Федеральная служба по гидрометеорологии и мониторингу окружающей среды (Росгидромет)

РУКОВОДЯЩИЙ ДОКУМЕНТ

РД 52.24.416-2010

МАССОВАЯ КОНЦЕНТРАЦИЯ МОЛИБДЕНА В ВОДАХ. МЕТОДИКА ВЫПОЛНЕНИЯ ИЗМЕРЕНИЙ ИНВЕРСИОННЫМ ВОЛЬТАМПЕРОМЕТРИЧЕСКИМ МЕТОДОМ

Предисловие

- 1 РАЗРАБОТАН Государственным учреждением Гидрохимический институт (ГУ ГХИ)
- 2 РАЗРАБОТЧИКИ Л.И. Минина, канд. хим. наук, Т.С. Евдокимова
 - 3 СОГЛАСОВАН с ГУ «НПО «Тайфун» 03.03.2010 и УМЗА Росгидромета 17.03.2010
- 4 УТВЕРЖДЕН Заместителем Руководителя Росгидромета 17.03.2010
- 5 АТТЕСТОВАН ГУ ГХИ, свидетельство об аттестации № 70.24-2009 от 01.12.2009
- 6 ЗАРЕГИСТРИРОВАН ГУ «НПО «Тайфун» за номером РД 52.24.416-2010 от 31.03.2010
- 7 ВЗАМЕН РД 52.24.416-95 «Методические указания. Методика выполнения измерений массовой концентрации молибдена в поверхностных водах суши инверсионным вольтамперометрическим методом»

Содержание

Т Область применения	1
2 Нормативные ссылки	1
3 Приписанные характеристики погрешности измерения	2
4 Средства измерений, вспомогательные устройства, реактивы, материалы	
4.1 Средства измерений, вспомогательные устройства	3
4.2 Реактивы и материалы	5
5 Метод измерений	6
6 Требования безопасности, охраны окружающей среды	6
7 Требования к квалификации операторов	7
8 Условия выполнения измерений	
9 Отбор и хранение проб	7
10 Подготовка к выполнению измерений	8
10.1 Приготовление растворов и реактивов	
10.2 Приготовление градуировочных растворов	9
10.3 Требования к проведению измерений	
10.4 Мешающие влияния и их устранение	10
11 Выполнение измерений	11
11.1 Измерение аналитического сигнала в фоновом электролите	11
11.2 Измерение аналитического сигнала в фоновом электролите с	
добавками	
11.3 Измерение аналитического сигнала в пробе	
11.4 Измерение аналитического сигнала в пробе с добавками	12
12 Вычисление и оформление результатов измерений	13
13 Контроль качества результатов измерений при реализации методин	
в лаборатории	14
13.1 Общие положения	
13.2 Алгоритм оперативного контроля повторяемости	14
14 Проверка приемлемости результатов, полученных в условиях воспроизводимости	15

Введение

Естественным источником поступления молибдена в водную среду является процесс выщелачивания соединений молибдена из минералов. В незагрязненных речных водах молибден находится в микрограммовых концентрациях.

В поверхностных водах суши соединения молибдена находятся в растворенном состоянии, главным образом, в виде аниона ${\rm MoO_4}^{2^\circ}$, при этом часть его может быть связана в высокомолекулярные комплексы.

Антропогенное загрязнение водных объектов соединениями молибдена обусловлено их выносом со сточными водами обогатительных фабрик, предприятий цветной металлургии.

Молибден оказывает токсическое воздействие на гидробионты и человека, поэтому содержание его в поверхностных водах нормируется. Предельно допустимая концентрация (ПДК) растворенных форм молибдена в воде водных объектов хозяйственно-питьевого и культурно-бытового назначения составляет $0,25\,$ мг/дм 3 , рыбохозяйственных водоемов - $1,2\,$ мкг/дм 3 .

РУКОВОДЯЩИЙ ДОКУМЕНТ

МАССОВАЯ КОНЦЕНТРАЦИЯ МОЛИБДЕНА В ВОДАХ. МЕТОДИКА ВЫПОЛНЕНИЯ ИЗМЕРЕНИЙ ИНВЕРСИОННЫМ ВОЛЬТАМПЕРОМЕТРИЧЕСКИМ МЕТОДОМ

Дата введения - 2010-03 -01

1 Область применения

1.1 Настоящий руководящий документ устанавливает методику выполнения измерений (далее - методика) массовой концентрации растворенных форм молибдена в пробах поверхностных вод суши в диапазоне от 0,2 до 10,0 мкг/дм³ инверсионным вольтамперометрическим методом.

При более высоких концентрациях молибдена необходимо разбавление пробы тридистиллированной водой.

1.2 Настоящий руководящий документ предназначен для использования в лабораториях, осуществляющих наблюдения за загрязнением природных и очищенных сточных вод.

2 Нормативные ссылки

В настоящем руководящем документе использованы ссылки на следующие нормативные документы:

ГОСТ 12.1.005-88 ССБТ. Общие санитарно-гигиенические требования к воздуху рабочей зоны

ГОСТ 12.1.007-76 ССБТ. Вредные вещества. Классификация и общие требования безопасности

ГОСТ 17.1.5.04-81 Охрана природы. Гидросфера. Приборы и устройства для отбора, первичной обработки и хранения проб природных вод. Общие технические условия

ГОСТ 17.1.5.05-85 Охрана природы. Гидросфера. Общие требования к отбору проб поверхностных и морских вод, льда и атмосферных осадков

ГОСТ Р ИСО 5725-6-2002 Точность (правильность и прецизионность) методов и результатов измерений. Часть 6. Использование значений точности на практике

ГОСТ Р 51592-2000 Вода. Общие требования к отбору проб МИ 2881-2004 Рекомендация. ГСИ. Методики количественного химического анализа. Процедуры проверки приемлемости результатов анализа.

Примечание - Ссылки на остальные нормативные документы приведены в разделе 4.

3 Приписанные характеристики погрешности измерения

3.1 При соблюдении всех регламентируемых методикой условий проведения измерений характеристики погрешности результата измерения с вероятностью 0,95 не должны превышать значений, приведенных в таблице 1.

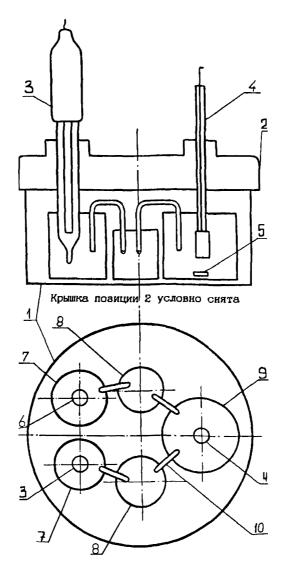
Таблица 1 – Диапазон измерений, значения характеристик погрешности и ее составляющих при принятой вероятности Р=0,95

Диапазон из-	Показатель	Показатель вос-	Показатель	Показатель
мерений мас-	повторяемости	производимости	правильности	точности
совой кон-	(среднеквадра-	(среднеквадрати-	(границы	(границы
центрации	тическое от-	ческое отклонение	систематической	погрешности)
молибдена	клонение по-	воспроизводи-	погрешности)	
	вторяемости)	мости)	_	.
X, мкг/дм ³	<u>σ_г, мкг∕дм</u> ³	σ _R , мкг/дм ³	$\pm \Delta_{c}$, мкг/дм ³	±Δ, мкг/дм ³
От 0,2 до 10,0 включ.	0,10·X	0,16·X	0,1+0,11·X	0,34·X

При выполнении измерений массовой концентрации молибдена свыше 10,0 мкг/дм³ после соответствующего разбавления погрешности измерений для соответствующих пестицидов не превышают значений, рассчитанных по приведенным в таблице 1 зависимостям.

Предел обнаружения молибдена 0,1 мкг/дм³.

- 3.2 Значения показателя точности методики используют при:
- оформлении результатов измерений, выдаваемых лабораторией;


- оценке деятельности лабораторий на качество проведения измерений;
- оценке возможности использования результатов измерений при реализации методики в конкретной лаборатории.

4 Средства измерений, вспомогательные устройства, реактивы, материалы

4.1 Средства измерений, вспомогательные устройства

- 4.1.1 Полярограф ПУ-1, 5М2.840.016ТО, снабженный регистрирующим устройством, или другой полярограф.
 - 4.1.2 Секундомер по ГОСТ 8.423-81.
- 4.1.3 Весы лабораторные высокого (II) класса точности по ГОСТ 24104-2001.
- 4.1.4 Весы лабораторные среднего (III) класса точности по ГОСТ 24104-2001 с наибольшим пределом взвешивания 200 г.
- 4.1.5 Государственный стандартный образец состава раствора ионов молибдена ГСО 7768-2000 (далее ГСО) 1 шт.
- 4.1.6 Колбы мерные 2-го класса точности исполнения 2, 2а по ГОСТ 1770-74 вместимостью: 100 см^3 3 шт.; 200 см^3 1 шт.
- 4.1.7 Пипетки градуированные 2-го класса точности исполнения 1, 2 по ГОСТ 29227-91 вместимостью: 1 см 3 6 шт.; 5 см 3 1 шт.; 10 см 3 2 шт.
- 4.1.8 Пипетки с одной отметкой 2-го класса точности исполнения 2 по ГОСТ 29169-91 вместимостью: 5 см 3 1 шт.; 10 см 3 2 шт.
- 4.1.9 Дозатор пипеточный ДПОПц 1-100-1000 по ТУ 9452-002-3318998-2002 1 шт.
- 4.1.10 Цилиндры мерные исполнения 1, 3 по ГОСТ 1770-74 вместимостью: $25 \text{ см}^3 1 \text{ шт.}$; $100 \text{ см}^3 1 \text{ шт.}$; $200 \text{ см}^3 1 \text{ шт.}$
- 4.1.11 Электрохимическая ячейка закрытого типа, включающая четыре вспомогательных стаканчика, электролитические мостики и кварцевый электролизер вместимостью 20 см³ (рисунок 1).
- 4.1.12 Насыщенный хлорсеребряный электрод (электрод сравнения) типа ЭВЛ-1М3 1 шт.
- 4.1.13 Электрод платиновый проволочный (диаметр 0,3 мм, длина 5 мм), впаянный в стеклянную трубку (вспомогательный электрод)

- 1 шт.

- 1 корпус ячейки; 2 крышка ячейки; 3 электрод сравнения ЭВЛ-1М3; 4 электрод рабочий; 5 перемешивающий элемент;
- 6 электрод вспомогательный; 7,8 вспомогательные стаканчики;
- электрод вспомогательныи; 7,8 вспомогательные стаканчики
 н кварцевый электролизер; 10 электролитические мостики

Рисунок 1 - Электрохимическая ячейка

- 4.1.14 Электрод графитовый (рабочий электрод) ТГЭ, производства ООО НПВП «Ива» 1 шт.
- 4.1.15 Стаканы B-1, ТХС, по ГОСТ 25336-83 вместимостью: $50 \text{ cm}^3 1 \text{ шт.}$; $100 \text{ cm}^3 1 \text{ шт.}$; $250 \text{ cm}^3 2 \text{ шт.}$; $600 \text{ cm}^3 2 \text{ шт.}$
- 4.1.16 Стаканчики для взвешивания (бюксы) CB-19/9 и CB-24/10 по ГОСТ 25336 -82 3 шт.
 - 4.1.17 Пробирка коническая исполнения 1 по ГОСТ 1770-74 1 шт.
- 4.1.18 Установка из стекла группы ТС для перегонки воды (круглодонная колба тип К исполнения 1 с взаимозаменяемым конусом 29/32, вместимостью 2000 см³, насадка типа Н1 с взаимозаменяемыми конусами 29/32-14/23-14/23, холодильник типа ХПТ-1 исполнения 1 длиной не менее 400 мм, аллонж типа АИ с взаимозаменяемым конусом муфты 14/23) по ГОСТ 25336-82 2 шт.
- 4.1.19 Устройство для фильтрования проб с использованием мембранных или бумажных фильтров.
- 4.1.20 Мешалка магнитная любого типа с перемешивающими элементами длиной 5-7 мм, диаметром 2 мм в тефлоновой оболочке.
 - 4.1.21 Шкаф сушильный общелабораторного назначения.
 - 4.1.22 Электроплитка по ГОСТ 14919-83.
- 4.1.23 Посуда из темного и светлого стекла для хранения растворов вместимостью 100 cm^3 .
- 4.1.24 Посуда полиэтиленовая (полипропиленовая) для хранения растворов вместимостью 100 см³; 250 см³; 1000 см³.
 - 4.1.25 Бумага наждачная, шлифовальная, зернистость № 4.

Примечание - Допускается использование других типов средств измерений, посуды и вспомогательного оборудования, в том числе импортных, с характеристиками не хуже, чем у приведенных в 4.1.

4.2 Реактивы и материалы

- 4.2.1 Калий роданистый (роданид калия) по ГОСТ 4139-75, х.ч.
- 4.2.2 Кислота серная по ГОСТ 14262-78, ос.ч.

или по ГОСТ 4204-77, х.ч.

4.2.3 Кислота соляная по ГОСТ 14261-77, ос.ч.

или по ГОСТ 3118-77, х.ч.

- 4.2.4 Кислота аскорбиновая по ГОСТ 4815-76, ч.д.а.
- 4.2.5 Калий марганцовокислый (перманганат калия) по ГОСТ 20490-75, ч.д.а.
 - 4.2.6 Калий хлористый (хлорид калия) по ГОСТ 4234-77, х.ч.

- 4.2.7 Натрия гидроокись (гидроксид натрия) по ГОСТ 4328-77, ч.д.а.
 - 4.2.8 Антипирин фармацевтический.
- 4.2.9 Фильтры бумажные обеззоленные «синяя лента» по ТУ 6-09-1678-86.
- 4.2.10 Фильтры мембранные «Владипор МФАС-ОС-2», 0,45 мкм, по ТУ 6-55-221-1-29-89 или другого типа, равноценные по характеристикам.
 - 4.2.11 Вода дистиллированная по ГОСТ 6709-72.

Примечание - Допускается использование реактивов, изготовленных по другой нормативной и технической документации, в том числе импортных, с квалификацией не ниже указанной в 4.2.

5 Метод измерений

Выполнение измерений основано на электрохимическом концентрировании малорастворимого соединения молибдена с антипирином и роданид-ионами на поверхности графитового электрода с последующей регистрацией величины максимального анодного тока. При этом величина аналитического сигнала функционально зависит от концентрации ионов молибдена в анализируемом растворе.

6 Требования безопасности, охраны окружающей среды

- 6.1 При выполнении измерений массовой концентрации молибдена в пробах природных и очищенных сточных вод соблюдают требования безопасности, установленные в национальных стандартах и соответствующих нормативных документах.
- 6.2 По степени воздействия на организм вредные вещества, используемые при выполнении измерений, относятся ко 2 и 3 классам опасности по ГОСТ 12.1.007.
- 6.3 Содержание используемых вредных веществ в воздухе рабочей зоны не должно превышать установленных предельно допустимых концентраций в соответствии с ГОСТ 12.1.005.
- 6.4 Вредно действующие вещества подлежат сбору и утилизации в соответствии с установленными правилами.
- 6.5 Дополнительных требований по экологической безопасности не предъявляется.

7 Требования к квалификации операторов

К выполнению измерений и обработке их результатов допускаются лица с высшим профессиональным образованием или со средним профессиональным образованием и стажем работы в лаборатории не менее года, освоившие методику.

8 Условия выполнения измерений

При выполнении измерений в лаборатории должны быть соблюдены следующие условия:

- температура окружающего воздуха (22±5) °C;
- атмосферное давление от 84,0 до 106,7 к Π a (от 630 до 800 мм рт. ст.);
 - влажность воздуха не более 80 % при 25 °C;
 - напряжение в сети (220±10) В;
 - частота переменного тока в сети питания (50±1) Гц.

9 Отбор и хранение проб

Отбор проб производится в соответствии с ГОСТ 17.1.5.05 и ГОСТ Р 51592. Оборудование для отбора проб должно соответствовать ГОСТ 17.1.5.04 и ГОСТ Р 51592.

Мешающее влияние взвешенных и коллоидных веществ устраняют предварительным фильтрованием пробы. Пробы фильтруют через мембранный фильтр с диаметром пор 0,45 мкм, очищенный кипячением в течение 20 мин в 1 %-ном растворе соляной кислоты и двукратным кипячением в бидистиллированной воде. Допустимо использование бумажных фильтров «синяя лента». При фильтровании через любой фильтр первые порции фильтрата отбрасывают. Фильтрат подкисляют концентрированной соляной кислотой из расчета 5 см³ на 1 дм³ воды и хранят до анализа в полиэтиленовой (полипропиленовой) посуде.

Объём отбираемой пробы не менее 50 см³.

10 Подготовка к выполнению измерений

10.1 Приготовление растворов и реактивов

10.1.1 Раствор соляной кислоты, 1 моль/дм³

В мерную колбу вместимостью 100 см³ вносят небольшое количество тридистиллированной воды, приливают 8,5 см³ концентрированной соляной кислоты и доводят объем раствора до метки на колбе тридистиллированной водой. Хранят в склянке с притертой пробкой.

10.1.2 Раствор аскорбиновой кислоты, 1 %-ный

Растворяют 0,25 г аскорбиновой кислоты в 25 см³ тридистилированной воды. Хранят в склянке из темного стекла с притертой пробкой не более 7 дн.

10.1.3 Раствор роданида калия, 5 %-ный

Растворяют 5 г роданида калия в 95 см³ тридистилированной воды. Хранят в склянке из темного стекла с притертой пробкой не более 7 дн.

10.1.4 Раствор гидроксида натрия, 4 %-ный

Растворяют 8 г гидроксида натрия в 200 см³ дистиллированной воды. Хранят в плотно закрытой полиэтиленовой посуде.

10.1.5 Раствор перманганата калия, 10 %-ный

Растворяют 10 г перманганата калия в 90 см³ 4 %-ного раствора гидроксида натрия. Хранят в склянке из темного стекла не более 1 мес.

10.1.6 Бидистиллированная вода

В круглодонную колбу установки для перегонки воды наливают дистиллированную воду, добавляют 2-3 см³ щелочного раствора перманганата калия и осуществляют перегонку. Хранят не более 10 дн в полиэтиленовой посуде.

10.1.7 Тридистиллированная вода

Бидистиллированную воду помещают в круглодонную колбу установки для перегонки воды и перегоняют. Хранят не более 5 дней в полиэтиленовой посуде.

10.1.8 Насыщенный раствор хлорида калия

Растворяют 60 г хлорида калия в 140 см³ тридистиллированной воды, нагретой до 60 °C. Раствор охлаждают и отделяют от осадка декантацией.

10.2 Приготовление градуировочных растворов

- 10.2.1 Градуировочные растворы готовят из ГСО с массовой концентрацией молибдена $1,00 \text{ мг/см}^3$.
- 10.2.2 Для приготовления градуировочного раствора с массовой концентрацией молибдена 10,0 мг/дм³ вскрывают ампулу ГСО и переносят её содержимое в сухую чистую коническую пробирку. Отбирают 1,0 см³ образца с помощью градуированной пипетки вместимостью 1 см³ и переносят в мерную колбу вместимостью 100 см³. Объём раствора доводят до метки тридистиллированной водой и перемешивают.

Раствор хранят в плотно закрытой склянке из темного стекла в холодильнике 1 мес.

10.2.3 Для приготовления градуировочного раствора с массовой концентрацией молибдена 0,50 мг/дм³ (500 мкг/дм³)в мерную колбу вместимостью 100 см³ с помощью пипетки с одной отметкой вместимостью 5 см³ приливают 5,0 см³ раствора молибдена с массовой концентрацией 10,0 мг/дм³. Объём раствора доводят до метки тридистиллированной водой и перемешивают.

Раствор хранят в плотно закрытой склянке из темного стекла в холодильнике 7 дн.

 $10.2.4~\rm Для$ приготовления градуировочного раствора с массовой концентрацией молибдена $0,10~\rm Mг/дм^3$ ($100~\rm Mкг/дм^3$) в мерную колбу вместимостью $100~\rm cm^3$ с помощью градуированной пипетки вместимостью $1~\rm cm^3$ приливают $1,0~\rm cm^3$ раствора молибдена с массовой концентрацией $10,0~\rm Mr/дm^3$. Объём раствора доводят до метки тридистиллированной водой и перемешивают.

Раствор используют в течение рабочего дня.

10.2.5 Для приготовления градуировочного раствора с массовой концентрацией молибдена 0,05 мг/дм³ (50 мкг/дм³) в мерную колбу вместимостью 200 см³ с помощью градуированной пипетки вместимостью 1 см³ приливают 1,0 см³ раствора молибдена с массовой концентрацией 10,0 мг/дм³. Объём раствора доводят до метки тридистиллированной водой и перемешивают.

Раствор используют в течение рабочего дня.

10.3 Требования к проведению измерений

- 10.3.1 В процессе анализа одной пробы после каждого измерения аналитического сигнала производят электрохимическую регенерацию поверхности электрода. Устанавливают на полярографе время задержки потенциала 0,1 с и выдерживают электрод в исследуемом растворе при потенциале от плюс 0,9 В до плюс 1,1 В в течение 3 мин при непрерывном перемешивании раствора. Непосредственно перед измерением аналитического сигнала необходима выдержка электролита без перемешивания в течение 30 с.
- 10.3.2 При переходе к анализу новой пробы необходимо торец электрода обновить механически с помощью бумаги наждачной шлифовальной и обмыть тридистиллированной водой. Качество зачистки электрода существенно влияет на величину аналитического сигнала и погрешность измерений.
- 10.3.3 Чистоту применяемой посуды и реактивов контролируют проведением измерения аналитического сигнала фонового электролита (холостой опыт). Оптимальными являются такое качество реактивов и чистота посуды, когда обеспечивается аналитический сигнал фонового электролита, равный или близкий к нулю. В противном случае устанавливают причину загрязнения и устраняют ее.
- 10.3.4 Все измерения для одной части пробы проводят при одина-ковой чувствительности потенциометра.
- 10.3.5 Для получения достоверного результата регистрируют не менее трех измерений аналитического сигнала одной пробы и для одной точки графика берут его среднее значение.
- 10.3.6 Введение добавок в электролизер проводят при работе полярографа в режиме регенерации электрода.
- 10.3.7 Для каждой пробы выполняют два параллельных измерения.

10.4 Мешающие влияния иих устранение

Органические вещества в концентрациях, соответствующих их содержанию в поверхностных водах, не оказывают мешающего влияния на результаты определения молибдена, и оно возможно без предварительной подготовки пробы.

Мешающее влияние взвешенных и коллоидных веществ устраняют предварительным фильтрованием пробы.

11 Выполнение измерений

11.1 Измерение аналитического сигнала в фоновом электролите

В кварцевый электролизер электрохимической ячейки, тщательно вымытый концентрированной серной кислотой и многократно промытый тридистиллированной водой, помещают $10,0~{\rm cm}^3$ тридистиллированной воды, $8,5~{\rm cm}^3$ раствора соляной кислоты с концентрацией $1~{\rm моль/дm}^3$, $1~{\rm cm}^3$ раствора роданиа калия, $0,5~{\rm cm}^3$ раствора аскорбиновой кислоты и $0,2~{\rm r}$ антипирина.

Вспомогательные емкости и электролитические мостики заполняют раствором соляной кислоты концентрацией 1,0 моль/дм³. Электролизер и вспомогательные емкости соединяют электролитическими мостиками. Графитовый электрод, подготовленный в соответствии с 10.3.2, опускают в электролизер. Платиновый и насыщенный хлорсеребряный электроды, служащие вспомогательным и электродом сравнения, помещают во вспомогательные емкости. На полярографе ΠY -1 устанавливают диапазон тока 0.25×1 , дифференцирование +10, вид полярографии - постоянно-токовая, амплитуда развертки 0.55 В, скорость изменения развертки потенциала 30 мВ/с.

Включают магнитную мешалку и проводят электролиз при перемешивании раствора и потенциале минус 0,3 В относительно насыщенного хлорсеребряного электрода в течение 3 мин. Затем отключают магнитную мешалку и через 30 с регистрируют аналитический сигнал фонового электролита в стадии электроокисления молибдена при потенциале 0,1 В. Аналитический сигнал фонового электролита h_{ϕ} регистрируют 3 раза. Далее включают магнитную мешалку и проводят электрохимическую регенерацию поверхности рабочего электрода в соответствии с 10.3.1.

11.2 Измерение аналитического сигнала в фоновом электролите с добавками

В режиме регенерации электрода в электролизер последовательно вводят две добавки по 0,1 см³ градуировочного раствора молибдена с массовой концентрацией 100 мкг/дм³, перемешивая каждый раствор для образования комплекса в течение 15 мин. После введения каждой добавки проводят электролиз полученных растворов с концентрация-

ми добавок $C_{\varphi 1}$ и $C_{\varphi 2}$ и регистрируют трижды величины аналитических сигналов $h_{\varphi 1}$ и $h_{\varphi 2}$ в условиях, аналогичных 11.1.

Выполнение процедур, описанных в 11.1 и 11.2, осуществляют при замене раствора одного или более реактивов, используемых в определении.

11.3 Измерение аналитического сигнала в пробе

В кварцевый электролизер электрохимической ячейки помещают $10.0~\text{cm}^3$ анализируемой пробы $8.5~\text{cm}^3$ раствора соляной кислоты с концентрацией $1~\text{моль/дм}^3$, $1~\text{cm}^3$ раствора роданида калия, $0.5~\text{cm}^3$ раствора аскорбиновой кислоты и 0.2~г антипирина и выполняют измерение аналитического сигнала пробы h_0 согласно 11.1.

11.4 Измерение аналитического сигнала в пробе с добавками

В соответствии с рекомендациями таблицы 2 в электролизер с пробой последовательно вводят две добавки C_1 и C_2 градуировочного раствора молибдена и выполняют измерение аналитических сигналов в пробе с добавками h_1 и h_2 согласно 11.2.

Если после введения добавки наблюдается уменьшение величины аналитического сигнала, для анализа следует брать 2 или 3 см³ пробы и доводить общий объем раствора в электролизере до 20 см³ тридистиллированной водой.

Таблица 2 - Объемы и концентрации добавок градуировочных растворов

Диапазон измерений массовой концентрации молибдена,	граду ир раст	добавок овочного вора, м ³	Концентрация градуировоч- ного раствора,	дена в анализируемо растворе, мкг/дм ³	
мкг/дм ³	V_1	V ₂	мкг/дм ³	$\overline{C_1}$	C_2
От 0,2 до 1,0 включ.	0,1	0,2	50	0,25	0,50
От 1,0 до 5,0 включ.	0,2	0,2	100	1,0	1,0
От 5,0 до 10,0 включ.	0,1	0,2	500	2,5	5,0

12 Вычисление и оформление результатов измерений

12.1 Массовую концентрацию молибдена в анализируемой пробе X, мкг/дм³, вычисляют по формуле

$$X = 2 \cdot (C_2 - C_1) \cdot \frac{h_0}{h_2 - h_1} - (C_{\phi 2} - C_{\phi 1}) \cdot \frac{h_{\phi}}{h_{\phi 2} - h_{\phi 1}}.$$
 (2)

Если h_{φ} =0, то массовую концентрацию молибдена в анализируемой пробе X, мкг/дм³, вычисляют по формуле

$$X = 2 \cdot (C_2 - C_1) \cdot \frac{h_0}{h_2 - h_1}$$
 (3)

12.2 Результат измерения в документах, предусматривающих его использование, представляют в виде:

$$\overline{X} \pm \Delta$$
, MKΓ/ДM³ (P = 0,95), (4)

- где \overline{X} среднее арифметическое значение двух результатов, разность между которыми не превышает предела повторяемости г (2,77- σ_r); при превышении предела повторяемости поступают в соответствии с 13.2;
 - $\pm \Delta$ границы характеристики погрешности результата измерения для данной массовой концентрации молибдена, мкг/дм³ (см. таблицу 1).

Численные значения результата измерений должны оканчиваться цифрой того же разряда, что и значения характеристики погрешности; последние не должны содержать более двух значащих цифр.

12.3 Допустимо представлять результат в виде

$$\overline{X} \pm \Delta_n (P=0.95)$$
 при условии $\Delta_n < \Delta$, (5)

где $\pm \Delta_{\pi}$ – границы характеристики погрешности результатов измерений, установленные при реализации методики в лаборатории и обеспечиваемые контролем стабильности результатов измерений, мкг/дм³.

Примечание - Допустимо характеристику погрешности результатов измерений при внедрении методики в лаборатории устанавливать на основе выражения $\Delta_n = 0.84 \cdot \Delta$ с последующим уточнением по мере накопления информации в процессе контроля стабильности результатов измерений.

12.4 Результаты измерения оформляют протоколом или записью в журнале, по формам, приведенным в Руководстве по качеству лаборатории.

13 Контроль качества результатов измерений при реализации методики в лаборатории

13.1 Общие положения

- 13.1.1 Контроль качества результатов измерений при реализации методики в лаборатории предусматривает:
- оперативный контроль исполнителем процедуры выполнения измерений (на основе оценки повторяемости и погрешности при реализации отдельно взятой контрольной процедуры);
- контроль стабильности результатов измерений (на основе контроля стабильности среднеквадратического отклонения повторяемости, внутрилабораторной прецизионности, погрешности).
- 13.1.2 Периодичность контроля исполнителем процедуры выполнения измерений, а также реализуемые процедуры контроля стабильности результатов выполняемых измерений регламентируются в Руководстве по качеству лаборатории.

13.2 Алгоритм оперативного контроля повторяемости

- 13.2.1 Оперативный контроль повторяемости осуществляют для каждого из результатов измерений, полученных в соответствии с методикой. Для этого отобранную пробу воды делят на две части, и выполняют анализ в соответствии с разделом 11.
- 13.2.2 Результат контрольной процедуры r_{κ} , мкг/дм³, рассчитывают по формуле

$$\mathbf{r}_{\kappa} = \left| \mathbf{X}_1 - \mathbf{X}_2 \right|, \tag{6}$$

- где $X_1, \ X_2$ результаты параллельных измерений массовой концентрации молибдена в пробе воды, мкг/дм³.
- 13.2.3 Предел повторяемости $\, r_{n} , \, \text{мкг/дм}^{3} , \, \, \, \text{рассчитывают по формуле} \,$

$$\mathbf{r}_{\mathsf{n}} = 2,77 \, \mathbf{\sigma}_{\mathsf{r}} \,, \tag{7}$$

где σ_r - показатель повторяемости методики, мкг/дм³ (см. таблицу 1).

13.2.4 Результат контрольной процедуры должен удовлетворять условию

$$r_{\kappa} \leq r_{n}$$
 (8)

- 13.2.5 При несоблюдении условия (8) выполняют еще два измерения и сравнивают разницу между максимальным и минимальным результатами с нормативом контроля равным 3,6 ⋅ σ_г. В случае повторного превышения предела повторяемости поступают в соответствии с разделом 5 ГОСТ Р ИСО 5725-6.
- 13.2.6 Периодичность оперативного контроля исполнителем процедуры выполнения измерений, а также реализуемые процедуры контроля стабильности результатов выполнения измерений регламентируются в Руководстве по качеству лаборатории.

14 Проверка приемлемости результатов, полученных в условиях воспроизводимости

14.1 Расхождение между результатами измерений, полученными в двух лабораториях, не должно превышать предела воспроизводимости. При выполнении этого условия приемлемы оба результата измерений и в качестве окончательного может быть использовано их общее среднее значение. Значение предела воспроизводимости рассчитывают по формуле

$$R=2,77\sigma_{R}.$$

- 14.2 При превышении предела воспроизводимости могут быть использованы методы оценки приемлемости результатов измерений согласно разделу 5 ГОСТ Р ИСО 5725 6 или МИ 2881.
- 14.3 Проверка приемлемости проводится при необходимости сравнения результатов измерений, полученных двумя лабораториями.

Федеральная служба по гидрометеорологии и мониторингу окружающей среды

ГОСУДАРСТВЕННОЕ УЧРЕЖДЕНИЕ ГИДРОХИМИЧЕСКИЙ ИНСТИТУТ

344090, г. Ростов-на-Дону Факс: (863)222-44-70 пр. Стачки, 198 Телефон (863)222-66-68 E-mail: ghi@aaanet.ru

СВИДЕТЕЛЬСТВО

об аттестации методики выполнения измерений № 70.24-2009

Методика выполнения измерений массовой концентрации молибдена в поверхностных водах инверсионным вольтамперометрическим методом

разработанная Государственным учреждением Гидрохимический институт (ГУ ГХИ)

и регламентированная РД 52.24.416-2010 Массовая концентрация молибдена в водах. Методика выполнения измерений инверсионным вольтам-перометрическим методом,

аттестована в соответствии с ГОСТ Р 8.563-96.

Аттестация осуществлена по результатам <u>экспериментальных исследований.</u>

В результате аттестации установлено, что методика выполнения измерений соответствует предъявляемым к ней метрологическим требованиям и обладает метрологическими характеристиками, приведенными в таблицах 1 и 2.

Таблица 1 - Диапазон измерений, значения характеристик погрешности измерений и ее составляющих при принятой вероятности P=0,95

Диапазон из- мерений мас- совой кон- центрации	Показатель повторяемости (среднеквадратическое от-	Показатель воспроизводимости (среднеквадратическое отклоне-	Показатель правильно- сти (границы системати-	Показатель точности (границы погрешно-
молибдена X, мкг/дм ³	клонение повто- ряемости)	ние воспроизво- димости) σ_R , мкг/дм ³	ческой по- грешности) $\pm \Delta_{c}$, мкг/дм ³	сти) ±∆, мкг/дм³
От 0,2 до 10,0 включ.	0,10·X	0,16·X	0,1+0,11·X	0,34·X

Таблица 2 - Диапазон измерений, значения пределов повторяемости и воспроизводимости при принятой вероятности P=0,95

Диапазон измерений массовой концентрации молибдена X, мкг/дм ³	Предел повторяемости (для двух результатов парал- лельных определений)	Предел воспроизводимости (для двух результатов измерений) R, мкг/дм ³
От 0,2 до 10,0 включ.	0,28·X	0,44·X

При реализации методики в лаборатории обеспечивают:

- оперативный контроль исполнителем процедуры выполнения измерений (на основе оценки повторяемости при реализации отдельно взятой контрольной процедуры);
- контроль стабильности результатов измерений (на основе контроля стабильности среднеквадратического отклонения повторяемости).

Периодичность оперативного контроля и процедуры контроля стабильности результатов выполнения измерений регламентируют в Руководстве по качеству лаборатории.

Дата выдачи свидетельства 01.12.2009 г.

Директор А.М Главный истролог А.А

А.М. Никаноров

А.А. Назарова