/2
1	nsumu	usdenus		
70		454 1103.	417.	<i>NUCITIO</i>
		C2	2	
	174-8.	C6	1	20
	AY	CT	4	
	174-8	C/7/	4	23
7	Ar			
7	Напрягаема	וחיבותם אי	100 1	unitar
,	174-8-1	33	4	25
7	ATTI 8	86	8	24
	74-8-1	35	4	25
1	AN	85	8	24
.	174-8-1	37	4	25
1	AT	84	8	24
	174-8-1	39	4	25
l	AT V	84	8	24
1		Арматурі		эделия
7	174-8-1	KP3	2	18
<u>z</u>	ATTE	KP8	2	
٦	174-8-1	KP9	3	19
٦.	AN	KP14	4	13
+		C2	2	-
1	174-8-1 AT	<i>C6</i>	1	20
7	174-8-1	<i>C7</i>	4	
1	Ar	C171	4	23
1	<i>ــــــــــــــــــــــــــــــــــــ</i>			
7	Напрягаеми	R apman	ypa u	พลบ์ชัง
18	174-9	34	4	25
7	A TIL	87	8	24
-	174-9	36	4	25
	AN	86	8	24
Ι.				

			_
Марка		Kan.	Nº.
плиты	изделия	1	l
1.3	414 1103.	ЩТ.	NUCHTO
114-9	38	4	25
AŸ	85	8	24
174-9	40	4	25
Ar Ž	85	8	24
al. a	Арматур	4618 4	зделия
<u>174-9</u>	KP4	2	18
ATT8	KP7	2	
<u>174-9</u> A⊼	KPIO	3	19
	KP14	4	19
<u>174-9</u> A V	C2	2	
174-9	C 5	1	20
ATY	<i>C7</i>	4	20
#1±	C/71	4	23
Напрягае	MOR GOND		
174-9-1	34	4	25
A THE	87	8	24
174-9-1	36	1 4	25
RIV	86	8	24
174-9-1	38	4	25
AĪ	85	8	24
174-9-1	40	4	25
Ar <u>V</u>	85	8	24
14-9-1	Арматурн	16/8 U.	Benus
AIII8	KP4	2	18
174-9-1 RIV	KP8	2	
	KPIO	3	19
174-9-1	KP14	4	<u> </u>
174-9-1 AT	C2	2	
174-9-1		2 1	20

TK Cnequipurayur napor apnamyprisiz urdenuu na naun Singer 2

						-	,,,,,,
Mapra	Majaka usdenua	Nan.	Nº	Mapra	Magra us denus	Kan.	Nº
	UNU 1703.		<i>nucma</i>		UAU 1103	uт.	листо
Hanpseaema	R GOMON	7400		25.0	12	2	
	2	2		175-9	24	2	25
175-8	14	2	25	ATY	86	8	24
AIIB	87	8	24	175-9	ADMOM VSden	UR	
75.0	5	2		AIIB	RPE	2	18
175-8 A <u>N</u>	17	2	25	175-9	KAT	2	
H2	86	8	24	AIV	KPIO	3	19
75-0	. 8	2	2-	<u> 775 -9</u>	KP14	4	1
175-8 A V	20	2	25	Aİ	01	2	
77 -	85	8	24	175-9 Ar \(\bar{Y}\)	C4	1	20
	11	2		Ar	67	4	20
175-8 Ar V	23	2	25		C171	4	23
HTY	85	8	24	Honpseaer	au osi	amypu	
175-8	Apmonty usden	PHOLE		11	25	2	T
AIIB	KP1	2	18	176-8 Ama	33	2	25
175-8	TP7	2		7=8	86	8	24
AIV	KP9	3	19	75-0	27	2	/
175-8	KP14	4	L " ·	18-8 AN	35	2	25
AY	CI	2	1	1 // 2	85	8	24
175-8	C4	1	20	75-8	29	2	- 27
Ary	C7	4]	15-8 AY	37	2	25
	CITI	4	23]	84	8	24
напрягает Ош и	TAR APMA TUBU	mypu	,	175-0	3/	2	
	3	2	j	175-8 AT V	39	2	25
175-9 AIIB	15	2	25	1	84	8	24
	88	8	24	116-8	Aprilamy Us de l	DHOIR	
56.0	6	2	0.5	AIIB	KP3	2	18
175-9 AIX	18	2	25	115-8	KP7	2	10
HI	87	8	24	AI	KPg	3	10
25.0	9	2	25	176-8	RP14	4	19
<u> 175-9</u> A <u>V</u>	21	2	25	AY	CZ	2	
MY	85	8	24	11	C6	1-	20
							Ь

7	<i>!'</i>		
Mapra	Mapsa u s denun	Non.	Nº
	494 1103,	1	sucma
175-8	<i>C7</i>	4	20
ATY	C/71	4	23
напрягает	TR COMO	מקעניי	
70.0	26	2	. ~
116-9 A III 8	34	2	25
,,	87	8	24
75-0	28	2	
115-9 A IV	35	2	25
	85	8	24
76-0	30	2	
<u>176-9</u> A <u>Y</u>	38	2	25
H-	85	8	24
75-0	32	2	
115-9 Ar \$\overline{V}	40	2	25
/// -	85	8	24
175-9	Apmam usder	UN	
AIIB	KP4	2	18
<u> 176-9</u>	KP7	2	
AIV	KPIO	3	1 19
115-9 AV	KP14	4	1
//-	C2	2	
176-9	C6		20
Ar	C7	4]
Nanaoana.	C/7/	4	23
Напрягаем	TUBE OF ME		7
177-9	/	4	25
A <u>I</u> IB	86	8	24
177-9	4	4	25
AIY	85	8	24
177-9	7	4	25
AY -0	84	8	24
177-9	10	4	25

,			-		
2	Марха	Magra usdenus	Non.	Nº	
na	1	UNU 1103,	шm.	suema	۱
0	77-9 7-	84	8	24	П
3	177-9	ADMONI U308.	TUR		lt
	ALB	KPI	2	18	П
	177-9	KOH	3		lt
25	A 18	KP12	2	19	
24	177-9	RP14	4		
25	AŸ	C8	2	37	
	177-9 Ar \$	010	/	21	
24	Ary	07	4	20	
ا ہے۔		81	4	24	
25	HONPREGEMU	रम् युग्रस्य युग्रेन	ממקיבוריו		
24	178-9	13	4	25	
	AIIB	85	8	24	11
25	118-9	16	4	25	11
24	AIV	85	8	24	П
	118-9	19	4	25	H
8	AY	84	8	24	
	178-9	22	1 4	25	
19	ATY	84	8	24	1
	178-9	APMONTY USOE)	ITH WE TU A		П
	AIIB	KP1	2	18	1
20	178-9	KPH	3.		11
	AI	KP13	2	19	П
23	178-9	KP14	4	1	П
	AZ	08	2		П
25	178-9	C11	1	21	
24	Ary	67	4	20	11
?5		CM	4	23	11
24	Hangazaena	R OPPO	nypa		
5	179-9	25	4	25	
4	AIIB	86	8	24	11
5	119~9 AN	27	4	25	
					•

Mapra	Magra	Kon.	No
MAUMI	บร์ชิยกบุล		1
	unu nas.	WM.	nuemo
119-9 A IV	85	8	24
179-9 P\$	29	4	25
AŸ	84	8	24
179-9	31	4	25
Ar Z	84	8	24
179-9	Apriomy	PHOIE	
ATTE	NP3	2	18
119-9	KPII	3	
AIV	KPIZ	2	19
179-9 RY	KP14	4	
AZ	<i>C9</i>	2	
179-9 Ar V	CIE	1	2/
Ar	67		20
	81	4	24
Hanpseaema	TR OFFICE	mypa	
110-9	33	4	25
AIB	86	8	24
1110-9	35	4	25
AIV	85	8	24
1710-9	37	4	25
AZ	84	8	24
710-9 Ar \$\overline{Y}\$	39	4	25
Ary	84	8	24
1710-9	Aprilons usden	YOHBIP WR	
AIIIB	TP3		18
1110-9	KPI		
AIV	KP13] 19
1710-9	KP14	4	
1710-9 A V	C9	2] ,,]
1710-9 Ar \$	C/3	1	21
Ar	C7	4	20
4	C111	4	24

TK

Специрикация парак арматурных изделий

Серия 1.440-2 Выпуск 2 Лист 28

Выборка стали на одну плиту, кт.

															<u>'</u>		4																				
T	\prod													Ap	Ma	m y	PHE	i/e	U 3	den	U,A									300	.Λα(D H 61	e 0	ema	574	\Box	
		Μαρκά						Om	016	1	OCT	578	7-7	75						5067	6727	-53*		7380			roci					16 /					
		,			iacc .	A III B	g	ļ			KIQ	cc,	A III			·	1	yee ,	AI	X010 11080		RI BI	1700	Kam	8.013	Итого	Mpo.		9.C1.3		acc,	A III			AI	Итого	Bcezo
		NAUMBI		φ,		20	//mana	-		·		nm				///	Ø,,		//		M M	//2020	17000 180x50		1/maan		1700 g		Umozo		MM	Итого		10	<i>Итого</i>		
+	++-	n1-8	28		22		Итого	22	20	16	14	12	10	8	-	Итого	1	12	Итого	_		<i>U.mo</i> 20	× 6							12	10			10			
		A E B		86,0			86.0		11,2			46.2	8,6	3,3	35,9	105,2				12,3		12,3		1,3	1,3	204,8	7, 9		10,8	4,/		4,1	3,4		3.4	18.3	223,1
		71-9. A m B	108,0	_		_	108,0	13,5	_	_	57,2	16,6	_	3,3	<i>35,9</i>	126,5		_	-	12,3	_	12.3	_	1,3	1.3	248,1.	7.9	2,9	10, 8	4, f		4,1	3,4		3,4	18,3	266,4
		12-8 A-128	_	84,4		_	84,4	_	11,2			46,4	8,6	2,2	35,9	104.3	2,8	3.3	6.1	12,3		12,3		1, 3	1.3	208,4	6,5	2.9	9,4	7, 0		7.0				16,4	224.8
+	++-	<u> 12 - 9</u> A <u>iii</u> B	106.0	_	-		106,0	13,5	-	-	57,2	16,7	-	2,2	35,9	125,5	2,8	3,3	6,1	12.3	_	12,3		1.3	1.3	251.2	6,5	2,9	9,4	7,0	-	7,0	-	_	-	16,4	267,6
		<u> 73-8</u> A # 8	_	_	60,8	_	60,8	_	11,2	_	-	4.2	34,8					_	_	12,3	_	12.3		1,3	1.3	161.0	7,9	2,9	10,8	4,1		4.1	3,4	_	3,4	18,3	179.3
		73-9 A E B	-	78.4	_	1_	78.4	13,5	_	_		54,2	_		33, /				_	12,3	_	12.3	_	1,3	1.3.	196.1	7,9	2,9	10,8	4, /	-	4,1	3,4	_	3,4	18,3	214,4
		74-8 A W B		_	59,6	_	59,6	_	11,2	_		4.4	34,8	2,2	33,1	85.7	2.8	3.3	6.1	12,3	_	12.3		1.3			6,5	2,9	9,4	7,0	_	7.0	-			16.4	181.4
+	+	<u> </u>		76.8	_	_	76.8	13,5	_	_	_	54,4			33,1			3.3		12.3	_	12.3	-	1,3	1.3	195,7	6,5	2.9	9,4	7,0		7.0		_		16,4	216.1
090	ري	n5-8	-	85,2	_	_	85,2	_	11,2	_	-	464	8,6			T			6.1		_	12.3		1,3	1,3	209,4	7,2	2,9	10,1	7.0	-	7,0	_	_		17.1	226.3
100	97.6	A 11 8 15-9 A 11 8	107.0	_	_	-		13,5	-	_		16.7					2.8			12,3	_	12,3		1.3		252,2			10,1		_	7,0		<u>, —</u>		17.1	269.3
Seros		16 - 8 A u i B		60,2		_	60,2	_	11.2				34.8						6.1			12.3		1,3		165,6			10.1			7.0		_	_	17.1	. 182.7
7	+1.	16-3 A U B	-	77.6	_	_	77,6	13,5				54.4									-	12.3		1.3			7,2		10.1	7.0	_	7,0				17.1	217.6
in		<u> </u>		86.0	_	_	860	-	112			46.2			35,7		5,0	0,0	5,7	12,3		12,3	1,2	1.3				و <u>بہ ۔</u> وجے	10.8	41	_	4.1	3,4		3,4	18,3	224,1
12/2		11-9-1	108.0	-			108.0	13,5	11,5		57,2						_	-	_					1,3		249,1			-	111	_	4.1	34		3,4		267.4
	CKa	A W B 12-8-1		84.4			84.4	10,0	11,2	_					35,7		1	22	6.4	12,3	-	12.3	1,2					2,9	10.8	4,1		7,0	3,7		3,4	18.3	
200	100	12-9-1		04,4		_		13,5	11,2	_			8,6				2,8			12,3		12,3	1,2			 	6,5		9,4	7,0		+				16,4	225,8
1. NO-TO	86	A m B 13-8-1	106,0		60.8		106.0 60.8	13,3	44.0		57,2						2,8	3,3	6,1			12.3				-		2,9	9,4	7,0		7,0	2/			16,4	268,6
UHK.	0.00	13-9-1		701	04.0		 	10.5	11,2				34.8					_	_	12,3	<u> </u>	12,3						2,9	10,8	4.1		4.1	3,4		3,4	18,3	180,3
7 6		14-8-1	= 1	78,4	<u> </u>	<u> </u>	78.4	13,5		_		54,2			32,9			_	_	12.3	_	12.3	1,2					2,9	10,8	4.1		4.1	34		3,4	18,3	215,4
		A # B	7.7		59,6	-	59,6	-	11,2				34.8							12,3	=	12,3	1,2				6,5		9,4	7.0		7,0				16.4	182.4
``	≣	A . B R7 - 9		76,8	_	二	76,8	13,5	_			54,4					2,8	3,3	6, /	12,3	_	12.3	1,2	1,3	2,5	200,7	6,5	2,9	9,4	7.0		7,0				16,4	217.1
	K	A m 8 n8-3			66.8		66,8	_	_	4,8		44,5		3, 3	25,9	78,5	_			12.3		12.3	_	1,3	1.3	158,9		2,9	10,8	4.1	_	4.1	3,4		3,4	18,3	177.2
, [<u> </u>	10 - 3 A in B			65,6	<u> </u> _	65,6	L	_	4,8	_	44,6	_	2,2	25,9	77.5	2.8	3,3	6.1	12,3	<u> </u>	12.3	_	1,3	1,3	162,8	6,5	2,9	9,4	7,0	_	7,0				16,4	179.2
3 2	1	A III B	_	_	60.8	_	60,8	_	_	4,8	_	2,2	26,2	3,3	24,1	60,6	_	_	_	12.3	_	12.3	_	1,3	1,3	135,0	7,9	2.9	10,8	4.1	_	4.1	3,4		3,4	18.3	153.3
) i	$\equiv $	10-5 A m 8	_		59,6		59,6		<u> </u>	4,8	. —	2,6	26,2	2,2	24.1	59,9	2,8	3,3	6,1	12.3	_	12.3		1,3	1,3	139,2	6,5	2,9	9,4	7.0	_	7,0				16.4	155,6
3	JANNIIPUMSZJAHNN Meskér				÷																IT	V			. , ,											Cepul	R 1 440-2 YCK 2
<u>`</u> =	二							•													Ц,	[]		Ŀ	6/0	gopi	ra	CIT	a s	U	Ha	ODH	'Y M	1UM5	<i>y</i>	Auch	

<i>Βδιδορκα</i>	emanu	на	одну	naumy.	KT.
DUIUUDNU	0 ///	., -			

			•			٠.								,																						
							-				APM	am:	Y P H	610		430	∂ e 1	U A	_											4610		ema		75	_ `	
	Manua						C	ma		roc	7 5	781						47		672			380				380	_					5781-			
Γ	Марка				AN					KAQ	cc	A IT				_	icc .	H L		HOMP HOKA	ng/u/		am B.				am 8.	Cr.3		766	A W	<u> </u>	acc	7 -	Итого	Bcezo
	nyame)	-	, 	MM	r	Umozo	L.,			<u>8, M</u>					Umo20	<u>_</u>	MM	Umozo	-	MM	Umozo	17000	416	Umozo	Umozo			10000	Ø,		Цтого	7,	<u>mm</u> -	Итого		
1		25	22	20	18		22	20	16	14	12	10	8	6		16	12		5	4		180x50 x 6	8			1.140x 90 X 8	58		12	10		12	10			
	11-8 A 17	-	66,8		_	66,8	-	11,2	-	<u> </u>	46,2	8,6	3.3	35,9	105,2		_		12,3	_	12,3		1,3	1,3	185,6	7,9	2,9	10,8	4,1	-	4,1	3,4	_	3,4	18.3	203, 9
1	11-9	86.0	_	_	-	86,0	13.5	-	_	57,2	16,6	_	3,3	35.9	126.5		_	1	12,3	—	12.3	_	1,3	1.3	226,1	7,9	2,9	10,8	4.1	_	4.1	3,4	_	3,4	18,3	244,4
	12-8	_	65,2	_	_	65,2	_	11,2	_	_	46.4	8,6	2,2	35,9	104,3	2.8	3,3	6,1	12,3	_	12,3	_	1,3	1,3	189.2	6,5	2,9	9.4	7,0	_	7,0	_	_	_	16,4	205.6
	<u> </u>	84.4	_	_	_	84.4	13.5	_	_	57.2	16.7		2,2	-				6,1	12,3	_	12,3				229,6				7,0	-	7,0	_			16.4	246.0
	13-8 A 15	_	_	50,0	_	50,0		11,2	_	_	4,2	_		33,1			_	_	12,3	_	12.3				150,2			10,8	41	_	4.1	3,4		3,4	18,3	168.5
	<u> 73-9</u> A ®	<u> </u>	60,8	_	_	60,8	13,5		_	-	54.2	0 7,0		33.1	-				12,3	_	12.3		1,3		178,5			10,8	41	_	4,1	3.4	_	3,4	18.3	196.8
	14-8 A Ø	_	_	49,2		49.2		11.2	_		4.4	21.0		33.1			3,3	6,1	12.3	_	12.3				_						7.0	-	_		16.4	171.0
	<u> 14-9</u> A Ø	_	59,6	_		59,6	125	11.6	_	-	54.4	34.8		_		2,8			12,3	-					154,6						7,0	_	_			
_		_	66,0	_		66,0	/3,3	110	-	-	-	_		-			1			_	12.3	-			182.5									\pm	16,4	198,9
١	<u> 75-9</u>	85,2				85,2	13.5	11,2	_	_	46.4		2,2					6,1	12,3	_	12,3	1			190,0						7,0			-	/7,/	207,1
19	<u></u>	_	_	49.6	-	49.6	13,3		=	57,2	1077		2,2						12,3		12,3	_	1.3		230,4			-		_	7,0	_	_	_	17.1	247,5
6	<u> 16-9</u>	_	60,2	_			13,5	11,2	=	_	-	34.8	2,2			-			_		12.3	_	1.3	1,3	155,0					=	7.0	_			17.1	172,1
	<u> 11-8-1</u>	_	66,8	_		66.8	13,3	-	_	=	54.4	_	2,2				3, 3	0,/		_	12.3		1.3	1,3	183.1	7,2	2,9	10,1	7,0	_	7,0	_			17,1	200,2
	11-3-1 A 17	86,0			-	86.0	12.5	11.2	_	_	46,2	8,6		35,7	t. —		_	_	12,3		12,3	1,2	1.3	2,5	186,6	7,9	2,9	10.8	41	-	4.1	3,4	_	3.4	18,3	204.9
240	1-8-50		65,2		-	65.2	13,5	-	_	57,2	16,6			35,7	126,3		_	_	12,3		12.3	1,2	1.3	2,5	227,1	7,9	2,9	10.8	4,1	_	4.1	3,4	_	34	18.3	245.4
60	12-9-1 AN	84.4	_	_		844	13.5	11,2	-	_	46,4		2,2			2,8			12,3		12.3	1,2	1.3	2,5	190,3	6,5	2,9	9,4	7,0	_	7,0				16,4	206,6
198	<u>N3-8-1</u> A 19	_	_	50.0	_	50.0	73,3	-	-	57.2	16,7	_	2,2				3,3	6,1			12.3	1,2	1,3	2,5	230,6	6,5	2,9	9,4	7,0	_	7.0	-		_	16,4	247,0
ø	<u> 73-9-1</u> A'V	-	60,8	-		1	10.0	11,2		_		34,8	3,3	32,9	86,4	_		_	12,3		12.3	1,2	1,3	2,5	151,2	7,9	2,9	10.8	4,1	_	4,1	3,4	_	3,4	18.3	169,5
00	14-8-1 AIV	_	_	49,2	_		13.5				54.2		3,3	32,9	103,9			1	12,3	_	12,3	1.2	1.3	2,5	79,5	7,9	2,9	10.8	4,1	_	4,1	3,4		3,4	18.3	197.8
4	<u> 19-9-1</u> A.T		59,6			49,2	10	11.2	_	_	4.4	34.8	2,2	32,9	85,5	2,8	3,3	6,1	12,3	_	123	1,2	1,3	2,5	155,6	6,5	2,9	9,4	7.0	-	7,0	_		_	16.4	172,0
	17-9 AN	_	_	55,2	\vdash	59.6	13,5	_		_	54,4	_	2,2	32,9	103,0	2,8	3,3	6,1	12,3	-	12,3	1,2	1,3	2,5	183,5	6,5	2,9	9,4	7,0	_	7,0	_	_	_	16.4	199.9
	18.9	_		54,0	_	55,2		<u> </u>	4.8		44.5	-	3,3	25,9	78.5	_	_		12.3	_	12,3	-			147,3		2,9		4.1	_	4.1	3,4	_	3,4	18.3	165.6
60	A - N A 9	_		50,0	_	54,0 50,0		-\	4.8	_	44,6		2,2	25,9	77,5	2,8	3,3	6,1	12,3	_	12.3		1,3	-	151.2						7.0	_			16,4	167.6
100	110-9 A IV	-	_	49,2		49,2		-	4.8	_	2,2	26,2	3,3	24	60,6	<u></u>	_	_	12,3	_	12,3		1.3		124.2			10.8		_	4.1	3.4		3,4	18.3	142,5
くい					<u> </u>	73,2			4.8				2,2	24, [59,9	2.8	3,3	6,1	12,3	_	12,3	_	1.3		128.8			9,4	7.0		7.0				16.4	145.2
`		4.11														×					لئنب					<i>U</i> /5	-101	J, / 1	// 5		لنب		ئــنــا	لبــــا	10,7	193,6

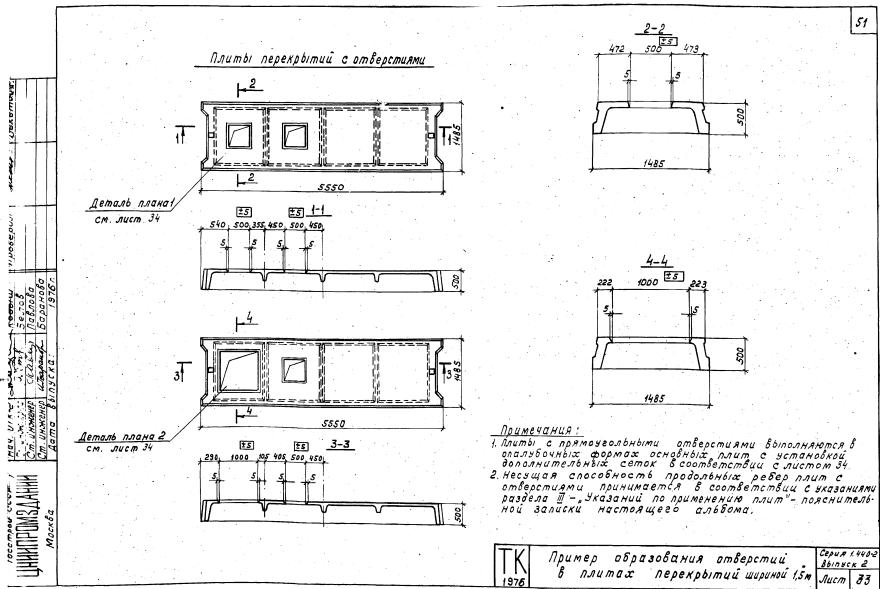
TK 376

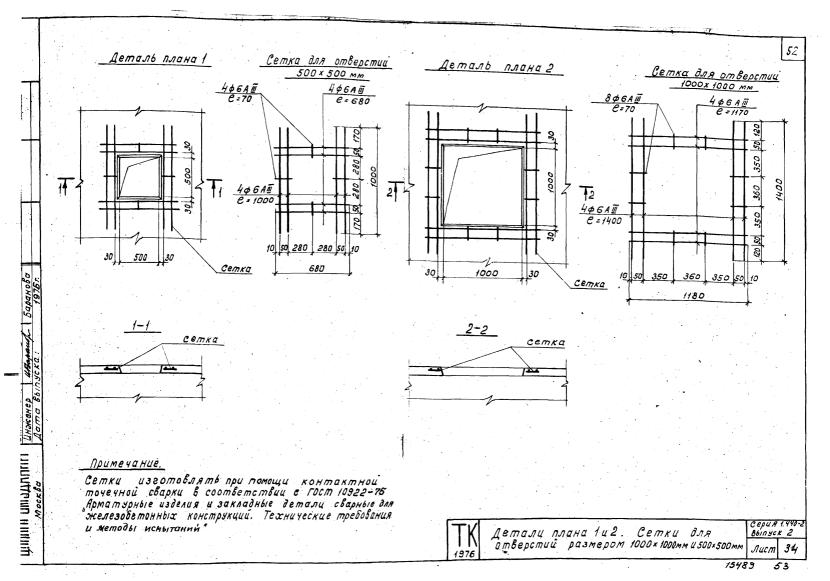
Выборка стали на одну плиту

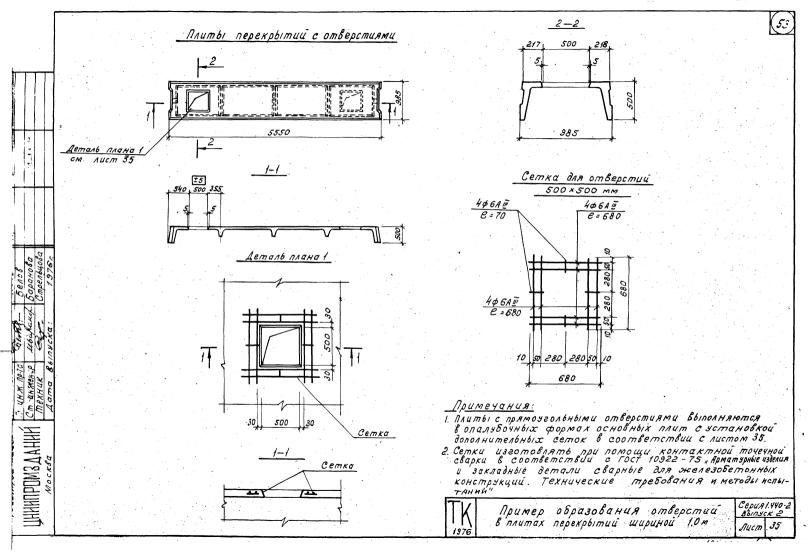
Cepus 1,440-2 Boinsek 2 Aucm 30

Выборка стали на одну плиту, кг.

											-																							•	**		1
	1							API	Mα	MY	PHO	61e	U	300	911	18														KAC	BHE	i/e	den	nanc	4		
	\dashv	44						ma	16		27 5						,				672			7 38			roct	380	-7/		em a,	16	roci	578	1-75		
		Марка		K	1000	A:	7				KAO		A III			,		CC.	AI			BI BI		ram b			Прок		.673	KA	acc A	17.	K	1000	AI		.
11		naumbi		φ,		1	1/1020	-	100	146		MM	10		·	Итого	φ, 16	_	Итого	φ,		Итого	17000		Úmozo	Итого			Umozo	Ø, 1		//	φ,	MM		Umozo	Bceeo
			25	22	20	18	-	22	20	16	14	12	10	8	6	-	<u> </u>	12		5	4.		X 8	<i>5</i> ≥8	UNIUZV		x 8	58	umbeo	12	10	Umozo	12	10	UM020		
	Ш	$\frac{71-8}{A \overline{x}}$			55,2	_	55,2	_	11,2	1		46,2	8,6	3,3	35,9	105,2				12,3	_	12,3		1,3	1.3	174,0	7,9	2,9	10.8	4.1	-	4.1	3.4		3,4	18.3	192.3
		21-9		66,8			66,8	13,5	_		57,2	16,6		3,3	35.9	126.5		_	1	12.3		12,3	-	1,3	1,3	206,9	7,9	2,9.	10,8	4.1	-	4.1	3,4		3,4	18.3	225,2
111		12-8 12-8	-		54.0	_	54,0		11,2	_	_	46,4	8,6	2,2	<i>35,9</i>	104.3	2.8	3,3	6,1	12,3	_	12,3	1	1,3		178,0	6,5	2,9	9,4	7.0		7.0			_	16.4	194.4
ŀ		<u> </u>	-	65,6	_	_	65,6	13,5	_		57,2	16.7	_	2,2	35,9	125,5	2.8	3.3	6,1	12,3	_	12,3	_	1,3	_		6,5			7,0		7.0				16.4	
	\Box	<u> 13-8</u>	_		_	40,8	40.8	_	11,2	_	_	4.2	34.8	3,3	33, /	86.6	-	_	-	12,3	-	12,3	_	1,3		144.0		2,9	-	4.1		4.1	3,4		3,4	18,3	227.2
		73-9 AV	_	_	50,0	_	50.0	13.5	_		_	54.2	_	3,3	33./	104.1	-	1	-	12.3		12,3	- 1	1,3		167.7			10,8	4.1	_	4,1	3,4		3.4	-	159,3
		<u> 14-8</u> AX	-	_		40,0	40,0	_	11,2	_		4,4	34,8	2,2	33,/	85,7	2,8	3,3	6.1	123		12.3	_	1,3		_	6.5			7.0	\exists	7.0	3,4		0,7	18,3	186,0
		<u> 14-9</u> A ₹	_	_	49,2	1	49,2	13,5	_	-		54.4	-	2,2	33,1	103,2	2,8	3,3	6,/	12,3	_	123	_	1,3	1		6.5									16,4	161,8
++	+	<u>15-8</u>	_	-	54.6	1	54,6		11,2	_	<u>-</u> -	46,4	8.6	22	35.9	104,3	2,8	3,3	6.1	12.3	_	12.3	_	1,3	1 1					7,0		7,0				16,4	188,5
80	191	<u> 15-9</u>	_	660				13,5	=	_	57,2						2,8		6:1		_	12,3		1,3			7.2	_	10,1	7,0		7,0				17.1	195,7
Sapakoga Sapakoga	19,	16-8 A¥	-		_		40,4		11,2	_	_								6.1		_	12,3			1 1		7,2		$-\tau$	7.0	_	7,0		\vdash		17,1	228.3
200		16-9		_	49,6	-		13,5	_	_	_	54.4				103,2			6,/		_	12.3		1,3			7.2			7.0	-	7,0				17,4	162,9
11,	۱ ۲	A 7 11-8-1	_	_	55,2	_	55,2	_	11,2	_		,				105.0	-/5	-	-	12.3	-	12,3	12	1,3			7,2			7,0	_	7,0				17,1	189,6
1 2		A ¥ <u>01-9-1</u>		66,8	-			13,5					***							12,3			1,2		2,5					4,1	_	4.1	3,4		3,4	18,3	193,3
abakku	i	A <u>v</u> <u>n 2 - 8 - 1</u> A <u>v</u>			54,0		540	75,0	11,2	-	57.2	16.6				126,3	2,8	22	<i>c</i> /			12.3	1.2		2,5					4.1	-1	41	3,4		3,4	18.3	226,2
28	JCK	n2-9-1		65,2		_		13,5		_	57,2					104.1	2,8		6.1		-	ا ـ ـ ا	1,2		2,5					7,0	_	7.0				16,4	195,4
.0	911)	<u> 13-8-1</u>			_	40,8	40,8	/3,3	1		37,2	16.7					2,0	3,3	0,1			1 T	1,2		2,5				9,4	7,0	_	7.0]	_	16.4	228,0
No.	00	A V 13-9-1			50.0			12.0	11,2	-			34.8		1	4			-	12.3		12,3	1.2	1,3	2,5	142.0	7,9	2,9	10.8	4.1		4.1	3,4	-	3.4	18.3	160.3
CM. UH KENED	ma	<u>A ¥</u> <u>14-8-1</u>		-		,	T	13,5		_		54,2				103,9				12,3		12.3	1.5	1,3	2.5	168,7	7, 9	2,9	10.8	4,1	_	4,1	3,4	_	3,4	18.3	187,0
CM.	10	A ¥ 19-9-1		<u> </u>		40,0	40.0	-	11.2	_		4,4					2.8			12,3		12.3	1,2	1.3	25	146,4	6,5	2,9	9,4	7,0	_	7,0				16.4	162.8
		A ¥ 17 + 9	<u> </u>	_	49,2			13,5				54,4	_	2.2	32,9	103,0	2,8	3,3	6.1	12.3		12.3	1,2			-	6,5		9,4	7.0		7.0			_	16.4	189.5
至		A \$\overline{x}\$ \[\textit{D} \tilde{x} = 9 \]		_		44.8	44.8	-	_	4.8		44.5	_	3,3	25,9	78.5			_	12,3	_	12.3	_	1,3	1		7,9		10.8	4.1			21		3,4	1	
三		A ¥ 0 9 9	_		_	44,0	44.0	_	<u> </u>	4,8		44.6	_	2,2	و,25	77,5	2.8	3,3	6.1	12.3	_	12.3	_	1.3	1 . 1		6,5	-	9.4	7.0		41	3,4		3,4	18.3	155,2
3	460	ΑĒ	_	_	_	40,8	40,8	_	_	4.8		2,2	26,2	3,3	24.1	60,6	_	_	_	12.3	_	12.3	-	1.3	1 1	115,0			10.8	4.1		7.0		-		16.4	157.6
HHHADEMOGREHAM	Moch	<u> 10-9</u> AT		L	_	40.0	40,0	_	-	4.8	_	2,6				59,9		3,3	6,/	12,3	_	12,3	_	1,3	-		6,5		9,4		-	4,1	3,4		3,4	18.3	133,3
	٧.	1.	٠.																						1.50	113,0	0,5	2.3	3,4	7.0		7,0		لــــا		16,4	136.0
蓋	(+ 5							17	-V		7												1000	
	٨											• ,							÷			$ \Omega $	* :	E	3618	OPK	α .	ב מת כ	JÜ	H	a n	BH	y D.	1UM.	y	8610	181.440.2 4CK 2
		L	<u> </u>																		1/	976		* .		. •				,,,	- 0	0,,,	, ,,,,	, 4 ///4	•	Aug	31


Выборка стали на одну плиту иг


		Артатурные изделия Закладные детали													7																					
Τ	Марка	Cma	16 F	OCT /	0884	1-71	Cmanb FOCT 5781-75																TOCT 380-71			FOCT 380-71			Cman6			FOCT 5781-75.				
			K	nac o	c AT	<u> </u>	KAGCC A II							KAQCC AI			ХОЛОДНОМЯНУГАЯ ПРОВОЛОКА ВІ			Apokam B.C.3				Прокат В.Ст3		КлассА Ш		<u>//</u>	KAQCCAI		AI	1				
1	NAUM61	<u></u>	Ø, MM			Umozo				φ, mm .					Ø, .	Ø, MM					Профиль		Umozu	Προφυλό ,,		Ø, MM ,		11.	¢, MM			Umozo	Brezo			
		25	22	20	18		22	20	16	14	12	10	8	6	Итого	16	12	Итого	5	4	Цтого	480×60 × 8	5.8	Итого		4/YOX 9.	SaB	Итого	12	10	Umozo	12	10	<i>Итого</i>		
<u> </u>	<u>///-8</u>	-	<u> </u>	55,2	-	55,2	-	11,2	_	_	46,2	8,6	3,3	35,9	105.2	_	_	-	12,3	_	12,3	_	1,3	1, 3	174,0			10,8	4,1		4,1	3,4	_	3,4	18.3	192,3
	7/- 9 At Y	_	66.8	_	_	66,8	13,5	_	_	57.2					126,5		_		12,3	_	12,3	_	1,3		206.9	-			4,1	_	4,1	3,4	-	3,4	18.3	225.2
	12-8 AT \$	-	[-	54.0	-	54,0	_	11,2	_	-	46.4		2,2	35,9	104.3	2.8	3,3	6,1	12,3	-	12,3		1.3	1,3	178,0	6,5	2,9	9,4	7.0	_	7,0	_	_	_	16,4	194,4
-	<u>ne-9</u> A₁₹	_	65,6	_	-	65,6	13.5	-	_	57.2	1		2,2				1	6,1	12.3	=	12,3	_	-		210.8		2.9		7,0		7,0	$\lceil - \rceil$	-	_	16,4	227,2
+-	73-8 A7X	_	-	-	40,8	40,8	-	11.2	-	-	4.2	34.8			86.6		-	_	12,3	-	12,3	_	1.3		141.0	 	2,9	10,8	4,1	_	4, 1	3,4	_	3,4	18,3	159,3
	73-3 Ar V	-	_	50,0	_	50,0	13,5		_	_	54.2			33./	104,1	-	_	_	12,3	_	12.3		1,3	1,3	167,7	7,9	2,9	10,8	4,1		4.1	3,4	_	3,4	18,3	186,0
	$\frac{AY-B}{A7\bar{x}}$	_	=	_	40,0	40.0	 	11,2	_	_	100	34.8		33,1	85,7	2.8	3.3	6,1	12,3	_	12.3	.—	1.3	1,3	145,4	6,5	2.9	9,4	7,0	_	7,0	-	-		16,4	161,8
	14-9 AT \$	-	-	49,2	-	49,2	13.5		_		54.4		2,2	33,1	103.2	2,8	3.3	6,1	12,3		12,3	_	1,3	1.3	/72,/	6,5	2.9	9,4	7,0		7,0	_			16,4	188,5
+	15-8 At T	_	_	54.6	-	54.6	-	11,2	_	-	46,4	8,6	2,2	35,9	104.3	2.8	3,3	6,1	12.3	_	12.3		1.3	1,3	178,6	7,2	2,9	10,1	7,0	_	7.0		_	_	17,1	195,7
1,5	15-9 AT \$	_	66,0	-	_	66.0	13,5	-	_	57,2	16,7	-	ج رحے	35,9	125.5	2.8	3, 3	6.1	12,3		12;3	_	1,3	1.3	211,2	7,2	2,9	10,1	7,0		7, 0		_		17, 1.	228,3
976	<u>Л6-8</u> A+∑	_	_	-	40,4	40.4	_	11.2	_	_	4,4	34,8	2,2	33,1	85,7	2.8	3,3	6.1	12,3	_	12,3	-	1,3	1.3	145,8	7,2	2,9	10,1	7,0	_	7,0	_	_	_	17,1	162,9
١,	<u> 16-9</u> A1 I	_	-	49,6	<u> </u>	49,6	13,5	-	_	-	54.4		2,2	33, /	103,2	2.8	3.3	6,1	12,3	_	12,3		1.3	1.3	172,5	7,2	2,9	10,1	7,0	_	7,0	_		_	17,1	189,6
	<u> 17-8-9</u> A 7 Y	_	_	55,2	_	55,2	_	11,2	=	_	46,2	8,6	3,3	35,7	105,0	-			12,3		12,3	1,2	1,3	2,5	175,0	7,9	2,9	10,8	4.1	_	4,1	3,4		3,4	18.3	193,3
	<u> </u>		66,8			66,8	13,5	-	_	57.2	16.6		3,3				_	<u> </u>	12,3						207,9			10,8	4,1		4.1	3,4		3,4	18.3	226,2
1 X C	12-8-1 ATE 12-9-1		_	54,0	_	54.0	_	11.2	_	-	46.4							6.1							179,0			9,4	7,0	1	7,0			_	16,4	195,4
48	ATT		65,2			65,2	13.5		ļ —	57.2	16.7		ح جے	<i>35,</i> 7	125, 3	2,8	3,3	6,1	12,3		12,3	1,2	1,3	2,5	211.6	6,5	2,9	9,4	7,0	_	7,0				16,4	228.0
86	<u> </u>	_		_	40,8	40,8	_	11,2	-	-	4.2	34.8	3,3	32.9	86,4	_	-	_	12.3	_	12,3	1,2	1,3	2,5	142.0	7,9	2,9	10,8	4,1	_	4,1	3,4		3,4	18,3	160,3
200	<u> 73-9-1</u> <u> A+¥</u>	_	_	50,0	_	50,0	13,5		-	_	54.2		3.3				-		12,3		12,3	1,2	1.3	2,5	168,7	7,9	و ج	10.8	4.1	_	4,1	3,4		3,4	18.3	187,0
40,	<u> </u>	_	_	_	40,0	40,0	_	11,2	_	_	4,4	34.8						1	12,3	<u> </u>	12.3	1,2			146,4	_	و ع	9, 4	7,0	-	7,0	_		_	16,4	162.8
Τ,	$\frac{\underline{n}\underline{y} \cdot \underline{g} \cdot 7}{\underline{A} \cdot \underline{y}}$ $\underline{n} \cdot \overline{y} \cdot \underline{g}$	_	-	49,2	1-	49,2	13,5	=	_		54.4		2,2		ł		3,3	6,1	12,3	<u> </u>	12,3	1,2	1,3	2,5	173,1	6,5	و جے	9.4	7,0	_	7,0		_		16.4	189,5
	ATY	_	_	-	94,8	44.8	_	_	4.8	_	44.5		3,3				-	-	12,3	_	12,3	_	1,3		136,9			10,8	4.1	_	4.1	3,4		3,4	18.3	155,2
	18-9 Ar V 19-9	_	<u> -</u>	_	44.0	44,0	_	_	4.8	_	44.6				77,5	-	3,3	6.1	12.3	_	12,3		1.3		141.2		2,9	9,4	7,0	_	7,0				16,4	157.6
KBa	77 <u>V</u>	_	1		40,8	40.8	_	_	4.8		-	26.2	1 1		1		 -	-	12,3		12.3				115,0		-	10,8	4,1	_	4.1	3,4		3.4	18.3	133,3
1001	ATY			_	40,0	40,0	_	_	4.8	_	2,6	26,2	2,2	24.1	<i>59,9</i>	2,8	3.3	6.1	12,3		12,3		1,3	1,3	119,6	6,5	و,ح	9,4	7,0	_	7,0			<u></u>	16,4	136,0
£	1						-			-																										ł


TK

Выборка стали на одну плиту

Cepus 1.440-2 Beinsek 2 Aucm 32

