СТАНДАРТ ОРГАНИЗАЦИИ

Сварка сосудов, аппаратов и трубопроводов из высоколегированных сталей

CTO 00220368-013-2009

OΑ	О "ВНИНПТхимі	юфтеанивратуры
	Цанная коль: юдинаньым д	
Дan	a	
	цпись_ Л	1

Издание официальное

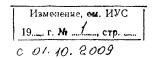
Предисловие

1 РАЗРАБОТАН открытым акционерным обществом «Волгоградский научноисследовательский и проектный институт технологии химического и нефтяного аппаратостроения» (ОАО «ВНИИПТхимнефтеаппаратуры»), открытым акционерным обществом «Всероссийский научно-исследовательский институт нефтяного машиностроения» (ОАО «ВНИИнефтемаш»)

РАЗРАБОТЧИКИ:

В.А. Крошкин, В.И. Курило, В.К. Красильников, Т.И. Меняйлова (ОАО «ВНИИПТхимнефтеаппаратуры»),

А.Н. Бочаров, Н.М. Королев (ОАО «ВНИИНЕФТЕМАШ»)


- 2 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ приказом ОАО «ВНИИПТхимнефтеаппаратуры» № 25 # от 20.02.09г.
 - 4 B3AMEH PTM 26-17-034-84, PTM 26-17-012-83
- 5 СОГЛАСОВАН с Нижне-Волжским межрегиональным управлением по технологическому и экологическому надзору Федеральной службы по экологическому, технологическому и атомному надзору « 27 » 02 2009г.

© ОАО «ВНИИПТхимнефтеаппаратуры»

Настоящий документ не может быть полностью или частично воспроизведен, тиражирован и распространен в качестве официального издания без письменного разрешения ОАО «ВНИИПТхимнефтеаппаратуры»

Содержание

 Ооласть применения 	1
2 Нормативные ссылки	2
3 Термины, определения и сокращения	5
4 Общие положения	6
5 Особенности сварки высоколегированных сталей	6
5.1 Сварка сталей аустенитного и аустенитно-ферритного классов	6
5.2 Сварка сталей ферритного, мартенсито-ферритного и	
мартенситного классов	8
6 Требования к основным материалам	9
7 Сварочные материалы	
8 Сварочное оборудование	
9 Квалификация сварщиков и специалистов	23
10 Подготовка деталей под сварку	24
11 Сборка под сварку	
12 Технологические указания по сварке	
12.1 Общие требования	26
12.2 Ручная дуговая сварка	
12.3 Автоматическая сварка под флюсом	29
12.4 Электрошлаковая сварка	
12.5 Сварка в защитных газах плавящимся электродом	
12.6 Ручная аргонодуговая сварка неплавящимся электродом	
12.7 Порядок сборки и сварки трубных конструкций	
13 Термическая обработка	
14 Требования к контролю качества сварных соединений	
15 Исправление дефектов сварных швов	38
Приложение А Назначение и условия применения высоколегированных	
сталей	41
Приложение Б Импортные аналоги отечественных сварочных	
материалов	
Приложение В Основные типы сварочного оборудования	49
Приложение Г Специализированные научно-исследовательские	
организации – авторы настоящего проекта	52

СТАНДАРТ ОРГАНИЗАЦИИ

СВАРКА СОСУДОВ, АППАРАТОВ И ТРУБОПРОВОДОВ ИЗ ВЫСОКОЛЕГИРОВАННЫХ СТАЛЕЙ

Дата введения: 2009-03-01

1 Область применения

Настоящий стандарт распространяется на изготовление, монтаж и ремонт сосудов, аппаратов толщиной до 200 мм и технологических трубопроводов толщиной до 20 мм из высоколегированных сталей для химической, нефтехимической, нефтеперерабатывающей, газовой и других смежных отраслей промышленности, работающих при температурах от минус 70 до 1100°C, подведомственных Ростехнадзору.

Стандарт разработан с учетом требований ПБ 03-576, ПБ 03-584, ПБ 03-585, ОСТ 26-291, ГОСТ Р 52630, ОСТ 26.260.3, ОСТ 26.260.480, СТП 26.260.486, СА 03-005, ОТУ 3 и РЛ 38.13.004.

Стандарт определяет требования к технологии сварки изделий из высоколегированных сталей аустенитного, аустенитно-ферритного, ферритного, мартенсито-ферритного и мартенситного классов.

Настоящий СТО регламентирует применение основных и сварочных материалов, заготовительные операции, подготовку кромок под сварку, сборку, способы (ручная дуговая, аргонодуговая неплавящимся электродом, полуавтоматическая в защитных газах, автоматическая под флюсом и электрошлаковая), режимы и технологию сварки, термическую обработку, контроль качества и исправление дефектов сварных соединений.

Организация, выполняющая сварку изделий из высоколегированных сталей, должна иметь разрешение на право применения технологии сварки в порядке, установленном РЛ 03-615.

Настоящий стандарт предназначен для технологов, конструкторов, мастеров производства, ОТК и рабочих, занимающихся изготовлением и приемкой аппаратов и трубопроводов из высоколегированных сталей.

ОАО «НИИХИММАШ»

Зарегистрировано № 264 2009~02-26
Заместитель нарально директора

Делем объементо директора

Делем объементо директора

2 Нормативные ссылки

В настоящем стандарте использованы ссылки на следующие стандарты, правила и другие нормативные документы:

ГОСТ Р 52222-2004 Флюсы сварочные плавленые для автоматической сварки. Технические условия.

ГОСТ Р 52630-2006 Сосуды и аппараты стальные сварные. Общие технические условия

ГОСТ 2246-70 Проволока стальная сварочная. Технические условия

ГОСТ 2601-84 Сварка металлов. Термины и определения основных понятий

ГОСТ 5264-80 Ручная дуговая сварка. Соединения сварные. Основные типы, конструктивные элементы и размеры

ГОСТ 5582-75 Прокат тонколистовой коррозионно-стойкий, жаростойкий и жаропрочный. Технические условия

ГОСТ 5949-75 Сталь сортовая и калиброванная коррозионно-стойкая, жаростойкая и жаропрочная. Технические условия

ГОСТ 6032-2003 Стали и сплавы коррозионно-стойкие. Методы испытаний на стойкость к межкристаллитной коррозии

ГОСТ 6996-66 Сварные соединения. Методы определения механических свойств

ГОСТ 7350-77 Сталь толстолистовая коррозионно-стойкая, жаростойкая и жаропрочная. Технические условия

ГОСТ 8050-85 Двуокись углерода газообразная и жидкая. Технические условия

ГОСТ 8713-79 Сварка под флюсом. Соединения сварные. Основные типы, конструктивные элементы и размеры

ГОСТ 9466-75 Электроды покрытые металлические для ручной дуговой сварки сталей и наплавки. Классификация и общие технические условия

ГОСТ 9940-81 Трубы бесшовные горячедеформированные из коррозионно-стойкой стали. Технические условия

ГОСТ 9941-81 Трубы бесшовные холодно- и теплодеформированные из коррозионно-стойкой стали. Технические условия

ГОСТ 10052-75 Электроды покрытые металлические для ручной дуговой сварки высоколегированных сталей с особыми свойствами. Типы

ГОСТ 10157-79 Аргон газообразный и жидкий. Технические условия

ГОСТ 11534-75 Ручная дуговая сварка. Соединения сварные под острыми и тупыми углами. Основные типы, конструктивные элементы, размеры

ГОСТ 11878-66 Сталь аустенитная. Методы определения содержания ферритной фазы в прутках

ГОСТ 14771-76 Дуговая сварка в защитном газе. Соединения сварные. Основные типы, конструктивные элементы и размеры

ГОСТ 15164-78 Электрошлаковая сварка. Соединения сварные. Основные типы, конструктивные элементы и размеры

ГОСТ 16037-80 Соединения сварные стальных трубопроводов. Основные типы, конструктивные элементы и размеры

ГОСТ 22761-77 Металлы и сплавы. Метод измерения твердости по Бринеллю переносными твердомерами статического действия

ГОСТ 22762-77 Металлы и сплавы. Метод измерения твердости на пределе текучести вдавливанием шара

ГОСТ 23055-78 Контроль неразрушающий. Сварка металлов плавлением. Классификация сварных соединений по результатам радиографического контроля

ГОСТ 23518-79 Дуговая сварка в защитных газах. Соединения сварные под острыми и тупыми углами. Основные типы, конструктивные элементы, размеры

ГОСТ 23949-80 Электроды вольфрамовые сварочные неплавящиеся. Технические условия

ОСТ 5.9206-75 Флюс марки 48-ОФ-6

OCT 26-5-99 Контроль неразрушающий. Цветной метод контроля сварных соединений, наплавленного и основного металла

ОСТ 26.260.3-2001 Сварка в химическом машиностроении. Основные положения

OCT 26.260.480-2003 Сосуды и аппараты из двухслойных сталей. Сварка и наплавка

ОСТ 26-291-94 Сосуды и аппараты стальные сварные. Общие технические условия ОСТ 108.948-02-85 Флюс марки ФЦ-16, ФЦ-16A, ФЦ-18

СА 03-005-07 Технологические трубопроводы нефтеперерабатывающей, нефтехимической и химической промышленности. Требования к устройству и эксплуатации

СТО 00220368-010-2007 Швы сварных соединений сосудов и аппаратов, работающих под давлением. Радиографический метод контроля

СТО 00220368-012-2008 Сварка сосудов, аппаратов и трубопроводов из углеродистых и низколегированных сталей

СТП 26.260.484-2004 Термическая обработка коррозионностойких сталей и сплавов на железоникелевой основе в химическом машиностроении

СТП 26.260.486-2005 Стандарт организации. Каталог аналогов импортных и отечественных основных и сварочных материалов, применяемых при изготовлении сосудов, аппаратов и трубопроводов, подведомственных Ростехнадзору

РД 03-606-03 Инструкция по визуальному и измерительному контролю

РД 03-613-03 Порядок применения сварочных материалов при изготовлении, монтаже, ремонте и реконструкции технических устройств для опасных производственных объектов

РД 03-614-03 Порядок применения сварочного оборудования при изготовлении, монтаже, ремонте и реконструкции технических устройств для опасных производственных объектов

РД 03-615-03 Порядок применения сварочных технологий при изготовлении, монтаже, ремонте и реконструкции технических устройств для опасных производственных объектов

РД 24.200.04-90 Швы сварных соединений. Металлографический метод контроля основного металла и сварных соединений химнефтеаппаратуры

РД 26-4-87 Правила. Оборудование для безбаллонного обеспечения предприятий двуокисью углерода. Выбор и применение

РД 26-17-049-85 Организация хранения, подготовки и контроля сварочных материалов

РД 26.260.15-2001 Стилоскопирование основных и сварочных материалов готовой продукции

РД 38.13.004-86 Эксплуатация и ремонт технологических трубопроводов под давлением до 10,0 МПа ($100~{\rm krc/cm}^2$)

РТМ 26-44-82 Термическая обработка нефтехимической аппаратуры и ее элементов

ПБ 03-273-99 Правила аттестации сварщиков и специалистов сварочного производства

ПБ 03-576-03 Правила устройства и безопасной эксплуатации сосудов, работающих под давлением

ПБ 03-584-03 Правила проектирования, изготовления и приемки сосудов и аппаратов стальных сварных

ПБ 03-585-03 Правила устройства и безопасной эксплуатации технологических трубопроводов

ОТУ 3-01 Сосуды и аппараты. Общие технические условия на ремонт корпусов

ТУ 14-1-394-72 Сталь толстолистовая высоколегированная коррозионно-стойкая

ТУ 14-1-1160-74 Сталь сортовая коррозионно-стойкая марки 03X18H11

ТУ 14-1-1595-76 Проволока высоколегированная из стали Св-03X18H15Г6M2AB2, Св-05X15H9Г6AM

ТУ 14-1-2261-77 Сталь горячекатаная листовая коррозионно-стойкая. Марка 03X19AГ3H10

ТУ 14-1-2542-78 Сталь толстолистовая высоколегированная коррозионно-стойкая. Марки 08X18H10T, 12X18H10T

ТУ 14-1-2795-79 Проволока стальная сварочная из коррозионностойких аустенитных марок Св-01X18H10 (ЭП550) и Св-01X17H14M2 (ЭП551)

ТУ 14-1-2849-79 Прокат толстолистовой из стали высоколегированной

ТУ 14-1-3199-81 Сталь тонколистовая коррозионно-стойкая. Марки 08X18H10, 08X18H10T, 12X18H9, 12X18H10T

ТУ 14-1-3233-81 Проволока стальная сварочная марки Св-02Х8Н22С6 (ЭП794)

ТУ 14-1-3303-82 Сталь сортовая коррозионно-стойкая низкоуглеродистая марки 03X17H14M3 (ЭИ-66)

ТУ 14-1-3342-82 Сталь толстолистовая коррозионно-стойкая марки 07X13AГ20 (ЧС-46)

ТУ 14-1-3952-85 Проволока сварочная марки Св-01Х21Н10С6Ц

ТУ 14-1-4372-87 Проволока стальная сварочная из стали марки Св-03Х24Н6АМ3

ТУ 14-1-4981-91 Проволока стальная сварочная марок Св-06X21H7БТ (ЭП500), Св-08X25H20C3P1 (ЭП532), Св-08X15H23B7Г7M2 (ЭП88), Св-08X20H9C2БТЮ (ЭП156), Св-01X19H18Г10AM4 (ЭП690)

ТУ 14-1-5071-91 Прокат толстолистовой из коррозионно-стойкой стали марок 02X17H14M3-ВИ, 03X17H14M3-ВИ

ТУ 14-1-5073-91 Прокат горячекатаный толстолистовой коррозионно-стойкий марок 03X18H11 и 03X17H14M3

ТУ 14-1-5142-92 Прокат толстолистовой из коррозионно-стойкой стали марок 02X18H11-BO и 03X18H11-BO

ТУ 14-3-415-75 Трубы бесшовные из стали 03Х19АГ3Н10

ТУ 14-3-694-78 Трубы бесшовные холоднодеформированные из стали марки 03X21H21M4ГБ (ЭИ-35) и сплава 03XH28MДТ (ЭП-516)

ТУ 14-3-696-78 Трубы горячепрессованные из сплава 03ХН28МДТ (ЭП-516) и стали 03Х21Н21М4ГБ (ЭИ-35)

ТУ 14-3-751-78 Трубы бесшовные холоднодеформированные из сплава ЭП-516 и стали марки ЭИ-35

ТУ 14-3-1322-85 Трубы бесшовные из стали марки 07Х13АГ20

ТУ 14-3-1323-85 Трубы бесшовные из стали марки 07Х13АГ20

ТУ 14-3-1348-85 Трубы бесшовные тепло- и холоднодеформированные из стали марки 03X17H14M3

ТУ 14-3-1357-86 Трубы бесшовные горячедеформированные из стали марки 03X17H14M3

ТУ 14-3-1401-86 Трубы бесшовные холоднодеформированные из стали марки 02X18H11

ТУ 14-3-1596-88 Трубы бесшовные холодно- и теплодеформированные из коррозионно-стойкой стали

ТУ 14-3-1905-93 Трубы бесшовные горячее- и холоднодеформированные из стали марок 08X22H6T (ЭП-53), 08X21H6M2T (ЭП-54) и 10X14Г14H4T (ЭИ-711)

ТУ 14-4-715-75 Электроды марки ОЗЛ-17У. Технические условия

ТУ 108-1151-82 Листы из стали марок 12Х18Н10Т, 08Х18Н10Т, 12Х18Н10ГТ

Примечание – При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов. Если ссылочный стандарт заменен (изменен), то при пользовании настоящим стандартом следует руководствоваться заменяющим (измененным) стандартом. Если ссылочный стандарт отменен без замены, то положение, в котором дана ссылка на него, применяется в части, не затрагивающей эту ссылку.

3 Термины, определения и сокращения

- 3.1 Применяемые в настоящем стандарте стандартизованные термины: «автоматическая сварка», «аргонодуговая сварка», «валик», «корень шва», «кратер шва», «наплавка», «проход при сварке», «подварочный шов», «сварка в защитном газе», «ручная дуговая сварка», «сварка дуговая неплавящимся электродом», «сварное соединение», «слой сварного шва», «стыковое соединение», «тавровое соединение» приведены в ГОСТ 2601.
- 3.2 В настоящем стандарте приведены следующие нестандартизованные термины с соответствующими определениями:

Зенит – верхняя точка кольцевого стыка с наружной стороны

Надир – нижняя точка кольцевого стыка с внутренней стороны

3.3 В настоящем стандарте приведены следующие сокращения:

КТД – конструкторско-технологическая документация

КТО - конструкторско-технологический отдел

МКК - межкристаллитная коррозия

НД – нормативный документ

ОГК - отдел главного конструктора

ОГС - отдел главного сварщика

ОГТ – отдел главного технолога

ОСТ - отраслевой стандарт

ОТК - отдел технического контроля

ОТУ - общие технические условия

ОШЗ – околошовная зона

ПБ – правила безопасности

СТО - стандарт организации

СТП - стандарт предприятия

РД – руководящий документ

РДС – ручная дуговая сварка

РТМ - руководящий технический материал

ТУ – технические условия

УЗД – ультразвуковая дефектоскопия ЦД – цветная дефектоскопия ЭШС – электрошлаковая сварка

4. Общие положения

- 4.1 Общие требования к изготовлению деталей и узлов сосудов, аппаратов и технологических трубопроводов из высоколегированных сталей согласно ГОСТ Р 52630, ОСТ 26-291, ОСТ 26.260.3, ПБ 03-576, ПБ 03-584, ПБ 03-585, ОТУ 3, РД 38.13.004, чертежам и настоящего стандарта.
- 4.2 Все сборочные и сварочные работы производят в закрытых отапливаемых помещениях на специальных изолированных участках, обеспечивающих соблюдение чистоты сварочных работ, отсутствие сквозняков и температуру окружающего воздуха не ниже 0 °C. Другие требования к условиям выполнения сварочных работ приведены в п. 6.8.4 ГОСТ Р 52630.

При выполнении сварочных работ на открытых площадках должны быть приняты меры защиты места сварки от воздействия атмосферных осадков и ветра.

- 4.3 При проведении сварочных работ, кроме выполнения общих требований техники безопасности и производственной санитарии, необходимо обращать внимание на эффективность вентиляции, особенно при выполнении сварки в закрытых сосудах.
- 4.4 Сварка должна производиться согласно технологическим процессам, разработанным на основании чертежей и настоящего СТО.
- 4.5 При производстве работ по заготовительным операциям, подготовке кромок, сборке, сварке, термической обработке, исправлению дефектов и контролю сварных швов соблюдать требования действующих правил и инструкций по технике безопасности и охране труда.
 - 4.6 Оперативное управление процессом производства осуществляют:
- руководители ОГС, ОГТ, КТО (в части соблюдения требований данного стандарта при разработке технологической документации);
- начальники цехов и участков, отвечающие за изготовление сосудов, аппаратов и трубопроводов, согласно КТД;
 - начальник ОТК, отвечающий за выполнение требований КТД.

5. Особенности сварки высоколегированных сталей

5.1 Сварка сталей аустенитного и аустенито-ферритного классов

- 5.1.1 Особенности сварки высоколегированных сталей с использованием аустенитных сварочных материалов определяются:
- склонностью металла шва и околошовной зоны (ОШЗ) сварных соединений, эксплуатируемых в агрессивных средах, к межкристаллитной коррозии (МКК);
- предрасположенностью металла сварных швов, имеющих чисто аустенитную структуру, к горячим трещинам;
- охрупчиванием металла сварных швов, длительно эксплуатируемых при температурах свыше 350°C;
- охрупчиванием металла ОШЗ сталей аустенитно-ферритного и ферритного классов;
- высоким коэффициентом линейного расширения, высоким электрическим сопротивлением и низкой теплопроводностью высоколегированных сталей.
 - 5.1.2 Для предупреждения склонности сварных соединений к МКК рекомендуется

применение следующих технологических мер:

- использовать сварочные материалы, легированные титаном, ниобием, ванадием или другими карбидообразующими элементами. В наплавленном металле соотношение титана и ниобия к углероду должно быть: Ti/C ≥ 7 или Nb/C ≥ 8;
- снизить содержание углерода в стали и сварном шве до предела его растворимости (не более 0,03%);
- принять меры по предупреждению выгорания карбидообразующих элементов и насыщения металла шва углеродом;
- сварные соединения сталей аустенитного класса, эксплуатируемые при температурах 350°C, подвергнуть стабилизирующему отжигу при температуре 870-900°C в течение 2-3 часов.
 - 5.1.3 Для повышения коррозионной стойкости сварных соединений рекомендуется:
- использовать сварочные материалы с повышенным содержанием легирующих элементов (Cr, Ti, Nb, Al и др.);
- швы, обращенные к коррозионной среде, сваривать в последнюю очередь или за один проход. В случае отсутствия такой возможности следует принимать все меры для уменьшения нагрева металла первого слоя шва последующими (охлаждение или наполнение сосуда водой, применение медных массивных подкладок, обдув воздухом и др.);
- не допускать перегрева металла, для чего сварку вести на максимально возможных скоростях и минимальных токах, каждый последующий слой при многопроходной сварке накладывать после остывания предыдущего до температуры не выше 100°С.
- 5.1.4 Эффективным средством предотвращения образования горячих трещин в сварных швах является использование сварочных материалов, обеспечивающих аустенитно-ферритную структуру металлу шва с содержанием ферритной фазы не менее 2%.
- 5.1.5 Для предотвращения горячих трещин в сварных соединениях стабильноаустенитных сталей:
- сварку рекомендуется выполнять короткой дугой, без поперечных колебаний электродом, усиленными валиками, на пониженных скоростях;
- кратеры швов должны быть тщательно заплавлены до получения выпуклой поверхности или выплифованы, выводить кратеры на основной металл запрещается;
- применять комбинированный способ сварки соединений большой толщины (более 30 мм), при котором слои шва, не соприкасающиеся с агрессивной средой, выполняяются сварочными материалами, обеспечивающими меньшую коррозионную стойкость, но повышенную стойкость металла шва против горячих трещин, с повышенным содержанием ферритной фазы;
- при выборе защитной среды (флюса, защитного газа, покрытия электродов) отдавать предпочтение сварочным материалам с низкой окислительной способностью;
- при проектировании сварных конструкций во всех возможных случаях заменять угловые и тавровые соединения стыковыми;
- применение сталей и сварных швов с аустенитной структурой для работы конструкций при температурах ниже минус 100° C;
 - сварщики должны иметь опыт по сварке стабильноаустенитных сталей.
- 5.1.6 Во избежание охрупчивания сварных соединений сталей аустенитного класса, длительно работающих при температурах свыше 350°C, необходимо ограничивать содержание ферритной фазы в металле шва согласно табл. 5.1.
- 5.1.7 Для предотвращения охрупчивания ОШЗ сталей аустенитно-ферритного и ферритного классов их сварку рекомендуется производить короткой дугой, без поперечных колебаний электрода, с минимальным тепловложением за счет ограничения погонной энергии.

Температура эксплуатации сварных соединений, °С	Допустимое содержание ферритной фазы в % (балл по ГОСТ 11878)	
До плюс 350	Не ограничивается	
В интервале плюс 350 – 450	10	
В интервале плюс 450 – 550	8	
В интервале плюс 550 – 700	6	
В интервале плюс 700 – 900	3	

Таблица 5.1 – Допустимое содержание ферритной фазы в аустенитном металле шва

- 5.1.8 Для уменьшения сварочных деформаций сварку также рекомендуется выполнять на минимальных погонных энергиях. Сварные швы значительной протяженности рекомендуется сваривать обратноступенчатым способом, а многопроходные с изменением направления сварки после наложения каждого прохода.
- 5.1.9 Расстояние между прихватками должно быть в 1,5-2,0 раза меньше, а длина прихватки больше, по сравнению с теми же параметрами прихватки в соединениях углеродистых и низколегированных сталей.
- 5.1.10 При многослойной сварке в защитных газах высоколегированных сталей возможно образование шлаковых включений.
 - 5.1.11 Технологическими мерами предупреждения шлаковых включений являются:
 - ограничение числа проходов при многопроходной сварке;
- выполнение каждого слоя шва в один проход за счет поперечных колебаний электрода;
- снижение окислительной способности защитных сред за счет ограничения содержания активных газов CO₂ и O₂ в их смесях с аргоном;
- тщательная зачистка поверхности шва от шлака перед сваркой последующих слоев;
 - применение сварочной проволоки марки Св-08X20H9Г7Т.
- 5.1.12 При сварке высоколегированных коррозионностойких сталей необходимо выполнять следующие требования:
- следить за тем, чтобы в процессе сварки не повредить поверхность основного металла и швов. Возбуждение дуги должно производиться только на поверхности свариваемых кромок или на сварном валике, который будет перекрыт новым слоем;
- вести контроль за надежностью контакта в месте токоподвода к изделию, так как в случае недостаточного контакта поверхность аустенитной стали может оплавиться и служить очагом коррозионного разрушения;
- сварку незамкнутых стыков производить с применением вводных и выводных планок, изготавливаемых из высоколегированных сталей. Во избежание появления продольных трещин в шве планки должны надежно привариваться к изделию;
- при механизированных способах сварки устанавливать минимальный вылет электрода, обеспечивающий равномерное его плавление.

5.2 Сварка сталей ферритного, мартенсито-ферритного и мартенситного классов

- 5.2.1 При сварке высокохромистых сталей ферритного, мартенсито-ферритного и мартенситного классов следует учитывать:
- высокий порог хладноломкости стали, находящийся обычно в области положительных температур;
 - склонность к значительному охрупчиванию (рост ферритного зерна под воздей-

ствием термического цикла сварки) в околошовной зоне;

- низкую пластичность и вязкость металла шва, выполненного сварочными материалами аналогичного со сталью химического состава;
- невозможность устранения охрупчивания ферритных сталей термической обработкой.
- 5.2.2 При сварке высокохромистых сталей мартенситного и мартенсито-ферритного класса необходимо дополнительно принимать меры по предупреждению холодных трещин в шве и ОШЗ, связанных с образованием мартенситных структур.
- 5.2.3 Во избежание образования в сварных соединениях высокохромистых сталей трещин сварку, гибку, правку и все операции, связанные с приложением ударных нагрузок, следует выполнять с подогревом до 150-250°С. Шлак в сварных швах удаляется при температурах 100-150°С.
- 5.2.4 Сварку сталей производить на режимах с ограничением погонной энергии до 24 кДж/см и последующей термообработкой сварных соединений.
- 5.2.5 Сварка высокохромистых сталей, при отсутствии требования равнопрочности сварного соединения, выполняется аустенитными сварочными материалами. В этом случае термообработка сварных соединений не производится.

6. Требования к основным материалам

- 6.1 В зависимости от структурного состояния и характеристик свариваемости коррозионностойкие высоколегированные стали, предусмотренные настоящим стандартом, подразделяются на следующие группы:
- 1-я группа аустенитные стали (аустенитного класса с содержанием феррита не более 10%), свариваемые с обеспечением в металле шва ферритной фазы 2-10%;
- 2-я группа стабильноаустенитные стали, сварка которых производится с обеспечением структуры без ферритной фазы (чистоаустенитной, аустенитно-карбидной или аустенитно-боридной);
- 3-я группа аустенитно-ферритные (двухфазные) стали, содержащие более 10% феррита, свариваемые с обеспечением в металле шва ферритной фазы 2-10%;
- 4-я группа ферритные стали, содержащие только ферритную фазу (отдельные марки, например 08X13, могут содержать небольшое количество и мартенсита до 10%), свариваются аустенитными или ферритными сварочными материалами;
- 5-я группа мартенсито-ферритные стали, содержащие в структуре, кроме мартенсита, не менее 10% феррита, свариваются аустенитными или ферритными сварочными материалами;
- 6-я группа мартенситные стали, свариваются аустенитными или ферритными сварочными материалами.
- 6.2 Принадлежность марок сталей, рассматриваемых в настоящем стандарте, к различным группам представлена в таблице 6.1.
- 6.3 Для изготовления аппаратов и трубопроводов применяются стали в соответствии с ГОСТ Р 52630, настоящим стандартом и другой нормативно-технической документации (НТД).
- 6.4 Назначение и условия применения сталей, оговариваются требованиями ГОСТ Р 52630, раздела III ПБ 03-584, раздела III ПБ 03-576, разделов II и III ПБ 03-585, разделов 2.2 и 3.3 СА 03-005 и настоящего стандарта (см. приложение А).
- 6.5 По химическому составу и механическим свойствам материалы должны удовлетворять требованиям государственных стандартов, технических условий и действующей

НТД (ГОСТ Р 52630, ПБ 03-576, ПБ 03-584, ПБ 03-585).

Таблица 6.1 – Характеристики свариваемости различных групп сталей и технологические требования к ним

Группа	Структура	Марки свариваемых	Характеристика	Технологические
сталей	сталей	сталей	свариваемости	требования
1	Аустенитная	08X18H10T, 12X18H10T, 12X18H9TЛ, 08X18H12Б, 12X18H9TЛ, 08X18H11, 02X18H11, 08X18H10, 04X18H10, 08X17H13M2T, 10X17H13M3T, 12X18H12M3TЛ, 10X14Γ14H4T, 20X23H18, 10X23H18, 20X25H20C2, 07X13AΓ20 12X25H16Γ7AP	Склонность к образо- ванию горячих тре- щин	Ограничение погонной энергии
2	Стабильно- аустенитная	08X17H15M3T, 03X17H14M3, 03X21H21M4ГБ, 03X19AГ3H10	Высокая склонность к образованию горячих трещин	Ограничение погонной энергии
3	Аустенито- ферритная	08X18F8H2T, 15X18H12C4TIO, 08X22H6T, 08X21H6M2T 20X23H13, 08X20H14C2, 20X20H14C2	Склонны к охруп- чиванию (рост фер- ритного зерна) и образованию горячих трещин	Ограничение погонной энергии
4	Ферритная	08X13, 12X17, 08X17T, 15X25T	Склонны к охрупчи- ванию (рост феррит- ного зерна) и обра-	Подогрев150-200°С для толщин свыше 10 мм, термообра-
5	Мартенсито- ферритная	12X13, 14X17H2	зованию холодных трещин	ботка, ограничение погонной энергии
6	Мартенситная	20Х13, 20Х13Л	Склонны к образованию холодных трещин	Подогрев 150-200°С для толщин свыше 10 мм, термообработка

- 6.6 Качество и основные характеристики материалов должны быть подтверждены сертификатами поставщиков.
- 6.7 Листовой прокат и трубы поставляются в горячекатаном или термически обработанном состоянии.
- 6.8 В сертификате на поставляемые материалы должны быть указаны химический состав, механические свойства, результаты испытаний на МКК, способ выплавки, вид и режимы термической обработки и другие требования и виды испытаний по техническим условиям.
- 6.9 На заводе-изготовителе сосудов, аппаратов и трубопроводов материалы до запуска в производство должны быть приняты ОТК.

При приемке проверяются:

- соответствие стали условиям заказа, стандарту или техническим условиям и данным сертификата;
 - соответствие маркировки проката данным сертификата;
- качество поверхности проката и его соответствие требованиям стандартов или технических условий.
- 6.10 При отсутствии сопроводительных сертификатов на материалы или данных об отдельных видах испытаний должны быть проведены испытания на предприятии-изготовителе аппаратов в соответствии с требованиями стандартов или технических условий на эти материалы и требованиями настоящего стандарта.
- 6.11 Высоколегированные стали (листы, трубы, сортовой прокат, поковки) должны храниться в закрытых помещениях или под навесами, в условиях, исключающих их загрязнение, механические повреждения и контакт с другими видами материалов.
- 6.12 Заготовки и детали, подлежащие сварке, должны иметь маркировку, позволяющую установить марку материала, номер плавки, а при необходимости также номер листа.

7. Сварочные материалы

7.1~Для сварки деталей и узлов из высоколегированных сталей применяются сварочные материалы, приведенные в таблицах 7.1-7.4.

Примечания: 1. Допускается применение других сварочных материалов при согласовании со специализированными научно-исследовательскими организациями.

- 2. Для сварки сталей аустенитного, аустенито-ферритного классов допускается применение других, однотипных основному металлу, сварочных материалов. При этом, сварной шов, обращенный к коррозионной среде, должен выполняться сварочными материалами, рекомендуемыми для сварки данной стали, не менее чем в два слоя на глубину не менее 5 мм.
- 3. Коэффициент прочности сварных соединений в состоянии после сварки 0,9, после термообработки или горячей гибки и штамповки 0,7.
- 7.2 Импортные аналоги отечественных сварочных материалов представлены в СТП 26.260.486 и приложении Б настоящего СТО.
- 7.3 Перед запуском в производство, поступающие на завод сварочные материалы должны быть проверены ОТК завода на наличие сертификата, а также на наличие бирок и их соответствие сертификатам.
- 7.4 В случае несоответствия данных сертификата данным бирки или ярлыков, производится контроль качества сварочных материалов в соответствии с требованиями ГОСТ или технических условий.
 - 7.5 При приемке каждая партия электродов проверяется:
 - наличие сертификата;
 - наличие ярлыка на упаковке и соответствие его данных сертификатам;
 - соответствие качества электродов требованиям ГОСТ 9466;
- сварочные технологические свойства электродов путем проведения технологических испытаний тавровых соединений по ГОСТ 9466;
- соответствие содержания легирующих элементов нормированному стилоскопированием наплавленного металла.
 - 7.6 В сертификате на электроды указываются:
 - наименование или товарный знак предприятия-изготовителя;
 - условное обозначение электродов;
 - номер партии и дата изготовления;
 - масса нетто партии;

- марка проволоки электродных стержней с указанием обозначения стандарта или технических условий:
 - фактический химический состав наплавленного металла;
- фактические значения показателей механических и специальных свойств наплавленного металла;
 - гарантийный срок хранения.

Примечание — Содержание ферритной фазы в наплавленном металле определяется по типу электрода в соответствии с таблицей 2 ГОСТ 10052.

- 7.7 При приемке сварочной проволоки проверяются:
- наличие сертификата на поставленную проволоку;
- наличие бирок на мотках и соответствие их данных сертификатам;
- состояние поверхности проволоки;
- каждая бухта на содержание легирующих элементов стилоскопированием.
- 7.8 В сертификате на сварочную проволоку указываются:
- товарный знак предприятия-изготовителя;
- условное обозначение проволоки;
- номер плавки и партии;
- химический состав;
- содержание ферритной фазы в пробе;
- результаты испытаний на растяжение;
- масса проволоки нетто.

Таблица 7.1 – Электроды для ручной дуговой сварки высоколегированных сталей

Марка свариваемой	Тип электрода по ГОСТ 10052	Допускаемая температура эксплуата- ции и условия применения	
стали	(марка электрода)	Без требования стойкости к МКК	С требованием стойкости к МКК
08X13, 12X13, 20X13	Э-12X13 (ЛМ3-1, АНВ-1, УОНИ-13/НЖ)	До 450°С	Не допускается
08X17T, 14X17H2	Э-10Х17Т (УОНИ-10Х17Т)	До 700°C	Не допускается
08X13, 12X13, 20X13	Э-10Х25Н13Г2 (ОЗЛ-6,	До 550°С	
12X17, 08X17T, 14X17H2	3ИО-8, ЦЛ-25)	До 700°С	Не допускается
15X25T		До 1000°C	
08X17T	Э-10Х25Н13Г2Б (ЦЛ-9,	До 700°С	TI - 2500C
15X25T	3ИО-7)	До 1000°C	До 350°С
08X18H10	Э-04X20H9 (ОЗЛ-36, АНВ-32)	До 450°С	По попуска стоя
04X18H10	Э-07Х20Н9 (ОЗЛ-8, АНВ-29)	До 610°С	Не допускается
08X18H10T	Э-04Х20Н9 (ОЗЛ-36, АНВ-32)	До 450°С	Не допускается
12X18H10T 12X18H9T	Э-07Х20Н9 (ОЗЛ-8, АНВ-29	До 450°С; св.450 до 610°С –	Не допускается
12X18Н9ТЛ 08X18Н12Б 12X18Н12Т 08X18Н12Т	Э-08Х19Н10Г2Б (ЦТ-15, АНВ-23) Э-08Х20Н9Г2Б (ЦЛ-11, ОЗЛ-7, АНВ-35)	при содержании ферритной фазы не более 6%	До 610°С, свыше 350°С после ста- билизирующего отжига

Продолжение таблицы 7.1

Продолжение т	Тип электрода	Допускаемая температура эксплуата- ции и условия применения	
стали	по ГОСТ 10052 (марка электрода)	Без требования стойкости к МКК	С требованием стойкости к МКК
03X18H11 02X18H11 03X19AΓ3H10	Э-02X21H10Г2 (ОЗЛ-22, АНВ-34) Э-02X19Н9Б (АНВ-13)	До 450°С	До 450°С
10Х14Г14Н4Т	Э-03X15H9AГ4 (AHB-24) Э-04X20H9 (ОЗЛ-36)	До 500°C	Не допускается
	Э-08Х20Н9Г2Б (ЦЛ-11, ОЗЛ-7, АНВ-35)		До 350°С
08X17H13M2T 10X17H13M2T 10X17H13M3T 12X18H12M3TЛ	Э-07X19H11M3Г2Ф (ЭА-400/10У) Э-02X20H14Г2M2 (ОЗЛ-20) Э-09X19H11Г3M2Ф (КТИ-5) Э-09X19H10Г2M2Б (НЖ-13, СЛ-28) Э-02X19H18Г5AM3 (АНВ-17)	До 450°С; св.450 до 700°С – при содержании ферритной фазы не более 6%	До 350°С
08X17H15M3T	Э-02X19H18Г5AM3 (AHB-17)	До 600°С	До 350°C
03X17H14M3	Э-02X20H14Г2M2 (ОЗЛ-20) Э-04X23H27M3Д3Г2Б (ОЗЛ-17У) по ТУ 14-4- 715	До 450°С	До 350°C
03Х21Н21М4ГБ	Э-04Х23Н27М3Д3Г2Б (ОЗЛ-17У) по ТУ 14-4- 715	До 450°С	До 350°C
20X23H18 10X23H18	Э-10Х25Н13Г2 (ОЗЛ-6, ЗИО-8)	До 1000°C	Не допускается
20X23H13 20X25H20C2 08X20H14C2 20X20H14C2 12X25H16F7AP	Э-10X17H13C4 (ОЗЛ-3) Э-12X24H14C2 (ОЗЛ-5)	До 1100°С	Не допускается
08X22H6T	Э-04X20H9 (ОЗЛ-36) Э-07X20H9 (ОЗЛ-8)	До 300°С	Не допускается
08X18Γ8H2T 07X13AΓ20	Э-08Х19Н10Г2Б (ЦТ-15, АНВ-23) Э-08Х20Н9Г2Б (ЦЛ-11)		До 300°C
	Э-02X20H14Г2M2 (ОЗЛ-20)	40 300 0	Не допускается
08X21H6M2T	Э-09X19H10Г2M2Б (НЖ-13) Э-07X19H11M3Г2Ф (ЭА-400/10У)		До 300°С

Марка свариваемой стали	Тип электрода по ГОСТ 10052 (марка электрода)	Допускаемая температура эксплуата- ции и условия применения		
		Без требования стойкости к МКК	С требованием стойкости к МКК	
15X18H12C4TIO	Э-10Х17Н13С4 (ОЗЛ-3)	До 200°С	До 200°С	
02X8H22C6 02X17H14C5	Э-02Х17Н14С5 (ОЗЛ- 24) по ТУ 14-4-579	До 120°С	До 120°С	

Примечание — Максимальная температура применения электродов определяется с учетом допустимой температуры эксплуатации свариваемой стали согласно ГОСТ Р 52630

Таблица 7.2 — Сварочные материалы для автоматической сварки под флюсом высоколегированных сталей

Марка свариваемой	Марка сварочной проволоки	Допускаемая темп ции и услови	я применения
стали	по ГОСТ 2246 (флюс, ГОСТ Р 52222)	Без требования стойкости к МКК	С требованием стойкости к МКК
08X13, 12X13, 20X13	Св-08Х14ГНТ, Св-12Х13 (АН-26С, ОФ-6)	До 450°С	Не допускается
08X17T, 14X17H2	Св-10X17T (АН-26С, ОФ-6)	До 700°С	Не допускается
08X13, 12X13, 20X13	Св-08Х20Н9Г7Т,	До 550°С	
12X17,08X17T,14X17H2	Св-07Х25Н12Г2Т,	До 700°С	
15X25T	Св-07X25H13, Св-08X25H13БТЮ, Св-06X25H12ТЮ (АН-26С, ОФ-6, АН-18)	До 1000°C	Не допускается
08X17T	Св-08Х25Н13БТЮ,	До 700°С	
15X25T	Св-06Х25Н12ТЮ (АН-26С, ОФ-6, АН-18)	До 1000°C	До 350°С
08X18H10 04X18H10	Св-08X20H9Г7Т, Св-06X19H9Т, Св-01X19H9 (АН-26С, ОФ-6)	До 610°C	Не допускается
08X18H10T 12X18H10T 12X18H9T	Св-08X20H9Г7Т, Св-06X19H9Т, Св-01X19H9 (АН-26С, ОФ-6)	H- (100C)	Не допускается
12Х18Н9ТЛ 08Х18Н12Б 12Х18Н12Т 08Х18Н12Т	Св-07X18Н9ТЮ, Св-07X19Н10Б, Св-05X20Н9ФБС (АН-26С, ОФ-6, АН-18)	До 610°С	До 610°С, свыше 350°С после ста- билизирующего отжига
03X18H11 02X18H11 03X19AГ3H10	Св-01Х18Н10 по ТУ14- 1-2795, Св-01Х19Н9 (АН-18)	До 450°С	До 450°С

Продолжение таблицы 7.2

Марка свариваемой	Марка сварочной проволоки	Допускаемая температура эксплуата- ции и условия применения	
стали	по ГОСТ 2246	Без требования	С требованием
	(флюс, ГОСТ Р 52222)	стойкости к МКК	стойкости к МКК
	Св-05X15Н9Г6АМ по ТУ 14-1-1595 (АН-26С, ОФ-6)		Не допускается
10X14F14H4T	Св-07Х18Н9ТЮ, Св-05Х20Н9ФБС, Св-05Х15Н9Г6АМ по ТУ 14-1-1595 (АН-18)	До 500°С	До 350°С
08X1 7H 13M2T	Св-06Х19Н10М3Т, Св-04Х19Н11М3 (АН-26С, ОФ-6)		Не допускается
10X17H13M2T 10X17H13M3T 12X18H12M3TЛ	Св-06Х20Н11М3ТБ, Св-08Х19Н10М3Б, Св-01Х19Н18Г10АМ4 по ТУ 14-1-4981 (АН-26С, ОФ-6, АН-18)	До 700°C	До 350°C
08X17H15M3T	Св-01X19H18Г10AM4 по ТУ 14-1-4981, Св-06X19H10M3T, Св-04X19H11M3 (АН-26С, ОФ-6)	До 600°C	Не допускается
	Св-06Х20Н11М3ТБ, Св-08Х19Н10М3Б (АН-26С, ОФ-6, АН-18)		До 350°C
03X17H14M3	Св-01X17H14M2 по ТУ 14-1-2795, Св-01X19H18Г10АМ4 по ТУ 14-1-4981, Св-01X23H28M3Д3Т (АН-18)	До 450°С	До 350°С
03Х21Н21М4ГБ	Св-01Х23Н28М3Д3Т (АН-18)	До 450°С	До 350°С
20X23H18 10X23H18 20X23H13 20X25H20C2	Св-07X25H12Г2Т, Св-07X25H13, Св-06X25H12TIО (АН-26С, ОФ-6, АН-18)	До 1000°C	Не допускается
08X20H14C2 20X20H14C2 12X25H16Г7АР	Св-08Х25Н20С2Р1 по ТУ 14-1-4981 (АН-18)	До 1100°С	Не допускается
08X22H6T 08X18F8H2T 07X13AF20	Св-06Х19Н9Т, Св-04Х19Н9, Св-01Х19Н9 (АН-26С, ОФ-6)	До 300°С	Не допускается

Окончание таблицы 7.2

Марка свариваемой	Марка сварочной проволоки	Допускаемая температура эксплуата- ции и условия применения	
стали	по ГОСТ 2246 (флюс, ГОСТ Р 52222)	Без требования стойкости к МКК	С требованием стойкости к МКК
	Св-06Х21Н7БТ		
08X22H6T	по ТУ 14-1-4981,		1
08X18F8H2T	Св-07Х18Н9ТЮ,		До 300°С
07Χ13ΑΓ20	Св-05Х20Н9ФБС		
	(АН-26С, ОФ-6, АН-18)		
	Св-06Х19Н10М3Т,		
	Св-04Х19Н11М3	До 300°С	Не допускается
	(АН-26С, ОФ-6)		•
003/2111/0427	Св-03Х24Н6АМ3		
08X21H6M2T	по ТУ 14-1-4372,		
	Св-06Х20Н11М3ТБ,		До 300°С
	Св-08Х19Н10М3Б		
	(AH-26C, ΟΦ-6)		
1,537,101110,047510	Св-15Х18Н12С4ТЮ по	н 2000С	T 2000
15Х18Н12С4ТЮ	ТУ 14-1-2795 (АН-18)	До 200°С	До 200°С
	Св-02Х8Н22С6		
02X8H22C6	по ТУ 14-1-3233,	П- 1200С	H- 12000
	Св-01Х21Н10С6Ц по	До 120°С	До 120°С
	ТУ 14-1-3952 (АН-18)		

Примечание: 1. Максимальная температура применения сварочных материалов определяется с учетом допустимой температуры эксплуатации свариваемой стали согласно ГОСТ Р 52630.

2. Флюс ОФ-6 поставляется по ОСТ 5.9206

Таблица 7.3 — Сварочные материалы для сварки в защитных газах высоколегированных сталей

Марка свариваемой	Марка сварочной проволоки по ГОСТ 2246 (защитный газ)	Допускаемая температура эксплуата- ции и условия применения	
стали		Без требования стойкости к МКК	С требованием стойкости к МКК
08X13, 12X13, 20X13	Св-12X13, Св-06X14, Св-08X14ГНТ (СО ₂)	До 550°С	Не допускается
08X17T, 14X17H2	Св-10Х17Т (СО2)	До 700°С	Не допускается
08X13, 12X13, 20X13	Св-08Х20Н9Г7Т,	До 550°С	
12X17, 08X17T, 14X17H2	Св-07X25H12Г2Т, Св-07X25H13	До 700°С	Не допускается
15X25T	(CO_2)	До 1000°C	
08X17T	Св-08Х25Н13БТЮ,	До 700°С	
15X25T	Св-06Х25Н12ТЮ (Ar, Ar+20%СО ₂)	До 1000°C	До 350°С

Продолжение таблицы 7.3

Продолжение т	Марка сварочной	Лопускаемая темп	enatyna akennyata.
Марка свариваемой	проволоки	Допускаемая температура эксплуата- ции и уоловия применения	
стали	по ГОСТ 2246 (защитный газ)	Без требования	С требованием
00.010.010	Св-08Х20Н9Г7Т,	стойкости к МКК	стойкости к МКК
08X18H10 04X18H10	Св-06X20H9I / I, Св-06X19H9T (СО ₂)	До 610°С	Не допускается
	Св-08Х20Н9Г7Т,		***
08X18H10T	Св-06Х19Н9Т (СО2)		Не допускается
12X18H10T	Св-07Х18Н9ТЮ,		
12X18H9T	Св-06Х19Н9Т,	H (1000	До 610°С, свыше
12Х18Н9ТЛ	Св-07Х19Н10Б,	До 610°С	350°С после ста-
08X18H12Б 12X18H12T	Св-05X20H9ФБС (Ar, Ar+20%CO ₂)		билизирующего
08X18H12T	Св-08X20H9C2БТЮ по		отжига
	TY 14-1-4981 (CO ₂)		
03X18H11			
02X18H11	Св-01Х18Н10 по ТУ14-	До 450°С	До 450°C
03Х19АГ3Н10	1-2795 (Ar)		
	Св-05Х15Н9Г6АМ		Не допускается
	по ТУ 14-1-1595 (СО2)		
	Св-05Х15Н9Г6АМ		
10Χ14Γ14H4T	по ТУ 14-1-1595, Св-07Х18Н9ТЮ,	До 500°С	
	Св-06Х19Н9Т,		До 350°С
	Св-00Х19Н10Б,		
	Св-05Х20Н9ФБС (Аг)		
	Св-04Х19Н11М3		Не допускается
	(CO ₂)		те допускается
08X17H13M2T	Св-06Х19Н10М3Т,		
10X17H13M2T	Св-06Х20Н11М3ТБ,	До 700°С	
10Х17Н13М3Т 12Х18Н12М3ТЛ	Св-08Х19Н10М3Б,		До 350°С
12/(1011121413131	Св-01Х19Н18Г10АМ4 по ТУ 14-1-4981		
	$(Ar, Ar+20\%CO_2)$		
	Св-01Х19Н18Г10АМ4		
	по ТУ 14-1-4981,		Не допускается
	Св-06Х19Н10М3Т,	_	пе допускается
08X17H15M3T	Св-04Х19Н11М3 (СО ₂)	До 600°С	
	Св-06Х20Н11М3ТБ,		TI. 2500G
	Св-08Х19Н10М3Б		До 350°С
	(Ar, Ar+20%CO ₂) C _B -01X17H14M2		
	по ТУ 14-1-2795,		
03X17H14M3	Св-01Х19Н18Г10АМ4	π- 45000	П- 2500С
03/(1/1114)(13	по ТУ 14-1-4981,	До 450°С	До 350°С
	Св-01Х23Н28М3Д3Т		
	(Ar)		
03Х21Н21М4ГБ	Св-01Х23Н28М3Д3Т	До 450°С	До 350°С
	(Ar)	, ,	''

Марка свариваемой	Марка сварочной проволоки	Допускаемая темп ции и услови	1 " 1	
стали	по ГОСТ 2246 (защитный газ)	Без требования стойкости к МКК	С требованием стойкости к МКК	
20X23H18 10X23H18 20X23H13	Св-07X25H12Г2Т, Св-07X25H13 (CO ₂)	До 1000°С	Не допускается	
20X25H20C2 08X20H14C2 20X20H14C2 12X25H16Γ7AP	Св-08Х25Н20С2Р1 по ТУ 14-1-4981 (Ar)	До 1100°С	Не допускается	
	Св-06Х19Н9Т, Св-04Х19Н9 (CO ₂)		Не допускается	
08X22H6T 08X18F8H2T 07X13AF20	Св-07X18Н9ТЮ, Св-06X19Н9Т, Св-07X19Н10Б, Св-05X20Н9ФБС (Ar, Ar+20%СО ₂)	До 300°C	До 300°C	
	Св-04X19H11M3 (CO ₂)		Не допускается	
08X2 1H6M2T	Св-06X19H10M3T, Св-06X20H11M3TБ, Св-08X19H10M3Б (Ar, Ar+20%CO ₂)	До 300°С	До 300°C	
1 5X 18H12C4TЮ	Св-15X18H12C4TЮ по ТУ 14-1-2795 (Ar)	До 200°С	До 200°С	
02X8H22C6	Св-02Х8Н22С6 по		До 120°С	

Примечание: 1. Максимальная температура применения сварочных материалов определяется с учетом допустимой температуры эксплуатации свариваемой стали согласно ГОСТ Р 52630.

- 2. Вместо смеси аргона с 20% CO_2 , могут применяться другие смеси на основе аргона, из расчета замены 4% CO_2 на 1% O_2 .
- 3. Сварочные проволоки, рекомендуемые для сварки в CO₂, также могут применяться для сварки в аргоне и смесях газов на основе аргона

Таблица 7.4 – Сварочные материалы для электрошлаковой сварки высоколегированных сталей

Марка свариваемой	Марка проволоки по ГОСТ 2246		ература эксплуата- я применения
стали		Без требования стойкости к МКК	С требованием стойкости к МКК
08X13, 12X13, 20X13	Св-06Х14, Св-08Х14ГНТ, Св-12Х13 (АН-26П)	До 550°С*)	Не допускается

Окончание таблицы 7.4

Марка свариваемой	Марка проволоки по ГОСТ 2246		ература эксплуата- я применения
стали	(флюс, ГОСТ Р 52222)	Без требования стойкости к МКК	С требованием стойкости к МКК
08X18H10 04X18H10	Св-05X20Н9ФБС, Св-06X19Н9Т, Св-04X19Н9, Св-01X19Н9 (АН-26П, АН-26С, ОФ-6)	До 610°С	Не допускается
08X18H10T 12X18H10T 12X18H9T	Св-05X20Н9ФБС, Св-06X19Н9Т, Св-04X19Н9, Св-01X19Н9 (АН-26П, АН-26С, ОФ-6)	До 610°C	Не допускается
12X18H9T 12X18H9TЛ 08X18H12Б 12X18H12T 08X18H12T	Св-07Х18Н9ТЮ, Св-07Х19Н10Б, Св-05Х20Н9ФБС (АН-45, АН-26П, ФЦ-18)	до 010 С	До 350°С
	Св-06X19H10M3T, Св-04X19H11M3 (АН-26П, АН-26С, ОФ-6)		Не допускается
08X17H13M2T 10X17H13M2T 10X17H13M3T 12X18H12M3TЛ	Св-01X19H18Г10AM4 по ТУ 14-1-4981, Св-03X19H15Г6M2AB2 по ТУ 14-1-1595, Св-06X20H11M3ТБ, Св-08X19H10M3Б (АН-45, АН-26П, АН-22, ФЦ-18)	До 700°C	До 350°C
	Св-06Х19Н9Т, Св-04Х19Н9 (АН-26П, АН-26С, ОФ-6)		Не допускается
08X22H6T	Св-06X21H7БТ по ТУ 14-1-4981, Св-07X18Н9ТЮ, Св-05X20Н9ФБС (АН-45, АН-26П, АН-22)	До 300°C	До 300°C
08X21H6M2T	Св-06X19H10M3T, Св-04X19H11M3 (АН-26П, АН-26С, ОФ-6)		Не допускается

Марка свариваемой	Марка проволоки по ГОСТ 2246	Допускаемая температура эксплуата- ции и условия применения		
стали	(флюс, ГОСТ Р 52222)	Без требования стойкости к МКК	С требованием стойкости к МКК	
08X21H6M2T	Св-06X20H11M3TБ, Св-08X19H10M3Б (АН-45, АН-26П, АН-22)	До 300°С	До 300°C	

Примечание: 1. Максимальная температура применения сварочных материалов определяется с учетом допустимой температуры эксплуатации свариваемой стали согласно ГОСТ Р 52630.

- 2. *) Для деталей, не работающих под давлением.
- 3. Флюс ОФ-6 поставляется по ОСТ 5.9206, а ФЦ-18 по ОСТ 108.948-02.
- 4. Стойкость сварных соединений к МКК обеспечивается в состоянии после сварки
 - 7.9 При приемке флюса проверяются:
 - наличие сертификата на поставленный флюс;
 - наличие ярлыков и соответствие их данных сертификатам;
 - сохранность упаковки.
 - 7.10 При приемке защитного газа проверяются:
 - наличие сертификата на поставленный защитный газ;
 - наличие ярлыков на баллонах и соответствие их данных сертификатам;
 - чистота защитного газа по сертификатам.

Перед использованием каждого нового баллона производится пробная наплавки валика длиной 100-200 мм на пластину с последующим визуальным контролем на отсутствие недопустимых дефектов или на «технологическое пятно» путем расплавления пятна диаметром 15-20 мм.

7.11 Испытание сварочных материалов на стойкость к МКК допускается совмещать с испытанием на стойкость к МКК сварных соединений, для сварки которых они предназначены. В этом случае при входном контроле, перед запуском в производство сварочных материалов с требованием стойкости к МКК, независимо от наличия сертификатов, производятся испытания наплавленного металла или стыкового сварного соединения по ГОСТ 6032. Результаты испытания считаются окончательными и вносятся в паспорт аппарата.

При ручной аргонодуговой сварке испытания на МКК можно не производить, если соотношение титана и ниобия к углероду в проволоке соответствует следующим пределам: $Ti \ge 8C$ или $Nb \ge 10C$.

- 7.12 Перед использованием сварочной проволоки с ее поверхности должны быть удалены следы коррозии, масел, окалина и другие загрязнения, а электроды и сварочный флюс прокалены по режимам, указанным в таблицах 7.5, 7.6.
- 7.13 Использование электродов по истечению срока годности, приведенного в таблице 7.5 и при влажности превышающей 0,4%, не допускается. Применение этих электродов разрешается после проведения повторной прокалки. Прокалка электродов с покрытием основного типа может производиться не более двух раз, для остальных электродов не более пяти раз, не считая прокалку при их изготовлении.
- 7.14 Выдача электродов должна производиться с проверкой отличительной окраски данной марки электродов на их торцах.

Таблица 7.5 – Рекомендуемые режимы прокалки и сроки годности электродов

					Охлажден	ие с печью	Срок год-
Марка электродов	Темпера- тура печи при загру- зке элект- родов, °С, не более	Скорость подъема темпера- туры, °С/ч	Темпе- ратура прокал- ки, °С	Время выдер- жки, ч	при закрырытых дверцах до температуры, °C	при от- крытых дверцах до темпе- ратуры, °C	ности при соблюдении требований п.7.17, сутки
ОЗЛ-3 ОЗЛ-6 ОЗЛ-7 ОЗЛ-8 ОЗЛ-20 ОЗЛ-22 ОЗЛ-36 ЗИО-8 ЦЛ-25 АНВ-29 АНВ-34 АНВ-35 КТИ-5	150	100-200	200 - 250	1,0	100	100-120	5
ОЗЛ-24 ОЗЛ-17У АНВ-17 АНВ-32	150	100-200	300 - 350	1,0	200	100-150	5
УОНИ-13/НЖ УОНИ- 10X17Т ЦЛ-9 ЦЛ-11 ЗИО-7 ЦТ-15 АНВ-13 АНВ-23 АНВ-24 ЭА-400/10У НЖ-13	150	100-200	350 - 400	1,0	200	100-150	5

7.15 Ориентировочный расход сварочной проволоки при сварке в углекислом газе составляет от 1,1 до 1,15 кг на 1 кг наплавленного металла. Ориентировочный расход защитного газа составляет от 0,5 до 0,7 м 3 на 2 кг наплавленного металла. Наименьшее количество газа расходуется при сварке тавровых и угловых (с внутренней стороны) соединений, среднее — стыковых и наибольшее — угловых с наружной стороны.

- 7.16 Прокалку флюса рекомендуется производить слоем толщиной не более 80 мм в специальных противнях из жаропрочных или окалиностойких сталей, при этом допускается неоднократная его прокалка.
- 7.17 Подготовленные к сварке сварочные материалы следует хранить в сушильных шкафах при температуре 60 100°С или в сухих отапливаемых помещениях при температуре не ниже плюс 18°С в условиях, предохраняющих их от загрязнения, ржавления, увлажнения и механических повреждений. Относительная влажность воздуха не более 50%. Срок хранения сварочных материалов в сушильных шкафах не ограничен.

Организация хранения, подготовки и контроля сварочных материалов должна соответствовать требованиям РД 26-17-049.

7.18 В качестве неплавящегося электрода при аргонодуговой сварке применять вольфрамовые прутки лантанированные по ГОСТ 23949 диаметром 2 - 4 мм.

Для улучшения условий возбуждения дуги при аргонодуговой сварке и повышения ее стабильности рекомендуется затачивать конец вольфрамового электрода на конус под углом $14^{\circ+2}$ °. При разрушении или загрязнении конца электрода следует произвести восстановление заточки.

7.19 При аргонодуговой сварке в качестве защитной среды применяется аргон высшего сорта или 1-го сорта по ГОСТ 10157. Технические требования к сварочной двуокиси углерода определяются ГОСТ 8050. Газовые смеси, используемые в качестве защитных сред при сварке, должны соответствовать техническим условиям по которым они поставляются.

Примечание: Применять для сварки двуокись углерода 2 сорта запрещается.

Таблица 7.6 – Рекомендуемые режимы прокалки флюсов при его влажности более 0,1%

	Темпера-	Скорость			Охлаж печ	Срок год-		
Марка флюса	тура печи при загруз- ке флюсов, °С, не более	ри загруз- е флюсов, туры, °C, °C/ч		Темпе- ратура прокал- ки, °C Время выдер- жки, ч		при от- крытых дверцах до тем- перату- ры, °C	ности при соблюде- нии тре- бований п.7.17, сутки	
АН-26С АН-18 АН-26П-У2	150	100 - 200	300 - 420	2	300	100 - 150	15	
АН-26П АН-26СП	150	100 - 200	500 - 600	2	300	100 - 150	15	
ОФ-6	300	100 - 200	900 - 930	5	500	100 - 200	-	

Примечание - Флюсы после прокалки должны храниться только в герметичной таре

8. Сварочное оборудование

8.1 Для сварки высоколегированных сталей применяется то же сварочное оборудование, что и для низколегированных сталей, см. раздел 8 СТО 00220368-012.

Технические характеристики основных типов сварочного оборудования приведены в приложении В.

- 8.2 Для автоматической сварки применяются сварочные аппараты типа АДФ-1250, АДФ-800, АДФ-1000, ТС-17 и другие, серийно выпускаемые промышленностью.
- 8.3 Для полуавтоматической сварки в защитных газах применяются сварочные аппараты типа ПДГ-351, ПДГ-525, ПДГО-510 и другие, серийно выпускаемые промышленностью. Рекомендуется применять аппараты инверторного типа SINERMIG-401 и другие.
- 8.4 В качестве источника питания для РДС и аргонодуговой сварки неплавящимся электродом применяются сварочные выпрямители типа ВД-306 С1, ВД-309, ВД-413, а также многопостовые типа ВДМ-2х313, ВДМ-6301, ВДМ-6303С, ВДМ-1202С, ВДМ-1201, ВДМ-1601 и другие. Рекомендуется применять аппараты инверторного типа Радуга-180, Радуга-250 и FALTIG-400 и другие.
- 8.5 В качестве источников питания для полуавтоматической сварки в защитных газах применяются сварочные выпрямители типа ВС-300Б, ВДГ-303, ВДГ-410, ВС-600С и другие.
- 8.6 В качестве источников питания для РДС, автоматической под флюсом и полуавтоматической сварки в защитных газах рекомендуется применять универсальные сварочные выпрямители типа ВДУ-506, ВДУ-511, ВДУ-601, ВДУ-630, ВДУ-800, ВДУ-1250, ВДУ-1202, ВДУ-1601 и другие.
- 8.7 Для ЭШС применяются сварочные аппараты: A-535, A-612, A-1170-2, A-385, A-532, A-1116, A-820к.
- 8.8 Колебания напряжения питающей сети, к которой подключено сварочное оборудование, допускается не более $\pm 5\%$ от номинального значения.
- 8.9 Шланги подачи газа следует не реже одного раза в квартал промывать горячей водой в течение 10 минут с каждого конца с последующей продувкой сухим очищенным воздухом в течение 10-15 минут.
- 8.10 Питание сварочных постов углекислым газом при их численности более десяти рекомендуется производить централизованно от заводской или цеховой магистрали в соответствии с РД 26-4.
- 8.11 Для уменьшения деформаций свариваемых деталей рекомендуется применять кондукторы и другие специальные технологические приспособления.

9. Квалификация сварщиков и специалистов

- 9.1 К выполнению сварочных работ и прихватке допускаются сварщики, прошедшие практические испытания по программе завода-изготовителя.
- 9.2 К выполнению сварочных работ при изготовлении, ремонте и монтаже оборудования, подведомственного Ростехнадзору, допускаются только сварщики 1 уровня, аттестованные в соответствии с требованиями ПБ-03-273.
- 9.3 Неаттестованные сварщики могут производить сварку деталей и узлов внутренних устройств, за исключением приварки этих деталей к корпусам, а также сварку корпусов сосудов 5а и 5б групп.
- 9.4 К руководству сварочными работами допускаются специалисты сварочного производства II, III,IV уровня, изучившие требования настоящего стандарта.

10. Подготовка деталей под сварку

- 10.1 Конструктивные элементы подготовки кромок, а также типы и размеры сварных швов должны соответствовать требованиям ГОСТ 5264, ГОСТ 8713,ГОСТ 14771, ГОСТ 15164, ГОСТ 16037 и настоящего стандарта. Допускается применение нестандартных типов сварных соединений, при условии согласования со специализированной научно-исследовательской организацией.
- 10.2 Подготовка деталей под сварку выполняется в соответствии с требованиями чертежей, ГОСТ Р 52630, ПБ 03-584, настоящего СТО и принятой на заводе технологией.
- 10.3 Способы подготовки кромок свариваемых деталей должны обеспечивать отсутствие на кромках механических повреждений и зон термического влияния, снижающих регламентированные свойства сварных соединений.
- 10.4 Разделка кромок под сварку производится механическим способом или термической резкой. После термической резки необходима последующая механическая обработка поверхностей реза хромоникелевых сталей (гр. 1-3, таблица 6.1) на глубину не менее 1,0 мм, а высокохромистых сталей (гр.4-6) не менее 1,5 мм, с обеспечением шероховатости не ниже Rz 40 по ГОСТ 2789.
- 10.5 Механическая резка высоколегированных сталей при заготовительных операциях производится на гильотинных или виброножницах, на фрезерных или токарных станках. Перед резкой на ножницах следует очистить ножи от ржавчины и других загрязнений, а листы крепить зажимами, при этом рекомендуется применять специальные медные или алюминиевые подкладки.
- 10.6 При плазменной, кислородно-флюсовой, воздушно-дуговой резке необходимо принимать меры для предохранения поверхностей деталей от выдуваемых окислов и брызг металла путем защиты их металлическими листами или другими огнеупорными материалами.
- 10.7 Свариваемые кромки и поверхность металла по внешней и внутренней поверхностям на ширине не менее 20 мм, а при ЭШС на ширину не менее 50 мм, и по торцу должны быть зачищены механическим способом до металлического блеска и обезжирены ацетоном, уайт-спиритом или другим растворителем с применением протирочных материалов.
- 10.8 Участки основного металла, непосредственно прилегающие к шву, целесообразно покрывать защитными средствами (технологической изоляцией). В качестве защитного покрытия ОШЗ рекомендуется использовать аэрозоль PRF или водный раствор каолина. Попадание защитного покрытия в разделку сварного соединения не допускается.
- 10.9 Контроль подготовленных под сварку кромок производить визуальным осмотром и измерениями, а также другими методами неразрушающего контроля при наличии специальных требований.
- 10.10 Подготовленные под сварку детали из высоколегированных сталей должны храниться в условиях, исключающих контакт с углеродистыми сталями и их загрязнение.

11. Сборка под сварку

- 11.1 Сборочные операции при изготовлении изделий из высоколегированных сталей не отличаются от аналогичных операций для углеродистых сталей, за исключением мер предосторожности против повреждений и загрязнений поверхностей деталей, см. раздел 11 СТО 00220368-012.
- 11.2 Сборка конструкций под сварку должна производиться по технологическому процессу, который может разрабатываться и выпускаться в виде самостоятельного доку-

мента или совместно с технологическим процессом на сварку. В технологическом процессе на сборку должен быть указан порядок сборки, способ крепления деталей, методы контроля сборки и другие необходимые технологические операции.

- 11.3 Технологические процессы на сборку могут разрабатываться и выпускаться как самостоятельным документом, так и совместно с технологическим процессом на сварку.
 - 11.4 В технологических процессах на сборку должны быть указаны:
 - обозначение чертежей собираемых конструкций;
 - наименование или обозначение чертежей сборочных приспособлений;
 - порядок сборки;
 - способ крепления деталей;
 - конструктивные элементы разделки кромок;
 - допускаемые смещения кромок и другие технические требования на сборку;
 - способ защиты свариваемых деталей от брызг расплавленного металла;
 - методы контроля сборки.
- 11.5 Все работы по сборке необходимо проводить в условиях, исключающих попадание влаги, жировых веществ и других загрязнений на детали и узлы, подготавливаемые под сварку.
- 11.6 Обечайки, другие детали и узлы, поступающие на сборку должны быть изготовлены в соответствии с картой раскроя корпуса аппарата, иметь обработанные и разделанные кромки под сварку, согласно требований чертежа, ПБ 03-584 и приняты ОТК. Допуск на овальность обечаек, смещение кромок, совместный увод кромок (угловатость) в продольных и кольцевых швах должны соответствовать требованиям ГОСТ Р 52630.
- 11.7 Монтажные стыки рекомендуется располагать в удобных и доступных для сборки, сварки и контроля местах, допускающих применение сварочных автоматов и проведение контроля просвечиванием и другими методами.
- 11.8 Сборку трубных соединений без подкладных колец рекомендуется производить при помощи специальных приспособлений (центраторов, скоб и др.), обеспечивающих соосность стыкуемых деталей.
- 11.9 Непосредственно перед сборкой под сварку необходимо проверить качество поверхности и правильность подготовки кромок в соответствии с требованиями рабочих чертежей и настоящего стандарта.
- 11.10 Прихватку деталей и приварку временных креплений следует выполнять с соблюдением тех же требований в отношении квалификации сварщика, сварочных материалов и защиты металла инертным газом, которые предъявляются к сварке.
- 11.11 Временные крепления рекомендуется устанавливать при сборке штуцеров, продольных и кольцевых швов обечаек диаметром свыше 300 мм, в остальных случаях сборка выполняется на прихватках.
- 11.12 Длина прихватки должна составлять $(2\div5)$ S, но не более 100 мм, а расстояние между ними $(10\div40)$ S, но не более 500 мм, где S толщина свариваемого материала.
- 11.13 Штуцера, бобышки и трубы условным проходом до 32 мм рекомендуется закреплять одной прихваткой.
- 11.14 Швы приварки временных креплений располагать от кромки стыка на расстоянии не менее 70 мм. При установке временных креплений наложение прихваток в разделку кромок под сварку не допускается. Временные крепления изготавливаются из свариваемого материала. Приварка временных креплений выполняется с использованием тех же сварочных материалов, что и при сварке изделий.

- 11.15 Прихватки, имеющие дефекты, перед сваркой удалить. Удаление прихваток производить механическим способом.
- 11.16 Изделия из высоколегированных сталей, собранные под сварку, должны находиться в условиях, исключающих загрязнение свариваемых кромок и попадания влаги, во избежание образования пор в прихватках собранных узлов.
 - 11.17 Качество сборки перед сваркой должно быть проверено и принято ОТК.

12. Технологические указания по сварке

12.1 Общие требования

- 12.1.1 При выборе вида сварки следует предусматривать применение её механизированных способов как наиболее экономичных и эффективных. При сварке изделий маленьких толщин целесообразность применения автоматической сварки следует определять в каждом конкретном случае в зависимости от серийности изделий, наличия оснастки и других условий.
- 12.1.2 Криволинейные швы или швы малой протяженности, выполнение которых автоматической сваркой невозможно или нерационально, рекомендуется производить полуавтоматической сваркой в защитных газах или РДС.
- 12.1.3 В экономически оправданных случаях, для уменьшения цикла изготовления изделий толщиной свыше 20 мм, рекомендуется применять ЭШС без последующей термообработки.
- 12.1.4 Заготовки, детали и сборочные единицы, подлежащие сварке, должны быть приняты ОТК, и иметь заверенную клеймом ОТК маркировку, позволяющую установить марку материала, номер плавки, а при необходимости, и номер листа.
- 12.1.5 Сварку высоколегированных сталей следует выполнять на постоянном токе. Сварка под флюсом и электрошлаковая сварка может выполняться также и на переменном токе при условии обеспечения удовлетворительного формирования и стабильности пропесса.

Примечание — Ручная дуговая сварка импортными электродами может выполняться на постоянном или переменном токе в зависимости от типа электрода, см. приложение Б СТП 26.260.486.

- 12.1.6 При составлении технологических процессов на сварку в них должны быть указаны:
 - обозначения чертежа, тип и размеры швов;
 - положение шва в пространстве;
 - метод сварки;
 - род тока и полярность;
 - марка и диаметр электрода (сварочной проволоки);
 - марка сварочного флюса;
 - режим сварки;
 - последовательность наложения швов;
 - способ выполнения швов;
 - ориентировочное количество валиков в разделке и порядок их наложения;
 - разряд сварщика;
 - термообработка;
 - метод контроля качества сварных швов.

- 12.1.7 При сварке высоколегированных сталей необходимо соблюдать следующие требования:
- режимы сварки проверяют на пробных пластинах той же толщины и той же марки стали, что и свариваемые детали;
- при автоматической сварке под флюсом стыковых соединений начало шва длиной от 30 до 40 мм и конец шва длиной от 40 до 50 мм должны выводиться на контрольные пластины или на специальные технологические планки, прихваченные к свариваемым обечайкам или другим частям и деталям изделия. Размер планок должен быть не менее 100х100 мм и соответствовать толщине свариваемого металла;
- при многопроходной сварке не допускается совмещение кратеров в одном сечении (участке). Корневой валик рекомендуется выполнять выпуклым;
- при многопроходной сварке наложение каждого последующего прохода производится после тщательной зачистки предыдущего от шлака и окалины. Возобновлять сварку после перерыва необходимо с перекрытием кратера предыдущего валика, а зажигание дуги производится на расстоянии 10-15 мм от кратера ранее выполненного шва;
- при двусторонней полуавтоматической и ручной сварке первый проход рекомендуется выполнять со стороны, противоположной прихваткам. В случае удаления корня шва прихватки тоже удаляют. Если по условиям сборки прихватки необходимо ставить со стороны наложения первого слоя, то сварку разрешается производить только по качественно выполненным прихваткам;
- зажигание сварочной дуги при ручной и полуавтоматической сварке вне разделки не допускается. Выводить кратер на основной металл запрещается.
- 12.1.8 Сварку всех соединений, кроме монтажных, рекомендуется выполнять в нижнем положении, для чего узел или свариваемые детали по мере необходимости проворачиваются.

Примечание — Приварку штуцеров, бобышек и сварку труб условным проходом до 32 мм следует начинать со стороны, противоположной прихватке.

- 12.1.9 При выполнении шва в несколько слоев, после каждого прохода сварка прекращается до остывания детали до температуры 100°C.
- 12.1.10 Во избежание больших сварочных напряжений в первую очередь рекомендуется выполнять в свободном для деформации состоянии стыковые швы, затем остальные стыковые швы и в последнюю очередь угловые.

При сварке листовых конструкций для сохранения их жесткости необходимо принимать меры против образования деформаций (устанавливать поперечные ребра, попеременно с обеих сторон заполнять разделку швов и др.).

- 12.1.11 После сварки швы и прилегающие зоны основного металла должны быть тщательно очищены от шлака и защитного покрытия.
- 12.1.12 В процессе сварки изделий технолог цеха, мастер, работники ОТК должны осуществлять периодический контроль за соблюдением технологического процесса.

12.2 Ручная дуговая сварка

- 12.2.1 Выбор формы подготовки кромок производится в зависимости от толщины свариваемого металла в соответствии с требованиями ГОСТ 5264, ГОСТ 16037, ГОСТ 11534, действующих НД, настоящего стандарта или чертежа.
- 12.2.2 При ручной дуговой сварке швов рекомендуется применять швы типов С7, С 12, С15, С17, С21, С24, С25, С27, У5, У6, У7, Т1, Т3, Т6, Т7 и Н2 по ГОСТ 5264.

При толщине свариваемых деталей до 20 мм рекомендуются швы типов C17, C21 с V-образной разделкой, при толщине свыше 20 мм — швы типов C25 и C27 с X-образной разделкой и C24 с V-образной разделкой.

Швы типов C12, C15 (со скосом одной кромки) рекомендуется применять при сварке горизонтальных швов на вертикальной плоскости.

- 12.2.3 Род тока, полярность и режимы сварки приводятся на упаковке электродов.
- 12.2.4 Выбор сварочного тока, в зависимости от диаметра электрода и расположение свариваемого стыка в пространстве, может производиться по таблице 12.1 или по режимам, указанным на упаковке электродов.

Таблица 12.1 – Сварочный ток при ручной дуговой сварке высоколегированных сталей

		рочный ток, А
Диаметр электродов,	Положение	шва в пространстве
MM	нижнее	горизонтальное, вертикальное
2,0	40 – 55	35 – 45
2,5	55 – 65	45 – 55
3,0	70 - 90	60 – 80
4,0	120 - 140	110 – 130
5,0	140 - 160	120 – 140

- 12.2.5 При сварке в потолочном положении величину сварочного тока рекомендуется снижать на 15-30%, по сравнению со значениями тока для нижнего положения.
- 12.2.6 При двухсторонней сварки с разделкой кромок аппаратов, подведомственных Ростехнадзору, выполнение шва с обратной стороны для обеспечения провара производится после удаления корня шва механическим способом (шлифмашинкой и др.).
- 12.2.7 При односторонней сварки аппаратов корень шва должен завариваться аргонодуговой сваркой неплавящимся электродом.
- 12.2.8 Многопроходную сварку стыковых соединений рекомендуется выполнять валиками с поперечным сечением не более 20-25 мм², а ширина валика не должна превышать 12 мм.
- 12.2.9 Швы угловых и тавровых соединений рекомендуется выполнять в один проход при катете, не превышающем 8 мм. При большем катете сварку надо производить в два и более проходов.
- 12.2.10 Однопроходная сварка швов длиной до 300 мм выполняется от начала до конца на проход; швов длиной свыше 300 мм от середины к краям или обратноступенчатым способом. При этом длина ступени должна быть не более длины шва, выполненного одним электродом.
- 12.2.11 Сварку стыков большой протяженности рекомендуется выполнять одновременно по всей длине участками (блоками) длиной 1-2 м. Число сварщиков должно быть равно количеству участков, на которые разбит шов.

При выполнении швов большой протяженности одним или двумя сварщиками сварка производится также блоками по направлению от середины к концам.

12.2.13 При многослойной сварке диаметр электрода выбирается в зависимости от толщины свариваемого металла и номера прохода. Для первого прохода рекомендуется применение электродов диаметром не более 3 мм, для последующих — 3-5 мм.

12.3 Автоматическая сварка под флюсом

- 12.3.1 Конструктивные элементы подготовленных кромок и выполненного сварного шва должны соответствовать требованиям ГОСТ 8713, настоящего стандарта или чертежа.
- 12.3.2 При автоматической сварке стыковых соединений рекомендуется применять швы типов С7, С29, С18, С21, С25, С33, С38 и С41 при сварке тавровых, угловых и нахлесточных соединений — Т1, Т2, Т8, У3, У7 и Н2 по ГОСТ 8713. Ориентировочные режимы сварки, приведены в таблице 12.2.

Таблица 12.2 – Ориентировочные режимы автоматической сварки под флюсом высоколегированных сталей

Толщина	Диаметр	Сварочный	Напря-	Ско-	Ско-	Погон-	Вели-
свариваемого	сварочной	ток,	жение	рость	рость	ная	чина
металла,	проволоки,	A	дуги,	подачи	свар-	энергия	вылета
MM	MM		В	прово-	ки,	сварки,	прово-
			}	локи,	м/ч	кДж/см	локи,
				м/ч			MM
4 – 5	3	350 - 400	30 - 32	66,5-85,0	35	12	
6 – 8	3 – 4	400 – 500	32 - 34	85,0	30-35	14	
10 – 12	4	450 – 520	32 – 34	72,5-87,0	25-30	19	
14 – 16	4 – 5	520 - 600	34 - 36	68,5-87,0	25	26	40 - 50
18 – 24	5	600 – 650	34 – 36	68,5-74,5	30	24	
24 – 60	4 – 5	450 – 550	32 – 34	72,5-87,0	15-30	24	
(в разделку)							

Примечание – В диапазоне толщин 4-24 мм сварка выполняется двусторонним швом в два прохода

При сварке отдельных элементов аппаратов (фланцев, решеток и днищ к корпусам сосудов) рекомендуется применение швов таврового и углового соединения с криволинейным скосом кромок.

- 12.3.3 В случае применения сварочной проволоки диаметром, отличающимся от приведенных в таблице 12.2, при пересчете скорости подачи проволоки для новых режимов сварки следует иметь ввиду, что скорость изменяется обратно пропорционально квадрату диаметра проволоки.
- 12.3.4 Автоматическая сварка под флюсом выполняется на постоянном токе обратной полярности или переменном токе. Контроль режимов сварки осуществляют мастер цеха и представитель ОТК, снимая показания приборов, размещенных на автоматических установках.
- 12.3.5 Стыковые сварные соединения без скоса кромок рекомендуется применять при толщине стенки до 16 мм, V-образную разделку кромок при толщине стенки от 16 мм до 26 мм, X-образную свыше 26 мм, криволинейную разделку кромок свыше 24 мм.
- 12.3.6 Автоматическая сварка под флюсом должна производиться «на проход» при выполнении каждого валика на всю длину технологического участка шва.
- 12.3.7 Автоматическая сварка под флюсом может производиться при уклоне свариваемых деталей («на спуск» или «на подъем»), по отношению к горизонтальной плоскости, не более 3°.
- 12.3.8 Для точного направления электрода сварка должна выполняться с применением указателя. Вылет электрода при сварке должен быть минимальным.

- 12.3.8 Для точного направления электрода сварка должна выполняться с применением указателя. Вылет электрода при сварке должен быть минимальным.
- 12.3.9 Автоматическая сварка под флюсом рекомендуется для сварки продольных и кольцевых швов изделий с толщиной стенки до 60 мм, для больших толщин предпочтение следует отдавать ЭШС.
- 12.3.10 При сварке кольцевых швов сварочная дуга должна быть смещена относительно вертикальной плоскости симметрии обечайки на величину, зависящую от диаметра аппарата, см. таблицу 12.3. Смещения дуги должно обеспечивать выполнение сварки на спуск.
- 12.3.11 Пределы применения автоматической сварки при малых диаметрах свариваемых сосудов определяется габаритами используемой сварочной аппаратуры. В частности, при использовании сварочного трактора типа ТС-17, минимальные диаметры сосудов для сварки внутренних кольцевых швов составляют 1000 мм, а продольных швов 800 мм.

В случае использования специальной сварочной аппаратуры возможно применение автоматической сварки для меньших диаметров.

Таблица 12.3 – Величина смещения электрода относительно зенита (надира), в зависимости от диаметра аппарата

Диаметр обечайки, мм	400	500	1000	2000	3000	4000	5000
Величина смещения, мм	15 – 25	25 – 35	35 – 50	70 – 90	90 – 125	110 – 155	130 – 180

- 12:3.12 Автоматическая сварка швов тавровых соединений может производиться двумя способами: «в угол» и «в лодочку». Сварка наклонным электродом производится, когда невозможна установка конструкции для сварки «в лодочку».
- 12.3.13 При сварке тавровых соединений «в угол» рекомендуется применять при однопроходном шве с катетом от 3 до 8 мм проволоку диаметром 2 мм, при многопроходном шве с катетом от 8 до 14 мм проволоку диаметром от 3 до 4 мм, с катетом свыше 14 мм проволоку диаметром 4 мм.

12.4 Электрошлаковая сварка

- 12.4.1 Конструктивные элементы подготовленных кромок и выполненного сварного шва должны соответствовать требованиям ГОСТ 15164, настоящего стандарта или чертежа.
- 12.4.2 Электрошлаковую сварку высоколегированных сталей необходимо выполнять с применением более широких формирующих устройств, чем при сварке углеродистых сталей, так как более низкая теплопроводность высоколегированных сталей способствует сильному разогреву их в зоне сварки.
- 12.4.3 Рекомендуемые режимы ЭШС для соединений типов С1, С2 и У4 приведены в таблице 12.4. Контроль режимов сварки осуществляют мастер цеха и представитель БТК, снимая показания приборов, размещенных на автоматических установках.

Примечание – Скорость сварки определяется по формуле:

$$V_{cB} = \frac{F_{2n}V_{np}}{F_{cB}}, \qquad (1)$$

где F_{3n} – площадь сечения электродной проволоки;

 $V_{np}-$ скорость подачи проволоки;

 F_{us} – площадь шва.

			высоко	легиро	ванных ста	алеи				
Тип	Тол-	Вели-	Диа-	Сва-	Напря-	Ско-	Глу-	Сухой	Ско-	Bpe-
шва	щина,	чина	метр	роч-	жение	рость	бина	вылет	рость	мя
}	ММ	зазо-	про-	ный	дуги,	пода-	шла-	элект-	коле-	вы-
	:	pa,	воло-	ток,	В	чи	ковой	рода,	баний	дер
	Ì	MM	ки,	A		про-	ван-	MM	элект-	жки
1	ļ		MM	ĺ		воло-	ны,		рода,	у
						ки,	MM		м/ч	пол-
		Į		}		м/ч		ĺ		зуна
										С
	22-30		3	400-		300		40	32-36	
C1,		}		700	1					
C2,	32-80	30±3	3	400-	36-40	270	46-50	60	32-36	4-5
У4				700	ļ		·			
	82-200	1	5	400-	1	200	1	80	32-36	1

Таблица 12.4 — Ориентировочные режимы электрошлаковой сварки

12.4.4 Электрошлаковая сварка выполняется на постоянном токе обратной полярности (плюс на электроде) или переменном токе.

700

- 12.4.5 Электрошлаковая сварка узлов и деталей производится на специальных стенлах.
- 12.4.6 Сварка начинается и заканчивается на технологических планках. Разрешается для начала сварки и вывода кратера предусматривать припуски на свариваемых деталях длиной от 80 до 100 мм.
- 12.4.7 Заварка кратера в конце шва производится путем кратковременного выключения и включения подачи проволоки.
- 12.4.8 Электрошлаковая сварка должна производиться без перерыва. Преждевременная остановка процесса сварки может привести к несплавлению отдельных участков шва.

Если при остановке процесса выполненный шов меньше 1/3 длины стыка, то он удаляется и процесс сварки начинается вновь.

Если выполненный участок шва более 1/3 длины стыка, то усадочная раковина в месте остановки удаляется и процесс сварки продолжается (с последующим исправлением участка шва в месте остановки).

- 12.4.9 Для более надежного возбуждения электрошлакового процесса рекомендуется перед включением подачи сварочной проволоки производить заливку расплавленного флюса в поддон (флюс расплавляется в печи). Количество заливаемого флюса берется из расчета 400 г на каждые 100 мм толщины свариваемых деталей.
- 12.4.10 При толщине металла 60 мм и более, рекомендуется применение комбинированного метода, предусматривающего предварительную автоматическую сварку под флюсом корневых швов.

12.5 Сварка в защитных газах плавящимся электродом

12.5.1 Конструктивные элементы подготовленных кромок и выполненного сварного шва должны соответствовать требованиям ГОСТ 14771, ГОСТ 23518, настоящего стандарта или чертежа. Рекомендуемые режимы сварки в зависимости от толщины приведены в таблицах 12.5.

При сварке в защитных газах плавящимся электродом рекомендуется применять швы типов С7, С17, С21, Т1, Т3, Т6, Т7, У5, У6, У7 и Н2 по ГОСТ 14771.

- 12.5.2 Сварка в защитных газах плавящимся электродом выполняется на постоянном токе обратной полярности, аргонодуговая сварка неплавящимся электродом на постоянном токе прямой полярности.
- 12.5.3 Полуавтоматическая сварка производится во всех пространственных положениях.
- 12.5.4 При сварке в положениях, отличных от нижнего, применяется сварочная проволока диаметром не более 1,4 мм, а сварочный ток и напряжение дуги должны быть снижены на 10-15% по отношению к указанным в таблице 12.5.
- 12.5.5 Для обеспечения качественной защиты необходимо принять меры по исключению сквозняков в зоне сварки. Необходимо следить, чтобы расстояние от сопла горелки до поверхности свариваемой детали не превышало 25 мм.
- 12.5.6 При сварке угловых соединений с наружной стороны швов, выполняемых в вертикальном и потолочном положениях, расход газа рекомендуется увеличивать на 10%, а при сварке на сквозняке в 1,5 раза.
- 12.5.7 Сварку в нижнем положении рекомендуется производить в направлении «углом вперед».

Таблица 12.5 – Ориентировочные режимы сварки плавящимся электродом в защитных газах высоколегированных сталей

Толщина металла, мм	Кол-во проходов	Диаметр сварочной проволоки мм	Защитная среда	Свароч- ный ток, А	Напря- жение дуги, В	Скорость сварки, м/ч	Расход защитного газа, л/мин
			CO ₂ Ar, Ar+CO ₂ ,	80-90	17-19		
2-3	2	1,0	$Ar+CO_2+O_2$, $Ar+O_2$	90-110	16-18	30 – 40	10 – 12
			CO ₂	120-190	20-24		
3 – 4			Ar, Ar+CO ₂ , Ar+CO ₂ +O ₂ , Ar+O ₂	180-240	18-22		
			CO ₂	140-200	22-26		
5 – 6	2	1,2 – 1,6	Ar, Ar+CO ₂ , Ar+CO ₂ +O ₂ , Ar+O ₂	200-260	20-24	25 – 30	12 – 18
			CO ₂	180-220	24-28		
7 – 8	2-3		Ar, Ar+CO ₂ , Ar+CO ₂ +O ₂ , Ar+O ₂	220-280	22-26		
			CO ₂	260-300	26-30		
9 – 12	3 – 4	1,6 – 2,0	Ar, Ar+CO ₂ , Ar+CO ₂ +O ₂ , Ar+O ₂	260-320	24-28	20 – 30	18 – 20
14 – 20	6 – 10		Ar	280-340	26-30	1.50/.00	22// 2

Примечание: 1. В качестве смесей газов применяются: $Ar+20\%CO_2$, $Ar+15\%CO_2+2\%O_2$ и $Ar+5\%O_2$.

2. Погонная энергия сварки, приведенных в таблице режимов, не превышает 12 кДж/см

- 12.5.8 Сварку вертикальных швов при толщине металла до 3 мм, включительно, рекомендуется производить сверху вниз с наклоном горелки под углом $35^{o^{+5^{\circ}}}$, а при толщине металла свыше 3 мм снизу вверх с наклоном горелки под углом $45^{o^{+5^{\circ}}}$.
- 12.5.9 Сварку швов в горизонтальном положении следует производить с направлением электродной проволоки снизу вверх.
- 12.5.10 Сварку швов в потолочном положении рекомендуется выполнять при положении электрода «углом назад».
- 12.5.11 При сварке угловых швов сварочная проволока должна быть отклонена от вертикальной стенки на угол от 30 до 45°. Сварка должна выполняться со смещением конца проволоки от вертикальной стенки на 1-3 мм или перемещением его по вытянутой спирали.
- 12.5.12 Сварку швов длиной более 1 м рекомендуется выполнять обратноступенчатым способом.
- 12.5.13 Сварку листов толщиной 30 мм и более рекомендуется производить блоками. Сварка всех блоков по длине шва производится одновременно.
- 12.5.14 Многопроходную полуавтоматическую сварку рекомендуется производить с поперечными колебаниями электрода, облегчающими удаление из сварочной ванны шлаковых включений и улучшающими формирование сварного шва.

12.6 Ручная аргонодуговая сварка неплавящимся электродом

- 12.6.1 Ручную аргонодуговую сварку рекомендуется применять для изделий с толщиной стенки до 6 мм и при заварке корня шва односторонних сварных соединений.
- 12.6.2 Рекомендуемые типы сварных швов приведены в п. 12.5.1, режимы сварки в таблице 12.6.

Таблица 12.6 – Ориентировочные режимы аргонодуговой сварки неплавящимся электродом в защитных газах высоколегированных сталей

Толщина	Кол-во	Диаметр	Диаметр	Сварочный	Напря-	Расход
металла,	проходов	вольфрамового	присадочной	ток,	жение	аргона,
ММ		электрода,	проволоки,	A	дуги,	л/мин
		MM	MM		В	
1,5-2,0	1	2	1,6	60 – 70	9 – 10	8 – 10
3,0-4,0	2	3	1,6-2,0	70 – 90	10 – 12	10 – 12
5,0-6,0	3 – 4	3	1,6-2,0	80 – 100	10 – 12	10 – 12

Примечание — Вольфрамовый электрод затачивается на конус длиной, равной 3-4 диаметрам электрода

- 12.6.3 Аргонодуговая сварка неплавящимся электродом производится на постоянном токе прямой полярности.
- 12.6.4 Сварка может выполняться с применением присадочной проволоки или без нее. Присадочную проволоку рекомендуется подавать впереди сварочной дуги под углом от 20 до 30° к поверхности изделия.
- 12.6.5 Угол между осью вольфрамового электрода и поверхностью свариваемого изделия должен составлять от 75 до 80°, а сварочная горелка должна быть наклонена в сторону, противоположную направлению сварки.

Вводить в зону сварки присадочный пруток следует равномерно, без рывков и поперечных колебаний. Допускаются возвратно-поступательные перемещения присадочной проволоки без вывода ее из зоны защиты.

- 12.6.6 После окончания сварки разогретый конец присадочной проволоки необходимо держать под газовой защитой до потемнения металла. Окисленный (черный) конец проволоки необходимо удалить.
- 12.6.7 При выполнении первого прохода многопроходного шва с обеспечением гарантированного проплавления свариваемых кромок, при сварке тонкого металла и по отбортовке кромок рекомендуется применять сварку без присадочного металла. В этом случае условия эксплуатации сварных соединений определяются условиями применения свариваемой стали.
- 12.6.8 Если сварка выполняется без присадки или по уложенной на стык присадке, электрод следует держать перпендикулярно к поверхности изделия или с небольшим наклоном от себя настолько, чтобы был виден конец вольфрамового электрода.
- 12.6.9 Сварка потолочных швов выполняется «углом вперед», вертикальных снизу вверх.
- 12.6.10 При односторонней сварке «на весу» с обратным формированием шва сварку корневого валика следует выполнять короткой дугой, чтобы размеры сварочной ванны были минимальными.
- 12.6.11 Сварку следует выполнять узкими валиками, ширина сварочной ванны не должна превышать внутреннего диаметра сопла горелки.
- 12.6.12 Сварку швов протяженностью более 0,3-0,4 м рекомендуется выполнять обратно-ступенчатым способом.
- 12.6.13 Кратеры должны быть тщательно заплавлены. Заварку кратеров рекомендуется производить при некотором увеличении скорости сварки и длины дуги. Кратеры необходимо выводить на ранее наплавленный металл шва и заплавлять за счет расплавления присадочной проволоки.
- 12.6.14 Гашение дуги при ручной аргонодуговой сварке следует производить специальными устройствами, плавно или ступенчато уменьшающими сварочный ток в конце сварки. Допускается гашение дуги осуществлять путем увеличения длины дуги при увеличении скорости сварки.
- 12.6.15 Вольфрамовый электрод следует осматривать перед выполнением каждого прохода сварного шва и заменить или производить заточку при обнаружении разрушения или загрязнений.
- 12.6.16 Для улучшения проплавления свариваемых кромок и формирования валика шва с внутренней стороны сварку односторонних швов рекомендуется вести с поддувом аргона. Ориентировочный расход аргона на поддув 4-6 ч/мин.

12.7 Порядок сборки и сварки трубных конструкций

- 12.7.1 Требования, предъявляемые к фланцам, штуцерам, люкам и сборочным единицам с приварными фланцами, а также к установке штуцеров, люков, муфт и змеевиков из высоколегированных сталей должны соответствовать ГОСТ Р 52630, разделы 6.5-6.7. Требования к технологическим трубопроводам регламентируются ПБ 03-585.
- 12.7.2 Ручную дуговую сварку трубных конструкций рекомендуется производить на подкладных кольцах или замковых соединениях. Для сварки труб с большой толщиной стенок наряду с РДС можно также использовать автоматическую сварку под флюсом или полуавтоматическую сварку в защитных газах.

Примечание: 1. Остающиеся подкладные кольца применяются при условии согласования с заказчиком и автором проекта.

2. Сварка на остающихся подкладных кольцах или съемных медных подкладках допускается для технологических трубопроводов, работающих под давлением до 10 МПа.

- 12.7.3 Трубные конструкции с толщиной стенки до 6 мм, недоступные для сварки с обратной стороны, свариваются ручной аргонодуговой сваркой неплавящимся электродом, для больших толщин применяется комбинированный метод, при котором корневой слой сваривается ручной аргонодуговой сваркой неплавящимся электродом, а последующие слои РДС или полуавтоматической сваркой в защитных газах.
- 12.7.4 Подготовка кромок стыковых соединений труб на подкладном кольце приведена на рисунке 12.1. Местный зазор между подкладным кольцом и трубой должен быть не более 1 мм.

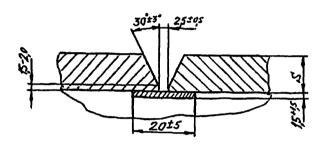


Рисунок 12.1 – Подготовка кромок стыковых соединений на подкладном кольце

- 12.7.5 Сборка стыков труб под сварку должна производиться с использованием центровочных приспособлений, обеспечивающих требуемую соосность стыкуемых труб и равномерный зазор по всей окружности стыка, а также с помощью прихваток или привариваемых на расстоянии 50-70 мм от торца труб временных технологических креплений.
- 12.7.6 При сборке стыков из аустенитных сталей с толщиной стенки трубы менее 8 мм, к сварным соединениям которых предъявляются требования стойкости к межкристаллитной коррозии, приварка технологических креплений не допускается.
- 12.7.7 Неперпендикулярность торца трубы относительно образующей не должна превышать: 0,5 мм для труб с условным проходом (D_y) до 65 мм; 1,0 мм для D_y свыше 65 до 125 мм; 1,5 мм для D_y свыше 125 до 500 мм; 2,0 мм для D_y свыше 500 мм.
- 12.7.8 При сборке труб и других элементов смещение кромок и отклонение от прямолинейности должны соответствовать требованиям п.п. 7.1.24-7.1.26 ПБ 03-585 и п. 6.6 ГОСТ Р 52630.

Примечание — Если фактический внутренний диаметр стыкуемого конца трубы превышает допустимое значение, то для обеспечения плавного перехода в месте стыка допускается произвести наплавку по внутренней поверхности конца трубы на ширину до 10 мм с последующей механической обработкой конусной фаски, а переход от наплавки к внутренней поверхности трубы плавно зачистить.

Контроль качества наплавки производится просвечиванием и внешним осмотром.

13. Термическая обработка

- 13.1 Необходимость термической обработки сварных соединений из высоколегированных сталей определяется требованиями ГОСТ Р 52630, СТП 26.260.484 и указывается в чертежах, технических условиях или технологических картах на изготовление данного вида изделия.
- 13.2 Сварные сосуды и трубопроводы из высоколегированных сталей аустенитного класса, предназначенные для работы в средах, вызывающих коррозионное растрескивание (кроме сероводородного), а также при температурах свыше 350°С в средах, вызывающих МКК, подвергаются термообработке стабилизирующему отжигу по режиму: нагрев до 870-900°С, выдержка 2-3 часа, охлаждение на воздухе.

В обоснованных случаях, при условии согласования с ОАО «ВНИИПТхимнефтеаппаратуры, допускается взамен стабилизирующего отжига применять термообработку по режиму: нагрев до 680±10°С, выдержка 10 ч.

Примечания: 1. Стабилизирующий отжиг допустим для сварных соединений из сталей, у которых отношение титана к углероду более 5 или ниобия к углероду более 8.

- 2. Стабилизирующему отжигу для предотвращения склонности к МКК изделий, работающих при температуре более 350°C, допускается подвергать стали, содержащие не более 0,08% углерода.
- 3. Стабилизирующему отжигу не подвергаются сварные соединения из хромоникельмолибденовых сталей.
- 13.3 С целью предотвращения склонности к «ножевой» коррозии сварных соединений из хромоникелевых стабилизированных сталей (типа 08X18H10T), также применяется стабилизирующий отжиг.
- 13.4 Для снятия сварочных напряжений и обеспечения стойкости к коррозионному растрескиванию сварные соединения из хромоникельмолибденовых сталей подвергаются аустенизации, см. п.п. 7.5.8-7.5.10 СТП 26.260.484.
- 13.5 Термическая обработка сосудов, аппаратов, их элементов и трубопроводов должна выполняться после окончания сварки и устранения всех выявленных дефектов.
- 13.6 Для продольных швов обечаек термообработка может быть совмещена с горячей калибровкой, а швов днищ со штамповкой.
- 13.7 Сварные узлы из аустенитных хромоникелевых сталей, штампуемых (вальцуемых) при температуре не ниже 850°С, термообработке не подвергаются.
- 13.8 Днища и другие элементы, выполненные из сталей аустенитного класса методом холодной штамповки или холодным фланжированием, должны подвергаться термообработке (аустенизации или стабилизирующему отжигу), если они предназначены для работы в средах, вызывающих коррозионное растрескивание. В остальных случаях термообработку допускается не проводить, если относительное удлинение при растяжении в исходном состоянии металла не менее 30% при степени деформации в холодном состоянии не более 15%.
- 13.9 Сварные соединения высокохромистых сталей марок 08X13, 12X13, 20X13, 20X13Л, 14X17H2, выполненные по ферритному варианту, термообрабатываются по режиму высокого отпуска: нагрев до $685-730^\circ$, выдержка 30 мин + 1 мин на 1 мм максимальной толщины стенки, охлаждение на воздухе.
- 13.10 Сварные соединения высокохромистых сталей марок 08X17T, 15X25T, выполненные по ферритному варианту, термообрабатываются по режиму: нагрев до 720-780°C, выдержка 1-2 ч, охлаждение на воздухе.

13.11 При термообработке необходимо равномерное распределение температуры по всей печи, кроме того, необходимо предохранять изделие от местных перегревов и деформаций под действием собственной массы в результате его неправильной установки.

14. Требования к контролю качества сварных соединений

- 14.1 Контроль качества сварных соединений из высоколегированных сталей производится разрушающими и неразрушающими методами в соответствии с требованиями ГОСТ Р 52630, ПБ 03-585, чертежей и настоящего стандарта.
 - 14.2 Контроль качества сварных соединений производится следующими методами:
 - визуальным и измерениями (РД 03-606);
 - механическими испытаниями (ГОСТ 6996);
 - испытаниями на стойкость к МКК (ГОСТ 6032);
 - металлографическими исследованиями (РД 24.200.04);
 - стилоскопированием (РД 26.260.15);
 - радиографическим (СТО 00220368-010);
 - цветной дефектоскопией (ОСТ 26-5);
 - замерами твердости металла шва (ГОСТ 22761, ГОСТ 22762);
 - гидравлическим испытанием (ГОСТ Р 52630, ПБ 03-585).
 - 14.3 Визуальному контролю и измерениям подвергаются все сварные швы.
- 14.4 Для проверки механических свойств завариваются стыковые контрольные соединения пластин (труб) с применением тех же сварочных материалов, способов, режимов и технологии сварки, режимов термообработки, что и при сварке изделия.

При автоматической, полуавтоматической или электрошлаковой сварках достаточно сваривать одно контрольное сварное соединение (на каждый вид применяемого процесса), а при ручной сварке несколькими сварщиками каждый из сварщиков должен выполнять отдельное контрольное сварное соединение.

- 14.5 Контроль механических свойств сварных соединений осуществляется в объеме, согласно требованиям раздела 8.3 ГОСТ Р 52630 и раздела 7.3 ПБ 03-585.
- 14.6 Показатели механических свойств сварных соединений должны соответствовать требованиям раздела 6.10 ГОСТ Р 52630, раздела 7.3 ПБ 03-585.
- 14.7 Металлографические исследования проводятся на шлифах, вырезанных из контрольных сварных соединений, для выявления макро- и микродефектов.
- 14.8 Качество сварного соединения по результатам металлографического исследования должно соответствовать требованиям ГОСТ Р 52630 и ПБ 03-585.
- 14.9 При входном контроле перед запуском в производство сварочных материалов с требованием стойкости к МКК, производятся испытания сварного соединения или наплавленного металла на стойкость против МКК по ГОСТ 6032. Результаты испытаний считаются окончательными и вносятся в паспорт изделия.
 - 14.10 Пооперационный контроль включает:
- контроль качества основного металла, соответствие его свойств данным сертификатов и требованиям стандартов или технических условий;
- контроль качества сварочных материалов и правильности их хранения согласно требованиям раздела 7;
- проверку квалификации сварщиков и специалистов сварочного производства, согласно требованиям раздела 9;
 - контроль правильности сборки и качества подготовки кромок;

- контроль технологических режимов и последовательность наложения швов;
- контроль качества сварных соединений.
- 14.11 При контроле качества подготовки и сборке деталей под сварку проверяются:
- правильность подготовки и чистота поверхности свариваемых кромок, отсутствие на них дефектов;
- чистота поверхности свариваемых кромок и прилегающих к ним участков основного металла;
- зазоры в соединениях в соответствии с требованиями ГОСТ 5264, ГОСТ 8713, ГОСТ 14771, ГОСТ 15164, ГОСТ 16037 и других действующих стандартов;
 - смещение кромок в соответствии с требованиями ГОСТ Р 52630 и ПБ 03-585;
 - правильность сборки деталей, качество и расположение прихваток.

14.12 В процессе сварки контролируется:

- режимы сварки;
- очередность наложения швов;
- температура подогрева деталей, подлежащих сварке с подогревом;
- межваликовая температура;
- качество послойной зачистки швов;
- правильность клеймения выполненных швов.
- 14.13 Пооперационную приемку в процессе изготовления аппаратов и трубопроводов необходимо фиксировать в техническом паспорте сосуда (трубопровода).
- 14.14 Результаты испытаний контрольных сварных соединений основных деталей аппаратов и трубопроводов, подведомственных Ростехнадзору, заносятся в паспорт аппарата.

15. Исправление дефектов сварных швов

- 15.1 Дефекты сварных швов, выявленные в процессе сварки или после ее завершения, подлежат исправлению путем подварки или удаления дефектного места с последующей заваркой.
- 15.2 Исправлению подлежат все сварные швы, имеющие следующие недопустимые дефекты:
- несоответствие формы и размеров сварных швов требованиям стандартов, технических условий или чертежей на изделие. При выполнении стыковых соединений допускается не исправлять сварные швы, если отклонение размеров валика (ширина и высота) составляет не более 30% от предусмотренных стандартом размеров на данный вид сварки;
 - трещины, прожоги, подрезы, непровары, свищи;
- межваликовые западания и чешуйчатость сварного шва, превышающие 1,2 мм для толщины 4-6 мм; 1,5 мм для толщины 6-10 мм и 2 мм для толщины свыше 10 мм;
- объемные дефекты округлой или удлиненной формы (поры, шлаковые и вольфрамовые включения, выявленные радиографическим методом, выходящие за пределы норм, установленных допустимым классом дефектности сварного соединения по ГОСТ 23055, или выявленные ультразвуковым методом по НД).
- 15.3 Участки сварных швов, подлежащих исправлению, отмечаются краской или. цветным мелом.
- 15.4 Удаление дефектных участков швов должно производиться механическим способом: фрезеровкой, вырубкой пневматическим зубилом, обработкой шлифовальным кругом (допускается применение плазменной, кислородно-флюсовой, воздушно-дуговой

строжки с последующей зачисткой поверхности резки на глубину не менее 1 мм от самой глубокой выемки).

- 15.5 Качество подготовки под заварку участков, с которых удалены дефекты, до их заварки проверяется работником ОТК и производственным мастером, а после удаления трещин дополнительно контролируется ЦД.
- 15.6 Исправление дефектных участков шва должно производиться по технологическим процессам с использованием сварочных материалов и способов сварки, рекомендованных настоящим стандартом.
- 15.7 При наличии дефектов, требующих двусторонней вырубки, допускается исправление дефектного участка проводить последовательно: сначала вырубку и заварку с одной стороны, затем с обратной.
- 15.8 Деформацию (коробление) участков конструкций допустимо исправлять только в холодном состоянии.
- 15.9 Исправление заниженных размеров сварных швов проводится путем дополнительной наплавки валиков на предварительно зачищенную поверхность ранее выполненного шва.
- 15.10 Исправление завышенных размеров сварных швов проводится путем местной подшлифовки или местной подрубки пневматическим зубилом с последующей зачисткой наждачным камнем для обеспечения плавных переходов швов к основному металлу.
- 15.11 Наплывы и натеки сварных швов в местах перехода к основному металлу должны исправляться опиловкой, вышлифовкой или местной подрубкой с последующей зачисткой наждачным камнем для получения плавного перехода от шва к основному металлу.
- 15.12 Незаплавленные кратеры сварных швов должны исправляться заваркой по предварительно зачищенному металлу. Сварку необходимо проводить с применением электродов меньшего диаметра.
- 15.13 Исправление сварных швов с непроварами, прожогами и трещинами проводится путем удаления дефектного участка до здорового металла с последующей заваркой.
- 15.14 При обнаружении в сварном шве трещин, перед вырубкой дефектного участка по концам трещины рекомендуется произвести засверловки с целью ограничения трещины. Качество удаление трещины подтверждается ЦД.
- 15.15 Исправление швов с подрезами и углублениями между валиками производится путем наплавки валика в углубление. Перед заваркой участков швов с подрезами и углублениями между валиками производится зачистка металла шва и основного металла, прилегающего к нему.
- 15.16 Исправление сварного шва с газовыми порами и шлаковыми включениями производится путем удаления дефектного участка с последующей заваркой.
- В случае, если газовые поры, шлаковые включения распространяются на все сечение шва, дефектный участок удаляется полностью с образованием угла раскрытия $60\pm 5^\circ$ под заварку.
- 15.17 Исправление одного и того же дефектного участка сварного соединения допускается не более трех раз. При обнаружении дефектов в шве после повторного исправления вопрос о возможности и способе исправления сварного шва решается ОГС, ОГК совместно с ОТК завода.
- 15.18 В том случае, когда дефекты обнаружены в деталях, прошедших термическую обработку (если это предусмотрено техническими требованиями), производится повторная термообработка после ремонта дефектных участков шва.

- 15.19 Все исправленные участки сварных швов подлежат приемке ОТК, о чем производится записи в журнале учета. Все данные о повторном просвечивании должны быть занесены в «Журнал контроля сварных швов просвечиванием».
- 15.20 К качеству исправленного участка шва надлежит предъявлять такие же требования, как и к основному шву.

Приложение А

(справочное)

Назначение и условия применения высоколегированных сталей

Таблица А.1

Марка стали	Технические	Рабочие	условия	Назначение
	требования и	температура, °С	давление, МПа	и условия
	виды испытания			применения
08X18H10T,	ΓΟCT 5582			Для корпусов,
08X18H10,	ΓΟCT 7350			днищ, плоских
лист	ТУ 14-1-3199			фланцев, труб-
	ТУ 14-1-2542			ных решеток и
	_			др. деталей
08X18H10T,	ΓΟCT 5949	От минус 253		Для фланцев,
сортовой прокат		до плюс 610		внутренних уст-
				ройств и т.п.
08X18H10T,	ГОСТ 9940			Для трубных
трубы	ΓΟ C T 9941			пучков, змееви-
				ков, деталей
				внутренних
		_	Не ограничено	устройств
12X18H10T,	ΓΟCT 5582			Для корпусов,
12X18H9T,	ΓΟCT 7350			днищ, плоских
лист	ТУ 14-1-3199			фланцев, труб-
	ТУ 14-1-2542			ных решеток и
	ТУ 108-1151			др. деталей
12X18H10T,	ΓΟCT 5949	От минус 253		Для фланцев,
сортовой прокат		до плюс 610		внутренних уст-
				ройств и т.п.
12X18H10T,	ГОСТ 9940			Для трубных
трубы	ГОСТ 9941			пучков, змееви-
				ков, патрубков,
				деталей и
				внутренних
				устройств
03X18H11,	ΓOCT 5582			Для корпусов,
Лист	ТУ 14-1-5142	От минус 253		днищ, плоских
	ТУ 14-1-5073	до плюс 450		фланцев и др.
				деталей
03X18H11,	ΓΟCT 5949		Не более 5,0	Для фланцев,
сортовой прокат	ТУ 14-1-1160	От минус 196		внутренних уст-
		до плюс 450		ройств
03X18H11,	ТУ 14-3-1401			Для трубных
трубы				пучков, змееви-
				ков, патрубков

Продолжение таблицы А.1

Марка стали	Технические	Рабочие	Рабочие условия		
•	требования и	температура, °C	давление, МПа	Назначение и условия	
	виды испытания	remneparypa, C	давление, мита	применения	
10X17H13M2T,	ΓΟCT 5582			Для корпусов,	
08X17H13M2T,	ΓΟCT 7350	От минус 253		днищ, плоских	
10X17H13M3T	ТУ 14-1-394	до плюс 700		фланцев и др.	
лист				деталей	
10X17H13M2T,	ΓΟCT 5949	От минус 253		Для фланцев,	
сортовой прокат		до плюс 600		муфт	
				Для трубных	
10X17H13M2T,	ГОСТ 9940	От минус 196		пучков, змееви-	
трубы	ГОСТ 9941	до плюс 700		ков, патрубков	
				и др. деталей	
08X17H15M3T,	ΓΟCT 7350			Для корпусов,	
лист				днищ, плоских	
			Не ограничено	фланцев	
08X17H15M3T,	ΓOCT 5949	От минус 196		Для фланцев,	
сортовой прокат		до плюс 600		муфт	
08X17H15M3T,	ГОСТ 9940			Для трубных	
трубы	ГОСТ 9941			пучков, змееви-	
				ков, патрубков	
				Для корпусов,	
03Х21Н21М4ГБ,	ΓΟCT 7350			днищ, плоских	
лист				фланцев	
03Х21Н21М4ГБ,	ТУ 14-3-751	От минус 70	Не ограничено	Для трубных	
трубы	ТУ 14-3-694	до плюс 450		пучков, змееви-	
	ТУ 14-3-696			ков, патрубков	
007/1577/10/0	710 CT 5500				
03X17H14M3,	ΓΟCT 5582			Для корпусов,	
лист	ТУ 14-1-5071			днищ, плоских	
				фланцев и др.	
023/1711143/2	ТУ 14-1-3303	100		деталей	
03X17H14M3,	ТУ 14-1-3303	От минус 196	Не ограничено	Для фланцев,	
сортовой прокат	TX 14 2 1240	до плюс 450		муфт	
03X17H14M3,	TY 14-3-1348			Для трубных	
трубы	ТУ 14-3-1357	:		пучков, змееви-	
077/12 4 520	TV 14 1 2040			ков, патрубков	
07X13AΓ20,	ТУ 14-1-2849			Для корпусов,	
лист	ТУ 14-1-2640			днищ, плоских	
073/12 / 1700	ТУ 14-1-3342	От минус 70		фланцев	
07X13AΓ20,	ТУ 14-3-1322	до плюс 300		Для трубных	
трубы	ТУ 14-3-1323		Не более 5,0	пучков	
		1			

Продолжение таблицы А.1

Марка стали	Технические	Рабочие	условия	Назначение
	требования и	температура, °C	давление, МПа	и условия
	виды испытания	F	, , , , , , , , , , , , , , , , , , , ,	применения
10Х14Г14Н4Т,	ГОСТ 5582			Для корпусов,
лист	ΓΟCT 7350			днищ, плоских
		От минус 196		фланцев
10X14Γ14H4T,	ГОСТ 5949	до плюс 500		Для фланцев,
сортовой прокат			**	муфт
10X14Γ14H4T,	ТУ 14-3-1905		Не ограничено	Для трубных
трубы				пучков
03Х19АГ3Н10,	ТУ 14-1-2261			Для корпусов,
лист		От минус 196		днищ, плоских
		до плюс 450		фланцев
03Х19АГЗН10,	ТУ 14-3-415			Для трубных
трубы	70 CM 440	J		пучков
08X22H6T,	ΓΟCT 5582			Для корпусов,
08X21H6M2T,	ΓΟCT 7350	0 40	**	днищ, плоских
лист	FOCT 5040	От минус 40	Не ограничено	фланцев
08X22H6T,	ΓΟCT 5949	до плюс 300		Для фланцев,
08X21H6M2T,				муфт, трубных
сортовой прокат				пучков, змееви-
08Х18Г8Н2Т,	ГОСТ 7350	-		ков, патрубков
лист	1001/330	От минус 20	Не более 5,0	Для корпусов,
лист		до плюс 300	ne oonee 3,0	днищ, плоских фланцев
08X18Γ8H2T,	ТУ 14-3-1596	до плюс 500		Для трубных
трубы	13 14-3-1370			пучков
08X13,	ΓΟCT 5582			Для ненагру-
лист	ΓΟCT 7350			женных внут-
,,,,,,				ренних уст-
				ройств, труб-
		От минус 40	Не более 0,07	ных решеток
08X13,	ΓΟCT 5949	до плюс 550		Для деталей
сортовой прокат				внутренних уст-
08X13,	ГОСТ 9940			ройств, непод-
трубы	ГОСТ 9941			лежащих веде-
08X17T,	ΓΟCT 7350	От плюс 20		нию Ростехнад-
лист		до плюс 700		зора
08X17T,	ГОСТ 5949			Для деталей
сортовой прокат		От 0	Не более 0,07	внутренних уст-
08X17T,	ГОСТ 9940	до плюс 700		ройств
трубы	ГОСТ 9941			

Окончание таблицы А.1

Марка стали	Технические	Рабочие	условия	Назначение
	требования и виды испытания	температура, °С	давление, МПа	и условия применения
15X25T, лист	ГОСТ 5582 ГОСТ 7350			Для деталей внут- ренних устройств,
15Х25Т, сортовой прокат	ГОСТ 5949	От 0 до плюс 1000	Не более 1,6	неподведомственных Ростехнадзору
15Х25Т, трубы	ГОСТ 9940 ГОСТ 9941			Для деталей внутренних устройств

Приложение Б

(обязательное)

Импортные аналоги отечественных сварочных материалов

Таблица Б.1 - Импортные аналоги отечественных сварочных проволок для сварки в защитных газах

Марка сварочной	Имп	ортные сварочные прово	олоки
проволоки	Ma	рка	Тип
по ГОСТ 2246	ESAB	BOHLER	по AWS A5.9
Св-12X13, Св-06X14, Св-08X14ГНТ	-	KW 10-IG	ER 410
Св-10Х17Т	OK Autrod 16.81	SKWA-IG KWA-IG	ER 430
Св-07X25H12Г2Т, Св-07X25H13, Св-08X25H13БТЮ, Св-06X25H12ТЮ	OK Autrod 16.53 OK Autrod 16.52	CN 23/12-IG	ER 309L
Св-04Х19Н9	OK Autrod 16.95	-	ER 308
Св-06Х19Н9Т, Св-07Х18Н9ТЮ, Св-07Х19Н10Б, Св-05Х20Н9ФБС	OK Autrod 16.11	SAS 2-IG(Si)	ER 347 Si
Св-08Х20Н9С2БТЮ по ТУ 14-1-1140	•	-	<u>-</u>
Св-01Х18Н10 по ТУ 14-1-2795	OK Autrod 16.12	EAS 2-IG(Si)	ER 308L Si
Св-05Х15Н9Г6АМ по ТУ 14-1-1595	-	-	-
Св-04Х19Н11М3	-	-	•
Св-06X19H10M3T, Св-06X20H11M3TБ, Св-08X19H10M3Б	OK Autrod 16.31	SAS 4-IG(Si)	ER 318 Si
Св- 01Х19Н18Г10АМ4 по ТУ 14-1-4981	-	-	-
Св-01Х17Н14М2 по ТУ 14-1-2795	OK Autrod 16.30	EAS 4M-IG(Si)	ER 316L Si
Св-01Х23Н28М3Д3Т	OK Autrod 16.55	CN 20/25M-1G(Si) CN 20/25M-1G	ER 385
Св-08Х25Н20С2Р1 по ТУ 14-1-4981	OK Autrod 16.70	FFB-IG	ER 310L
Св-15Х18Н12С4ТЮ по ТУ 14-1-2795	•	-	-
Св-02Х8Н22С6 по ТУ 14-1-3233	-	-	-
Св-01Х21Н10С6Ц по ТУ 14-1-3952	-	-	-

Таблица Б.2 – Импортные аналоги отечественных электродов для ручной дуговой сварки

Отечествен	ные электроды	Импортные электроды		
Марка	Тип		Марка	Тип
_	по ГОСТ 10052	ESAB	BOHLER	по AWS A5.4
ЛМ3-1	D 10V12	OK 68.15	FOX KW 10	E 410-15
УОНИ-13/НЖ	Э-12Х13			
УОНИ-10X17T	Э-10Х17Т	<u>-</u>	FOX SKWA	E 430-15
ОЗЛ-6, ЦЛ-25	Э-10Х25Н13Г2	OK 67.62	FOX FF	E 309-15
ЦЛ-9, ЗИО-7	Э-10Х25Н13Г2Б	OK 67.60	FOX FF-A	E 309-16
ОЗЛ-36, АНВ-32	Э-04X20H9	OK 67.45	FOX AS 2-A	E 307-15
ОЗЛ-8, АНВ-29	Э-07Х20Н9	OK 61.25		E 308H-15
ЦТ-15, АНВ-23	Э-08Х19Н10Г2Б	OK 61.80	FOX SAS 2	E 347-15
ЦЛ-11, ОЗЛ-7	Э-08Х20Н9Г2Б	OK 61.85		
O2II 22 AUD 24	Э-02Х21Н10Г2	OK 61.33	FOX EAS 2	E 308L-15
ОЗЛ-22, АНВ-34	3-02X21H1012	OK 61.85	FOX EAS 2-A	E 308L-13
AHB-13	Э-02Х19Н9Б	OK 61.80	FOX SAS 2-A	E 347-16
And-13	J-02X19H9B	OK 61.86		E 347-10
AHB-24	Э-03Х15Н9АГ4	-	· -	-
AHB-17	Э-02Х19Н18Г5АМ3	OK 69.21	FOX AM 400	-
ЭА-400/10У	Э-07Х19Н11М3Г2Ф	OK 63.85	FOX SAS 4	
КТИ-5	Э-09Х19Н11Г3М2Ф	OK 63.80	FOX SAS 4-A	E 318-15
НЖ-13	Э-09Х19Н10Г2М2Б			
ОЗЛ-20	Э-02Х20Н14Г2М2	OK 64.30	FOX EAS 4M	E 317L-17
		OK 63.35		E 316L-15
ОЗЛ-17У	04Х23Н27М3Д3Г2Б,	OK 69.63	FOX CN 20/25 M	E 385-16
	ТУ 14-4-715	OK 69.33		
ОЗЛ-3	Э-10Х17Н13С4	-	-	-
ОЗЛ-5	Э-12X24H14C2	OK 67.15	FOX FFB	E 310-15
			FOX FFB-A	E 310-16
ОЗЛ-24	Э-02X17H14C5	-	-	-

Таблица Б.3 – Импортные аналоги отечественных сварочных материалов для авто-

матической сварки под флюсом

Марка сварочной проволоки	Импортн	ые сварочные мате	риалы
по ГОСТ 2246	Марка проволоки/флюса		Тип
	ESAB	BOHLER	по AWS A5.9
Св-12Х13,	-	CN 13/4 UP/	ER 410 for wire
Св-08Х14ГНТ		BB 202, BB 200	
Св-10Х17Т	OK Autrod 16.81/	SKWA-UP/	
	OK Flux 10.92,	BB 202, BB 200	ER 430 for wire
	OK Flux 10.91		
Св-07Х25Н12Г2Т,	OK Autrod 16.53/	CN 23/12-UP/	ER 309L for wire
Св-07Х25Н13,	OK Flux 10.92,	BB 202, BB 200	
Св-08Х25Н13БТЮ,	OK Flux 10.91		
Св-06Х25Н12ТЮ		1	}

Окончание таблицы Б.3 – Импортные аналоги отечественных сварочных материалов для автоматической сварки под флюсом

Марка сварочной проволоки	Импортн	ые сварочные мате	риалы
по ГОСТ 2246	Марка проволо	оки/флюса	Тип
	ESAB	BOHLER	по AWS A5.9
Св-04Х19Н9,	•	CN 18/11-UP/	ER 308 for wire
Св-06Х19Н9Т		BB 202, BB 200	
Св-07Х18Н9ТЮ,	•	SAS 2-UP/	
Св-07Х19Н10Б,		BB 202, BB 200	ER 347 for wire
Св-05Х20Н9ФБС			
Св-01Х18Н10	OK Autrod 16.10/	EAS 2-UP/	ER 308L for wire
по ТУ 14-1-2795	OK Flux 10.92,	BB 202, BB 200	
Св-01Х19Н9	OK Flux 10.91		
Св-05Х15Н9Г6АМ	•	-	
по ТУ 14-1-1595			<u>-</u>
Св-04Х19Н11М3,	· · · · · · · · · · · · · · · · · ·	-	-
Св-06Х19Н10М3Т			
Св-06Х20Н11М3ТБ,	OK Autrod 16.31/	SAS 4-UP/	ER 318 for wire
Св-08Х19Н10М3Б	OK Flux 10.92,	BB 202, BB 200	
	OK Flux 10.91		
Св-01Х19Н18Г10АМ4	-	-	•
по ТУ 14-1-4981			
Св-01Х17Н14М2	OK Autrod 16.30/	EAS 4M-UP/	ER 316L for wire
по ТУ 14-1-2795	OK Flux 10.92,	BB 202, BB 200	
	OK Flux 10.91		
Св-01Х23Н28М3Д3Т	OK Autrod 16.55/	CN 20/25M-UP/	ER 385 for wire
·	OK Flux 10.92,	BB 202	
	OK Flux 10.91		
Св-08Х25Н20С2Р1	OK Autrod 16.70	-	ER 310L for wire
по ТУ 14-1-4981	OK Flux 10.92,		
	OK Flux 10.91		
Св-15Х18Н12С4ТЮ	•	-	•
по ТУ 14-1-2795			
Св-02Х8Н22С6	-	-	-
по ТУ 14-1-3233			

Таблица Б.4 – Импортные аналоги отечественных сварочных материалов для электрошлаковой сварки

Марка сварочной проволоки	Импортные сварочные материалы			
по ГОСТ 2246	Марка проволоки/флюса		Тип	
	ESAB	BOHLER	по AWS A5.9	
Св-06Х14, Св-12Х13, Св-08Х14ГНТ	-	CN 13/4 UP/ BB 202, BB 200	ER 410 for wire	

Окончание таблицы Б.4

Марка сварочной проволоки	Импортн	ые сварочные мате	риалы
по ГОСТ 2246	Марка провол	оки/флюса	Тип
	ESAB	BOHLER	по AWS A5.9
Св-10Х17Т	OK Autrod 16.81/	SKWA-UP/	
	OK Flux 10.92,	BB 202, BB 200	ER 430 for wire
	OK Flux 10.91	,	
Св-07Х25Н12Г2Т,	OK Autrod 16.53/	CN 23/12-UP/	ER 309L for wire
Св-07Х25Н13,	OK Flux 10.92,	BB 202, BB 200	
Св-08Х25Н13БТЮ,	OK Flux 10.91		
Св-06Х25Н12ТЮ			
Св-04Х19Н9,	_	CN 18/11-UP/	ER 308 for wire
Св-06Х19Н9Т		BB 202, BB 200	
Св-07Х18Н9ТЮ,	-	SAS 2-UP/	
Св-07Х19Н10Б,		BB 202, BB 200	ER 347 for wire
Св-05Х20Н9ФБС		,	
Св-01Х18Н10	OK Autrod 16.10/	EAS 2-UP/	ER 308L for wire
по ТУ 14-1-2795	OK Flux 10.92,	BB 202, BB 200	
Св-01Х19Н9	OK Flux 10.91	·	
Св-05Х15Н9Г6АМ	-	-	
по ТУ 14-1-1595			-
Св-04Х19Н11М3,	_	-	-
Св-06Х19Н10М3Т			
Св-06Х20Н11М3ТБ,	OK Autrod 16.31/	SAS 4-UP/	ER 318 for wire
Св-08Х19Н10М3Б	OK Flux 10.92,	BB 202, BB 200	
	OK Flux 10.91		
Св-01Х19Н18Г10АМ4	•	-	-
по ТУ 14-1-4981			
Св-01Х17Н14М2	OK Autrod 16.30/	EAS 4M-UP/	ER 316L for wire
по ТУ 14-1-2795	OK Flux 10.92,	BB 202, BB 200	
	OK Flux 10.91		
Св-01Х23Н28М3Д3Т	OK Autrod 16.55/	CN 20/25M-UP/	ER 385 for wire
, ,	OK Flux 10.92,	BB 202	
	OK Flux 10.91		
Св-08Х25Н20С2Р1	OK Autrod 16.70	-	ER 310L for wire
по ТУ 14-1-4981	OK Flux 10.92,		
	OK Flux 10.91		
Св-15Х18Н12С4ТЮ	-	-	-
по ТУ 14-1-2795			
Св-02Х8Н22С6	-	-	-
по ТУ 14-1-3233			

Приложение В

(справочное) Основные типы сварочного оборудования

Таблица В.1

Таолица В. І					r
Тип оборудо- вания	Свароч- ный ток, А	Диаметр сварочной проволоки, мм	Масса, кг	Габаритные размеры, мм	Предприятие- поставщик
	Автом	аты для сварь	си под флю	сом тракторного	типа
ТС-17У	1000	1,6-5	45	715x345x540	ЗАО «МИДАСОТ», АО «КЗЭСО»
ТС-17 (АДФ- 1002, КА- 001)	1000	3 – 5	50	740x300x520	ООО «Шторм- ИТС», ООО «ЭЛЕКТРИК- КОМПЛЕКТ»
TC-16	1000	2-5	45	580x350x610	Группа Кислород, 603093, г. Нижний Новгород, ул. Де- ловая 1, территория ОАО Продмонтаж
АДФ-1202 (с ВДУ- 1202)	1250	2-6	56	1110x450x770	ОАО «ЗАВОД ЭЛЕКТРИК», ЗАО «МИДАСОТ», ООО «ЭЛЕКТРИК- КОМПЛЕКТ»
АДФ-1000 (с ВДУ- 1250)	1000	2-5	80	720x500x650	ООО «Энергосистемавтоматика»
АДФ- 10030 (с ВДУ- 1202-1)	1000	2-5	50	900x345x550	ОАО «ЗАВОД ЭЛЕКТРИК», ЗАО «МИДАСОТ», ООО «ЭЛЕКТРИК- КОМПЛЕКТ»
АДФ-800 (с ВДУ- 1250)	800	2-3	-	-	ООО «Шторм- ИТС»
	Сварочны		автоматич	еской сварки под	ц флюсом
A-1406 (с ВДУ- 505)	500	2-5	3500	1010x890x1725	ЗАО «МИДАСОТ»
A-1416 (с ВДУ- 1202)	1000	2-5	1460	960x860x1860	ООО «Шторм- ИТС», ООО «ЭЛЕКТРИК- КОМПЛЕКТ»
АБС-2 (с ВДУ- 1250)	1250	3 – 6	173	-	ПКТБА
ГПФ-500 (с ВДУ- 505)	500	2 – 4	60	-	ПКТБА

Продолжен	Продолжение таблицы В 1					
Тип	Свароч-	Диаметр	Macca,	Габаритные	Предприятие-	
оборудо-	ный ток,	сварочной	КГ	размеры,	поставщик	
вания	A	проволоки,		MM		
ļ	_	мм			_	
	Сваро	чные аппарат	гы для элек	трошлаковой сва	рки	
A-535 c	1000	3	380	1600x820x1070	ОАО «ЗАВОД	
ТШС-					ЭЛЕКТРИК»,	
1000-3					ЗАО «МИДАСОТ»	
A-612 c	1000	3	70	1750x370x920	ОАО «ЗАВОД	
ТШС-					ЭЛЕКТРИК»,	
1000-1	1				ЗАО «МИДАСОТ»	
Aı	втоматы дл	ія сварки в за	щитных газ	вах плавящимся:	электродом	
АДГ-515	500	1,2-3,0	56	800x450x600	ОАО «ЗАВОД	
(с ВДУ-					ЭЛЕКТРИК»,	
505)	j				ЗАО «МИДАСОТ»	
TC-40	500	1,2-3,0	56	800x450x600	ООО «Шторм-	
					ИТС»	
Головка д	ля автома	тической свар	ки в защит	ных газах плавя	щимся электродом	
ΓΠΓ-500	500	0.8 - 2.0	45	-	ПКТБА	
(с ВДУ-		, ,				
506C)						
Полу	автоматы	для сварки в	защитных	газах плавящимо	я электродом	
ПДГ-312-4	315	0.8 - 1.4	12,5	750x604x800	Фирма «СЭЛМА»,	
(с ВДГ-		.,,	,-		ООО «Шторм-	
303-3)	Ì				ИТС»	
ПДГ-315	315	0.8 - 1.2	12,5	490x235x450	ООО «Шторм-	
(c BC-		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,-		ИТС»,	
300Б)					ЗАО «МИДАСОТ»	
A-547	315	0.8 - 1.4	7,2	130x235x355	ЗАО «МИДАСОТ»,	
(c BC-		, ,			ООО «Шторм-	
300Б)	Į				ИТС»,	
A-547	315	0.8 - 1.4	7,2	130x235x355	ЗАО «МИДАСОТ»,	
(c BC-		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,		ООО «Шторм-	
300Б)	ŀ				ИТС»,	
ПДГ-508	500	1,2-2,0	80	600x270x480	ЗАО «МИДАСОТ»,	
(с ВДУ-					АО «КЗЭСО»	
506)					Украина,	
	1		1		г. Каховка	
пдго-	500	1,2 - 2,0	14,5	750x605x950	Фирма «СЭЛМА»,	
508C (c			- ',5	, , , , , , , , , , , , , , , , , , ,	ООО «Шторм-	
ВДУ-506		1			ИТС»	
ПДГ-525	500	1,2-2,0	16,5	760x700x900	ОАО «ЗАВОД	
(с ВДУ-		1,2 2,0	'`,;		ЭЛЕКТРИК», ЗАО	
505)					«МИДАСОТ»	
ПДГО-510	500	1,2-2,0	15,0	640x215x410	Фирма «СЭЛМА»,	
(с ВДУ-	500	1,2 - 2,0	15,0	UTUAZIJATIU	ООО «Шторм-	
506C)					ИТС»	
ПДГО-	500	1,6-2,0	16,5	760x700x900	ОАО «ЗАВОД	
5010	300	1,0 - 2,0	10,5	70027002900	ЭЛЕКТРИК»	
1 2010	l	1	l	I	SHEK I PYIK»	

Продолжение таблицы В.1

Тип	Номинальный	Диаметр	Macca,	Габаритные	Предприятие-
оборудо-	сварочный	сварочной	ΚΓ	размеры,	поставщик
вания	ток,	проволоки,		мм	
	A	ММ			
	Автоматы дл	я аргонодуговой	сварки неплав	ящимся электр	одом
АДСВ-	315	0,8-2,0	745	850x735x675	OAO
6M					«ЭЛЕКТРО-
					МЕХАНИКА»
APK-4	315	0,8-2,0	1045	4918x850x675	OAO
					«ЭЛЕКТРО-
					МЕХАНИКА»,
	Установки дл	я аргонодуговой	сварки неплан	вящимся электр	одом
УДГУ-	250	2,0-4,0	110	800x370x730	Фирма
251					«СЭЛМА»
УДГУ-	350	2,0-6,0	135	555x445x970	Фирма
351					«СЭЛМА»
УДГУ-	500	2,0-8,0	200	730x445x970	Фирма
501					«СЭЛМА»
I	орелки для руч	ной аргонодугов	ой сварки неп.	лавящимся элег	стродом
Горелка	160		-	-	ОАО «ЗАВОД
ГР-4					ЭЛЕКТРИК»
Горелка	200	-	-	-	ОАО «ЗАВОД
ГИ-201					ЭЛЕКТРИК»
Горелка	315	_	-	-	ОАО «ЗАВОД
ГР-6					ЭЛЕКТРИК»
Горелка	500	-	-	-	ОАО «ЗАВОД
ΓP-10					ЭЛЕКТРИК»

Адреса предприятий-поставщиков оборудования

- 1. Фирма «СЭЛМА» Украина, 95034, г.Симферополь, ул. Генерала Васильева, 32а, ОАО Электромашиностроительный завод Фирма «СЭЛМА».
 - Тел.: (0652)-48-18-62, 48-59-12, факс: (0652)-48-19-73
- 2. ЗАО «МИДАСОТ» 109004, г. Москва, Шелапутинский пер., д. 1. Тел.: (095)-915-09-55, 915-09-38, Факс: (095)-915-58-26, 915-09-14.
- 3. AO «КЗСЭО» 374800, Украина, Херсонская обл., г. Каховка, ул. Пушкина, 109. Тел.: (05536)-3-32-85, факс: (05536)-4-10-41, 4-25-90.
- 4. «ЗАВОД ЭЛЕКТРИК», 197376, г. Санкт-Петербург, пр. Медиков, 10. Тел. (812)-234-15-80, 234-71-28, факс: (812)-234-16-79, 234-17-79.
- ООО «Шторм-ИТС», 620062, РФ, г. Екатеринбург, пр. Ленина, 85-330.
 Тел.: (343) 372-73-50, 263-77-13, факс: 263-77-17.
- 6. ОАО «ПКТБА», г. Пенза, пр. Победы, 75.

Тел./факс: (8412) 45-78-00, 45-78-03, 45-78-04, 45-78-05.

- 7. ОАО «ЭЛЕКТРОМЕХАНИКА», Россия, 172350, г. Ржев, Тверской обл., Заводское шоссе, 2.
 - Тел: (08232) 206-06, 229-50, 240-37, факс: 240-37, 204-05,230-12, 203-92.
- 8. Группа Кислород, 603093, г. Нижний Новгород, ул. Деловая 1, территория ОАО Продмонтаж

Приложение Г

(справочное)

Специализированные научно-исследовательские организации – авторы настоящего стандарта

№ п/п	Организация	Адрес, телефон
1.	ОАО «ВНИИПТхимнефтеаппаратуры»	400005, г. Волгоград, пр. Ленина, 90 «Б» Тел./факс (8442)-23-35-93
2.	ОАО «ВНИИнефтемаш»	115191, г. Москва, 4-й Рощинский пр., д.19 Тел./факс (495)-952-29-22

OKC 25.160.10 B05

Ключевые слова: стандарт организации, сосуды, аппараты, технологические трубопроводы, высоколегированные стали, сборка, сварка, термообработка, контроль качества, исправление дефектов

СТАНДАРТ ОРГАНИЗАЦИИ

CTO 00220368-013-2009

Руководитель организации-разработчин ОАО «ВНИИПТхимнефтеаппаратуры»

Заместитель генерального директора, к.т.н.

Руководитель разработки

Заведующий лабораторией № 55

должность

В.Л. Мирочник инициалы, фамилия

В.И. Курило инициалы, фамилия

Разработчики

Старший научный сотрудник

должность

Инженер-технолог 1 категории

должность

Заведующий отделом стандартизации

должность

В.К. Красильников инициалы, фамилия

Т.И. Меняйлова

инициалы, фамилия Ю.В. Сафрыгин инициалы, фамилия

Руководитель организации-разработчика

ОАО «ВНИИнефтемаш»

Первый заместитель генерального дирек обложность

Разработчики

Заведующий отделом металловедения и сварки. Ката

должность

Заведующий лабораторией сварки, к.т.н.

должность

В.А. Емелькина инициалы, фамилия

А.Н. Бочаров инициалы, фамилия

инициалы, фамилия
<u>Н.М. Королев</u>
инициалы, фамилия

СОГЛАСОВАНО

Заместитель генерального директора по научно-производственной работе

туммаш», к.т.н.

П.А.Харин _ 2009г.

СОГЛАСОВАНО

личная подпись

S DY

дичная иббпись

Заместитель начальника Нижне-Волжского межрегионального управления по технологическому и экологическому надзору Федеральной службы по экологическому и атомному надзору

С.В. Бородай

53

ОКС 25.160.10 Группа В05

Изменение № 1 СТО 00220368-013-2009 СВАРКА СОСУДОВ, АППАРАТОВ И ТРУБОПРОВОДОВ ИЗ ВЫСОКОЛЕГИРОВАННЫХ СТАЛЕЙ

Утверждено и введено в действие приказом ОАО «ВНИИПТхимнефтеаппаратуры»
№ от « » 2009г.

Дата введения – <u>2009-</u> <u>10 – 01</u>

1. Таблицу Б.1 изложить в новой редакции:

Таблица Б.1 - Импортные аналоги отечественных сварочных проволок для сварки в защитных газах

Марка сварочной	Импортные сварочные проволоки			
проволоки	Марк	Тип		
по ГОСТ 2246	ESAB	BOHLER	по AWS A5.9	
Св-12X13, Св-06X14, Св-08X14ГНТ	OK Autrod 409Nb	KW 10-IG	ER 410 ER 409	
Св-10Х17Т	OK Autrod 430Ti OK Autrod 430LNb	SKWA-IG KWA-IG	ER 430	
Св-07X25H12Г2Т, Св-07X25H13, Св-08X25H13БТЮ, Св-06X25H12ТЮ	OK Autrod 309L OK Autrod 309Si OK Autrod 309LSi	CN 23/12-IG	ER 309L	
Св-08Х20Н9Г7Т	-	A 7-IG A 7-IG/D	ER 307	
Св-04Х19Н9	OK Autrod 16.95	-	ER 308	
Св-06Х19Н9Т, Св-07Х18Н9ТЮ, Св-07Х19Н10Б, Св-05Х20Н9ФБС	OK Autrod 347Si	-	ER 347 Si	
Св-08Х20Н9С2БТЮ по ТУ 14-1-1140	-	-	-	
Св-01Х18Н10 по ТУ 14-1-2795	OK Autrod 308LSi	EAS 2-IG(Si)	ER 308L Si	
Св-05Х15Н9Г6АМ по ТУ 14-1-1595	-	-	-	
Св-04Х19Н11М3	-	-	ER 316 ER 317	
Св-06Х19Н10М3Т, Св-06Х20Н11М3ТБ, Св-08Х19Н10М3Б	OK Autrod 318Si	SAS 4-IG(Si)	ER 318 Si	

ОАО «НИИХИММАШ»

Заветистриновано № 266 от 10 06 2003

Заветистри ганерального директора

П.А. Харин

Окончание таблицы Б.1

Марка сварочной	Импортные сварочные проволоки			
проволоки	Map	Тип		
по ГОСТ 2246	ESAB	BOHLER	по AWS A5.9	
Св-01Х19Н18Г10АМ4	-	-	-	
по ТУ 14-1-4981				
Св-01Х17Н14М2	OK Autrod 316L	EAS 4M-IG(Si)	ER 316L	
по ТУ 14-1-2795	OK Autrod 316LSi		ER 316L Si	
Св-01Х23Н28М3Д3Т	OK Autrod 385	CN 20/25M-1G(Si)	ER 385	
		CN 20/25M-1G		
Св-08Х25Н20С2Р1	OK Autrod 310	FFB-IG	ER 310	
по ТУ 14-1-4981				
Св-15Х18Н12С4ТЮ	-	-	-	
по ТУ 14-1-997				
Св-02Х8Н22С6	-	-	•	
по ТУ 14-1-3233				
Св-01Х21Н10С6Ц	-	-	•	
по ТУ 14-1-3952				

2. В таблице Б.2 в графе 3 «Марка ESAB»:

- в строке 3 ввести: «ОК 67.75»,
- в строке 5 ввести «ОК 61.81»,
- в строке 6 исключить «ОК 61.33», вместо «ОК 61.85» ввести «ОК 61.35»,
- в строке 9 вместо «ОК 69.21» ввести «ОК 69.25».

3. Таблицу Б.3 изложить в новой редакции:

Таблица Б.3 – Импортные аналоги отечественных сварочных материалов лля автоматической сварки пол флюсом

Марка сварочной проволоки	Импортные сварочные материалы		
по ГОСТ 2246	Марка проволоки/флюса		Тип
L	ESAB	BOHLER	по AWS A5.9
Св-12Х13,	-	CN 13/4 UP/	ER 410 for wire
Св-08Х14ГНТ		BB 202, BB 200	ER 409 for wire
Св-10Х17Т	OK Autrod 430/	SKWA-UP/	
	OK Flux 10.92,	BB 202, BB 200	ER 430 for wire
	OK Flux 10.93		
Св-07Х25Н12Г2Т,	OK Autrod 309L/	CN 23/12-UP/	ER 309L for wire
Св-07Х25Н13,	OK Flux 10.92,	BB 202	
Св-08Х25Н13БТЮ,	OK Flux 10.93		
Св-06Х25Н12ТЮ			
Св-08Х20Н9Г7Т		A 7- UP/	ER 307 for wire
	-	BB 202	
Св-04Х19Н9,	OK Autrod 308H/	CN 18/11-UP/	ER 308 for wire
Св-06Х19Н9Т	OK Flux 10.92,	BB 202, BB 200	
	OK Flux 10.93		
Св-07Х18Н9ТЮ,	OK Autrod 347/	SAS 2-UP/	
Св-07Х19Н10Б,	OK Flux 10.92,	BB 202, BB 200	ER, 347 for wire
Св-05Х20Н9ФБС	OK Flux 10.93		

Окончание таблицы Б.3

Марка сварочной проволоки	Импортные сварочные материалы		
по ГОСТ 2246	Марка проволе	оки/флюса	Тип
	ESAB	BOHLER	по AWS A5.9
Св-01Х18Н10	OK Autrod 308L/	EAS 2-UP/	ER 308L for wire
по ТУ 14-1-2795	OK Flux 10.92,	BB 202, BB 200	
Св-01Х19Н9	OK Flux 10.93]	
Св-05Х15Н9Г6АМ	-	-	
по ТУ 14-1-1595			<u>-</u>
Св-04Х19Н11М3,	-	-	-
Св-06Х19Н10М3Т			
Св-06Х20Н11М3ТБ,	OK Autrod 318/	SAS 4-UP/	ER 318 for wire
Св-08Х19Н10М3Б	OK Flux 10.92,	BB 202, BB 200	
	OK Flux 10.93		
Св-01Х19Н18Г10АМ4		-	-
по ТУ 14-1-4981			1
Св-01Х17Н14М2	OK Autrod 316L/	EAS 4M-UP/	ER 316L for wire
по ТУ 14-1-2795	OK Flux 10.92,	BB 202, BB 200	
	OK Flux 10.93		
Св-01Х23Н28М3Д3Т	OK Autrod 385/	CN 20/25M-UP/	ER 385 for wire
ļ	OK Flux 10.92,	BB 202	
	OK Flux 10.93		
Св-08Х25Н20С2Р1	OK Autrod 310/	-	ER 310 for wire
по ТУ 14-1-4981	OK Flux 10.92		
Св-15Х18Н12С4ТЮ	-	-	-
по ТУ 14-1-997			
Св-02Х8Н22С6	-	-	-
по ТУ 14-1-3233			

4. Таблицу Б.4 изложить в новой редакции:

Таблица Б.4 – Импортные аналоги отечественных сварочных материалов для электрошлаковой сварки

Марка сварочной проволоки	Импортные сварочные материалы		
по ГОСТ 2246	Марка проволоки/флюса		Тип
	ESAB	BOHLER	по AWS A5.9
Св-06Х14,	OK Autrod 409Nb/	CN 13/4 UP/	ER 410 for wire
Св-12Х13,	OK Flux 10.92,	BB 202, BB 200	ER 409 for wire
Св-08Х14ГНТ	OK Flux 10.93	BB 202, BB 200	
Св-10Х17Т	OK Autrod 430Ti/	SKWA-UP/	
	OK Flux 10.92,	BB 202, BB 200	ER 430 for wire
	OK Flux 10.93		
Св-07Х25Н12Г2Т,	OK Autrod 309L/	CN 23/12-UP/	ER 309L for wire
Св-07Х25Н13,	OK Flux 10.92,	BB 202, BB 200	
Св-08Х25Н13БТЮ,	OK Flux 10.93		
Св-06Х25Н12ТЮ			

Окончание таблины Б.4

Марка сварочной проволоки	Импортные сварочные материалы		
по ГОСТ 2246	Марка проволоки/флюса		Тип
	ESAB	BOHLER	по AWS A5.9
Св-04Х19Н9,	-	CN 18/11-UP/	ER 308 for wire
Св-06Х19Н9Т		BB 202, BB 200	
Св-07Х18Н9ТЮ,	-	SAS 2-UP/	
Св-07Х19Н10Б,		BB 202, BB 200	ER 347 for wire
Св-05Х20Н9ФБС			
Св-01Х18Н10	OK Autrod 308L/	EAS 2-UP/	ER 308L for wire
по ТУ 14-1-2795	OK Flux 10.92,	BB 202, BB 200	
Св-01Х19Н9	OK Flux 10.93		
Св-05Х15Н9Г6АМ	-	-	
по ТУ 14-1-1595			-
Св-04Х19Н11М3,		-	-
Св-06Х19Н10М3Т			
Св-06Х20Н11М3ТБ,	OK Autrod 318/	SAS 4-UP/	ER 318 for wire
Св-08Х19Н10М3Б	OK Flux 10.92,	BB 202, BB 200	
	OK Flux 10.93		
Св-01Х19Н18Г10АМ4	-	-	•
по ТУ 14-1-4981			
Св-01Х17Н14М2	OK Autrod 316L/	EAS 4M-UP/	ER 316L for wire
по ТУ 14-1-2795	OK Flux 10.92,	BB 202, BB 200	
	OK Flux 10.93		
Св-01Х23Н28М3Д3Т	OK Autrod 385/	CN 20/25M-UP/	ER 385 for wire
	OK Flux 10.92,	BB 202	
	OK Flux 10.93	<u> </u>	
Св-08Х25Н20С2Р1	OK Autrod 310/		ER 310 for wire
по ТУ 14-1-4981	OK Flux 10.92		
Св-15Х18Н12С4ТЮ	•	-	-
по ТУ 14-1-2795			
Св-02Х8Н22С6	-	-	-
по ТУ 14-1-3233			

ОАО «ВНИИПТхимнефтеаппаратуры»

Заместитель генерального директор:

Заведующий сектором № 55 должность

Старший научный сотрудник *должность*

Заведующий отделом стандартизации должность

<u>В.Л. Мирочник</u> инициалы, фамилия

10дпись

личная подпись

личная подпись

В.И. Курило инициалы, фамилия

В.К. Красильников инициалы, фамилия

Ю.В. Сафрыгин инициалы, фамилия

ОАО «ВНИИнефтемаш»

ОАО «ВНИИнефтемаш»

Первый заместитель генерального директора

должность

Заведующий отделом металловедения и сварки, к.

должность

Заведующий лабораторией сварки, к.т.н.

должность

В.А. Емелькина инициалы, фамилия

А.Н. Бочаров инициалы, фамилия

Н.М. Королев инициалы, фамилия