ГОСУДАРСТВЕННЫЙ КОМИТЕТ СОВЕТА МИНИСТРОВ СССР ПО ДЕЛАМ СТРОИТЕЛЬСТВА (ГОССТРОЙ СССР)

ТЕХНИЧЕСКИЕ УСЛОВИЯ ОПРЕДЕЛЕНИЯ НАГРУЗОК ОТ СУДОВ НА ПРИЧАЛЬНЫЕ СООРУЖЕНИЯ

CH 144-60

Oinseenen c 1/2-1976, Blog CHan II-57-75 Ca: 507 N7, 1975, c. 25

Издание официальное

ГОСУДАРСТВЕННЫЙ КОМИТЕТ СОВЕТА МИНИСТРОВ СССР ПО ЛЕЛАМ СТРОИТЕЛЬСТВА

ТЕХНИЧЕСКИЕ УСЛОВИЯ ОПРЕДЕЛЕНИЯ НАГРУЗОК ОТ СУДОВ НА ПРИЧАЛЬНЫЕ СООРУЖЕНИЯ

CH 144-60

Beceleur uf et. 607 N.9, 19692 c. 16-17

Утверждены Государственным комитетом Совета Министров СССР по делам строительства 1 октября 1960 г.

ГОСУДАРСТВЕННОЕ ИЗДАТЕЛЬСТВО ЛИТЕРАТУРЫ ПО СТРОИТЕЛЬСТВУ, АРХИТЕКТУРЕ И СТРОИТЕЛЬНЫМ МАТЕРИАЛАМ Настоящие «Технические условия определения нагрузок от судов на причальные сооружения» разработаны Центральным научно-исследовательским институтом морского флота «ЦНИИМФ» и Ленинградским отделением Государственного проектно-конструкторского и научно-исследовательского института морского транспорта «Ленморниипроект» Министерства морского флота и Государственными институтами проектирования на речном транспорте «Гипроречтранс» и «Ленгипроречтранс» Министерства речного флота РСФСР.

С введением в действие с 1 апреля 1960 г. настоящих технических условий отменяется ГОСТ 3439—46 «Нагрузки на гидротехнические сооружения. Нагрузки

от судов».

основные принятые обозначения

- W водоизмещение судна в грузу в T;
 - F— боковая парусность судна порожнем в M^2 ;
 - L- габаритная длина судна в м;
 - $l_{\rm B}$ длина прямолинейной вставки корпуса судна в м (для морского судна);
 - $l_{\rm B}$ длина прямолинейной части бортового обноса в n (для речного судна);
- $L_{\rm n}$ длина причального сооружения в m;
- $L_{\mathfrak{s}}$ длина экранирующих препятствий, расположенных в пределах длины судна, в m;
- F_9 площадь экранирующих судно поверхностей в m^2 ;
 - v расчетная скорость ветра в $m/ce\kappa$;
- $v_{\rm n}$ скорость подхода судна к сооружению в $m/ce\kappa$;
- q скоростной напор ветра в $\kappa c/m^2$;
- $p_{\rm c}$ нагрузка от ветрового навала судна, стоящего у причального сооружения, в r/noe. m;
- $p_{\rm n}$ нагрузка от ветрового навала судна на один пал в r;
- Q— полное усилие от натяжения швартовов, передающееся на сооружение, в τ ;
- $Q_{\rm m}$ то же, передающееся на тумбу, в r;
- N— составляющая усилия от натяжения швартовов. перпендикулярная к линии кордона, в τ ;
- $N_{\rm m}$ то же, передающаяся на тумбу, в τ ;
- $T_{\rm m}$ то же, продольная составляющая в T;
- $V_{\rm m}^{-}$ то же, вертикальная составляющая в r;
- N_y нагрузка от удара судна, подходящего к сооружению, нормальная к лицевой грани сооружения, в τ ;
- $T_{\rm v}$ то же, продольная составляющая в τ .

Государственный комитет Совета Министров СССР по делам строительства

строительные нормы

Технические условия определения нагрузок от судов на причальные сооружения

СН 144-60 Взамен ГОСТ 3439-46

І. ОБЩИЕ ПОЛОЖЕНИЯ

1. Технические условия распространяются на определение нагрузок на причальные сооружения от судов морского и речного транспортного и технического флота, а также морских судов рыбопромыслового флота.

Примечания. 1. Настоящие технические условия не распространяются на определение нагрузок от судов военного флота.

2. Нагрузки от судов на стенки судоходных шлюзов определяются по нормам и техническим условиям проектирования этих сооружений.

3. Нагрузки на сооружения, предназначенные для проведения швартовых испытаний, определяются специальным расчетом.

- 4. При наличии явлений «тягуна» усилия от натяжения швартовов определяются в зависимости от местных условий специальным расчетом.
- 2. При проектировании причальных сооружений следует учитывать следующие нагрузки от судов:
- а) нагрузки от ветрового навала судов, стоящих у причалов;
 - б) нагрузки от натяжения швартовов;
- в) нагрузки от удара судов при подходе их к сооружению.

Примечания. 1. Нагрузки от ветрового навала и от натяжения швартовов морских судов, в зависимости от характера ветрового воздействия, делятся на обычные и штормовые.

Обычные нагрузки соответствуют значению скорости ветра, при котором подаются первые штормовые предупреждения.

Внесены
Министерством
морского флота
и Министерством
речного флота
РСФСР

Утверждены
Государственным комитетом
Совета Министров СССР
по делам строительства
1 октября 1960 г.

Срок введения 1 апреля 1961 г. Штормовые нагрузки соответствуют расчетной (штормовой) скорости ветра для рассматриваемого района.

Значения расчетных скоростей ветра приведены в п. 6.

- 2. При расчете сооружений учитываются обычные и штормовые нагрузки от патяжения швартовов и штормовые нагрузки от навала морских судов.
- 3. Нагрузки от ветрового навала и от натяжения швартовов морских и речных судов входят в основные сочетания нагрузок.

Нагрузки от удара морских судов входят в особые сочетания нагрузок, от удара речных судов — в основные сочетания.

- 4. Нагрузки от судов учитываются как статические. Коэффициент динамичности принимается равным 1.
- 5. Нагрузки от судов на причальные сооружения определяются в зависимости от типа судна и его расчетных характеристик.

При наличии длинного причального фронта, допускающего установку нескольких судов, следует проверить возможности подхода к данному сооружению судна с наибольшими значениями расчетных характеристик, предусмотренного судооборотом порта или расстановкой судов на судоремонтном заводе.

Примечания. 1. Настоящими техническими условиями определяются нормативные величины нагрузок от судов.

2. Коэффициент перегрузки для нагрузок от судов на причаль-

ные сооружения принимается равным 1,2.

3. При расчетах конструкций причальных сооружений по методу разрушающих усилий расчетная нагрузка от судов принимается равной нормативной.

П. РАСЧЕТНЫЕ СКОРОСТИ ВЕТРА

- 6. Расчетные скорости ветра для определения нагрузок от морских судов принимаются в зависимости от географического района расположения причального сооружения:
- а) в береговой полосе океанов и морей, за исключением районов, указанных в п. б:

для обычного давления ветра — 20 м/сек;

для штормового — 34 $m/ce\hat{\kappa}$;

б) в береговой полосе Черного моря, протяженностью от г. Анапы до г. Туапсе, а также Баренцева, Карского, Лаптевых, Восточно-Сибирского, Чукотского и Берингова морей и их заливов, на островах указанных морей, в береговой полосе залива Шелехова, на полуострове Камчатка, острове Сахалин, Курильских и Командорских островах:

```
для обычного давления ветра — 24~\text{м/ce\kappa}; для штормового " " — 40~\text{м/ce\kappa}.
```

При вычислении скоростного напора ветра значения расчетных скоростей ветра вводятся с понижающим коэффициентом *K*, учитывающим неравномерность ветрового давления и зависящим от длины судна:

```
для судов длиной до 30 м включительно K=1 , , , от 31 до 50 м , K=0,9 , , , , 51 , 70 м , K=0,8 , , , , , 71 м и выше K=0,75.
```

Примечание. При наличии данных гидрометеорологических наблюдений расчетное (штормовое) значение скорости следует принимать по фактическим данным с применением понижающего коэффициента K, но не менее значения скоростей, приведенных в пп. 6 а и 6 б. При этом следует учитывать ориентацию причалов по отношению к направлению ветра наибольшей скорости.

7. Расчетные скорости ветра для определения нагрузок от речных судов принимаются по максимальному значению наблюденных скоростей за навигационный период, но не менее $22 \ m/ce\kappa$.

III. РАСЧЕТНЫЕ ХАРАКТЕРИСТИКИ СУДОВ

8. Морские суда подразделяются на следующие основные типы: сухогрузные, пассажирские, наливные (танкеры), рыбопромысловые, специальные суда технического флота.

В качестве расчетных характеристик морских судов принимаются:

- а) боковая парусность судна порожнем F;
- б) длина прямолинейной вставки корпуса судна $l_{\rm B}$;
- в) водоизмещение судна в грузу W;
- r) габаритная длина судна L.

Боковая парусность \vec{F} может быть принята, в зависимости от длины судна L, равной:

- а) для сухогрузных судов $0.13L^2$;
- б) для пассажирских судов $0,12L^2$;
- в) для танкеров $0.1L^2$;
- г) для рыбопромысловых судов $0.11L^2$.

Длина прямолинейной вставки $l_{\rm B}$ может быть принята приближенно, в зависимости от длины судна L, равной:

- а) для сухогрузных судов 0.65L;
- б) для пассажирских судов 0.5L;
- в) для танкеров 0.65L;
- г) для рыбопромысловых судов 0,65L.

Примечание. Для специальных судов технического флота, а также специальных рыбопромысловых судов значения парусности и длины прямолинейной вставки следует принимать по данным проекта судна.

Для этих судов сохраняются понижающие коэффициенты скорости ветра, учитывающие влияние длины судна, по п. 6.

Речные суда подразделяются на следующие основные типы: пассажирские и грузопассажирские, грузовые самоходные, грузовые несамоходные, технические, вспомогательные.

В качестве расчетных характеристик речных судов принимаются:

водоизмещение судна в грузу W;

боковая парусность судна порожнем F;

длина прямолинейной части бортового обноса $l_{\rm B}$.

Расчетные характеристики основных типов речных судов приведены в приложении I. Для типов судов, не указанных в приложении I, расчетные характеристики принимаются по данным проекта судна.

IV. НАГРУЗКИ ОТ ВЕТРОВОГО НАВАЛА СУДОВ, СТОЯЩИХ У ПРИЧАЛЬНОГО СООРУЖЕНИЯ

10. Нагрузки от ветрового навала судов, стоящих у сооружения $p_{\rm c}$ в τ/noe . m, определяются в зависимости от боковой парусности, длины прямолинейной вставки и скоростного напора ветра до формуле

$$p_{\rm c} = \frac{k_{\rm s}qF}{1\,000l_{\rm B}} , \qquad (1)$$

где F— боковая парусность судна в M^2 ; $\mathit{l}_{\scriptscriptstyle B}$ — длина прямолинейной вставки корпуса морских судов или длина прямолинейной части бортового обноса речных судов в M ,

 $q = \frac{v^2}{16}$ — скоростной напор ветра в $\kappa e/m^2$;

- v скорость ветра в $m/ce\kappa$ (с применением понижающих коэффициентов для $mopc\kappa ux$ cydos согласно п. 6);
- к_э коэффициент, учитывающий эксцентричность ветрового давления по отношению к середине прямолинейной вставки, принимаемый равным 1.1.

Примечание. Аэродинамический коэффициент при вычислении скоростного напора ветра принят равным 1.

11. Нагрузка от ветрового навала судна учитывается при расчете причальных сооружений в виде равномерно распределенной нагрузки для сплошных стенок или в виде сосредоточенных сил для отдельных пал. Направление действия нагрузки от навала принимается нормальным к лицевой поверхности сооружения или отбойных устройств.

Приложение нагрузки от ветрового навала судна по высоте сооружения должно приниматься:

- а) для морских судов наиболее невыгодное для работы конструкции с учетом колебаний уровня воды у сооружения и расположения отбойных устройств;
- б) *для речных судов* наиболее невыгодное для работы конструкций в интервале колебания расчетных навигационных уровней воды перед сооружением с учетом высоты сухого борта расчетного судна (рис. 1).

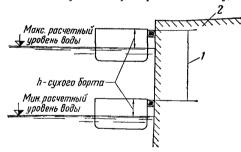


Рис. 1. Схема приложения нагрузки от ветрового навала и удара речного судна по высоте причального сооружения

1—возможный интервал приложения нагрузки от ветрового навала и ог удара судна по высоте сооружения; 2—причальное сооружение

Примечание. Высоту сухового борта следует принимать: a для нагрузки от ветрового навала— у судна порожнем; b для нагрузки от удара судна— у судна в грузу.

12. Значения ветрового навала судна на 1 *пог. м* причального сооружения, вычисленные согласно пп. 10, 11 для разных типов и размеров морских и речных судов, приведены в табл. 1 и 2.

Таблица 1 Значения ветрового навала от морских судов на 1 noz. m причального сооружения в m

	Длина судна <i>L</i> в <i>м</i>											
Тип су	30	50	70	90	100	120	150	170	200	220	250	300
Сухогрузные	0.5	0,65	0,7	0,8	0,9	1,5	1,3	1,5 2,1	1,7 2,5	1, 2,7	2,1	2,6
Пассажирские	0,6	0,8	0,9	0,9	1,5	1,25 1,8	$\frac{1,55}{2,2}$	1,75 2,9	2,1 3	2,3	2,6	3,1 4,5
Наливные (танкеры)	0,4	0,5	0,55	0,6	0,7	0,8	1,4	1,1	1,3	1,45 2,1	1,6	2,9
Рыбопромысловые	0,4	0,55 0,8	0,6	0,65	0,7	0,9	11 1,6	1,2	1,4 2,1	1,6	1,8 2,6	2,2 3,1

Примечания. 1. В числителе приведены значения ветрового навала для районов по п. 6а, в знаменателе для районов по п. 66.

2. Для промежуточных значений длины судов величина навала может определяться по интерполяции. 3. При наличии у причала волнения с высотой волны более 2 м или течений со скоростями более 1 м/сек нагрузки увеличиваются на 20%.

Значения ветрового навала от речных судов на 1 *noz. м* причального сооружения в τ

	Водоизмещение в грузу W в т										
Тип судна	до 100	от 100 до 250	от 250 до 500	от 500 до 1000	от 1000 до 1250	от 1250 до 1500	от 1500 до 2500	2500 и более			
Пассажирские и грузопассажирские Грузовые: самоходные	0,35 — —	0,4	0,5 0,2 0,1	0,6 0,25 0,15	0,7 0,3 0,15	0,7 0,3 0,2	0,8 0,35 0,25	- 0,4 0,3			

Примечание. При определении нагрузок от ветрового навала технических и вспомогательных судов последние относятся к одной из приведенных в таблице категорий судов по размерам надстройки и способу передвижения.

В тех случаях, когда исходные расчетные данные судов не соответствуют принятым в табл. 1 и 2, значения нагрузок от ветрового навала должны быть вычислены по пп. 10, 11, причем парусность судна должна быть принята по данным проекта, а расчетная скорость ветра для морских судов — по п. 6 и для речных судов — по п. 7.

13. При длине причального сооружения меньше длины прямолинейной вставки корпуса морских судов или прямолинейной части бортового обноса речных судов нагрузка от ветрового навала на сооружение определяется по формуле

$$p_{\rm c}' = \frac{p_{\rm c} l_{\rm B}}{L_{\rm \pi}} , \qquad (2)$$

где L_n — длина причального сооружения в м.

14. При швартовке судна к отдельно стоящим палам ветровой навал на один пал p_n в r определяется по формуле

$$p_{\rm n} = \frac{k_{\rm n} p_{\rm c} l_{\rm B}}{n} , \qquad (3)$$

где n — количество пал, приходящихся на прямолинейную вставку корпуса морского судна или прямолинейную часть бортового обноса речного судна ($l_{\rm B}$);

- $k_{\rm n}$ коэффициент, учитывающий неравномерность распределения нагрузки между отдельными палами.
- 15. При причальном фронте, образованном сооружением, имеющим длину, меньшую половины длины прямолинейной вставки корпуса морских судов или прямолинейной части бортового обноса речных судов, нагрузки от навала между сооружением $p_{\rm c}'$ и палами $p_{\rm n}$ распределяются пропорционально их жесткости по формулам

$$p_{\rm c}' = \frac{1.3 \ p_{\rm c} l_{\rm B} c_0}{c_{\rm c}} \ ; \tag{4}$$

$$\rho_{\rm n} = \frac{1.3 \ p_{\rm c} l_{\rm B} c_0}{c_{\rm n}} \ , \tag{5}$$

где $c_{\rm c}$ и $c_{\rm n}$ — коэффициенты упругой податливости соответственно сооружения и отдельных пал, равные каждый сумме коэффициентов податливости отдельных элементов этих сооружений;

 c_0 — общий коэффициент упругой податливости сооружения и пал при их совместной работе, принимаемый равным

$$c_0 = \frac{c_n c_c}{n c_c + c_n} \; ; \tag{6}$$

n — количество пал.

V. НАГРУЗКИ ОТ НАТЯЖЕНИЯ ШВАРТОВОВ

16. Швартовная нагрузка учитывается в виде силы, приложенной к швартовным устройствам — тумбам и рымам.

 \square Для швартовных устройств в виде тумб швартовная нагрузка считается приложенной к голове тумбы в расстоянии 0.3~m от фундаментной плиты тумбы.

Морские суда

17. Для морских транспортных и рыбопромысловых судов усилия от натяжения швартовов, передаваемые на сооружение, вызываются суммарной силой ветрового воздействия на судно, направленной перпендикулярно линии кордона.

Эта нормальная составляющая усилий от натяжения швартовов N в τ определяется по формуле

$$N = \frac{q(F - F_{2})}{1000}, \qquad (7)$$

где q — скоростной напор ветра, принимается по п. 10; F — боковая парусность судна, принимается по п. 8; $F_{\mathfrak{g}}$ — площади экранирующих судно поверхностей (набережные, склады, высокие берега, специальные устройства), определяемые по формуле

$$F_{a} = (h_{\pi} + \alpha_{a}H_{a})L; \tag{8}$$

- $h_{\rm n}$ возвышение кордона набережной над наивысшим уровнем воды;
- «а) коэффициент, учитывающий степень экранирующего действия препятствия, принимаемый равным

$$\alpha_{\mathfrak{s}} = 0.5 \frac{H_{\mathfrak{s}}}{l_0} \cdot \frac{L_{\mathfrak{s}}}{L} \; ; \tag{9}$$

- H_9 среднее значение высоты экранирующих препятствий;
 - $_{0}$ среднее расстояние экранирующих препятствий от кордона, которое учитывается полностью при $l_{0}{\gg}H_{\rm s}$; при $l_{0}{<}H_{\rm s}$ принимается $l_{0}{=}H_{\rm s}$;
 - L длина судна; если длина причала $L_{\pi} < L$, то в расчет вместо L вводится L_{π} ;
 - L₃ длина или сумма длин экранирующих препятствий, расположенных в пределах длины судна.

Примечание. При определении влияния экранирующих поверхностей следует учитывать их капитальность и возможную реконструкцию.

18. Нормальная к кордону составляющая усилия $N_{\rm m}$ в τ , передающаяся на тумбу от натяжения швартовов, определяется по формуле

$$N_{\rm m} = \frac{N}{n} \,, \tag{10}$$

где n — количество работающих тумб, принимаемое по табл. 3 в зависимости от длины судна.

Длина судна <i>L</i> в м	30-70	90	100120	150 - 170	200	220	250	300
Количество работаю- щих тумб	2	3	4	5	6	7	9	12

19. При определении полного (расчетного) усилия от натяжения швартовов морских судов, передаваемого на тумбу, $Q_{\rm m}$ в τ должны учитываться угол α между направлением горизонтальной проекции швартовного усилия и линией кордона и угол β между направлением швартовного усилия и горизонтальной плоскостью (рис. 2).

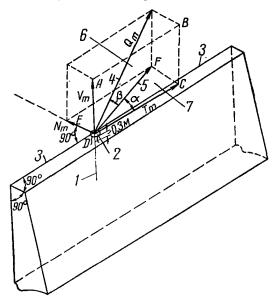


Рис. 2. Схема разложения полного усилия от натяжения швартовов $Q_{\rm m}$, передаваемого на тумбу, на составляющие $T_{\rm m}$, $N_{\rm m}$ и $V_{\rm m}$

I—ось причальной тумбы; 2—причальная тумба; 3—линия кордона набережной; 4— $Q_{\rm III}$ — направление швартова; 5—проекция швартова на горизонтальную плоскость CDEF; 6—вертикальная плоскость CDEF

Полное усилие $Q_{\mathfrak{m}}$ определяется по формуле

$$Q_{\rm m} = \frac{N_{\rm m}}{\sin \alpha \cdot \cos \beta} \ . \tag{11}$$

Полные усилия от натяжения швартовов, передаваемые на тумбу, и мощности тумб, вычисленные для различных типов морских судов в зависимости от их длины, приведены в табл. 4.

Примечания. 1. При отсутствии данных об условиях швартовки для прикордонных тумб принимается $\alpha=30^\circ$, $\beta=15^\circ$. В этом

Таблица 4 Расчетные усилия от натяжения швартовов и мощность тумб для морских судов

№	m	1					Длина с	удна <i>L</i> в	м				
n/m	Тип судна	30	50	70	90	100	120	150	170	200	220	250	300
	а) Усилия от натя:	нсения і	иварто	0808, ne	редаюи	циеся 1	на што	рмовуі	о тум	ıбу Q _п	, <i>B</i> T		
1	Судогрузные	6 10	16 22	20 24	26 36	34	36 48	<u>42</u> 62	<u>56</u> 80	<u>62</u> <u>96</u>		70 98	$\begin{array}{ c c }\hline 76\\\hline 108\\ \end{array}$
2	Пассажирские	6 8	14 20	18 22	34	22 26	36 44	<u>40</u> <u>58</u>	<u>52</u> 74	<u>60</u> 86	64 90	66 90	72 98
3	Наливные (танкеры)	$\frac{4}{6}$	10 16	14 20	2	20_26	26 38	34 48	<u>42</u> 50	50 72	<u>52</u> 74	<u>54</u> 76	
4	Рыбопромысловые	4 6	12 18	$\frac{14}{20}$		2 <u>0</u> 28	28 40	<u>36</u> 50	<u>46</u> 65	54 78	3	56 32	62 88
	Усилия от нап	<i>іяжени</i> ;	я швар	товов,	переда	ющиес	я на с	бычнуг	о тум	бу, Q _m	ВТ		·
5	Сухогрузные	4 4	$\frac{6}{10}$	1	8_0	10 14	14 20	18 22	20 30	$\frac{24}{36}$	- 3	36 26	26

N₂							Длина с	удна <i>L</i> в	ж				
u/ n	Тип судна	30	50	70	90	100	120	150	170	200	220	250	300
6	Пассажирские	$\frac{2}{4}$	6 8	6 10	8 10	10 12	12 18	16 20	20 28	22 32	$\frac{2}{3}$	4	<u>26</u> <u>39</u>
7	Наливные (танкеры)	2 2	4 6	_	<u>6</u> 8	8 10	10 14	14 18	18 22	20 36	2 2	20_	22 25
8	Рыбопромысловые	$\frac{2}{2}$	4 6	6 8		8 10	10 14	14_18	16 24	20 28		20	22 32
		B) .	Мощно	сть ш	тормо	вой ту	мбы в	Т					
9	Сухогрузные	10 10	2/2	2 <u>5</u> 25	2	25_ 15	<u>45</u> 60	45 75	$\frac{60}{100}$		75 100		
10	Пассажирские	10	2	25 25		25 45		45 60	60 75	60		75 100	
11	Наливные (танкеры)	10	10 25		25 2 5		25 45		45 30		60 75		60 00

№ π/π	Тип судна		Длина судна <i>L</i> в м										
		30	50	70	90	100	120	150	170	200	220	250	300
12	Рыбопромысловые	10		25 25	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		60 10						

г) Мощность обычной тумбы в т

13	Сухогрузные и пасса- жирские	10 10	10 25	25 25		25 45
14	Наливные (танкеры) и рыбопромысловые	10 10		10 25	25 25	25 45

Примечания. 1. Данные, приведенные в числителе, соответствуют нагрузкам для географических районов, перечисленных в п. 6а, а данные в знаменателе — для географических районов, перечисленных в п. 6б.

2. При вычислении усилий от натяжения швартовов в таблице учтено только экранирование судна причалом при возвышении кордона в $1.5 \ m$ над наивысшим уровнем воды и углах наклона швартовов $\alpha=30^\circ$ и $\beta=15^\circ$. При наличии других экранирующих поверхностей и углов наклона усилия должны быть пересчитаны.

3. Мощность швартовных тумб определена по имеющимся типовым проектам.

4. При наличии у причалов волнения с высотой волны более 2 м или течений со скоростями более 1 м/сек нагрузки на причалы от навала судов и натяжения швартовов уведичиваются на 20%.

случае $Q_{\rm m} = 2 \, N_{\rm m}$. Для тумб, расположенных в тылу, $\alpha = 40^{\circ}$, $\beta = 20^{\circ}$.

2. Продольная составляющая усилия от натяжения швартовов T_{m} , действующая вдоль линии кордона, определяется по формуле

$$T_{\rm m} = Q_{\rm m} \cos \beta \cos \alpha. \tag{12}$$

3. Вертикальная составляющая усилия от натяжения швартовов V_m , определяется по формуле

$$V_{\rm m} = Q_{\rm m} \sin \beta \tag{13}$$

20. Подбор соответствующей типовой швартовной тумбы производится по величине полного усилия от натяжения швартовов $Q_{\rm m}$.

Примечания. 1. Расчет причальных сооружений производит-

ся по усилию $Q_{\rm m}$.

2. Расчет тумбовых узлов производится по мощности устанавли-

ваемых тумб.

21. Количество тумб на причале определяется проектом, исходя из наиболее целесообразного расстояния между тумбами в 20-30 м.

Примечание. В случае, если устанавливаемое количество тумб меньше числа п, принятого по п. 18, мощность тумбы соответственно пересчитывается. При числе тумб больше n мощность тумбы пересчету не подлежит.

Речные суда

- 22. Для речных судов усилия от натяжения швартовов, передаваемые на сооружения, вызываются, помимо ветрового воздействия на судно, также рывками при качке, натяжением швартовов при торможении судна в момент подхода, подтягиванием судна вдоль причала и другими факторами.
- 23. Для речных судов расчетные усилия от натяжения швартовов, передаваемые на тумбу $Q_{\mathfrak{m}}$ в τ , должны приниматься в зависимости от типа и водоизмещения судна в грузу по табл. 5.
- 24. Направление действия расчетного швартовного усилия для речных судов принимается под следующими углами (см. рис. 2 и п. 19):
- а) α принимается для грузовых судов от 0 до 30°, для
- пассажирских судов от 0 до 45°; б) β принимается от —30° (направление швартовного троса вниз) до +30° (направление швартовного троса вверх),

		•
№ п/п	Водоизмещение судна в грузу W в т	Расчетные усилия от натяжения швартовов Q_m в $ au$
	а) От пассажирских и грузоп	ассажирских судов
1 2 3 4	До 100 вкл. От 101 до 500 вкл. " 501 " 1000 " " 1001 " 1500 "	5 10 15 20
	б) От грузовых	судов
5 6 7 8 9	До 500 вкл. От 501 до 1800 вкл. "1801 "3000 " "3001 "5000 " Более 5000	5 10 15 20 25

Примечания. 1. Принятые по таблице расчетные усилия от натяжения швартовов соответствуют мощностям тумб по типовым проектам.

2. Швартовные нагрузки от технических и вспомогательных судов принимаются при наличии сплошной надстройки на судне — по табл. 5а, при отсутствии сплошной надстройки — по табл. 5б.

Значения усилий от натяжения швартовов определяются по формулам:

а) составляющая, перпендикулярная линии кордона:

$$N_{\rm m} = Q_{\rm m} \cos \beta \sin \alpha;$$
 (11')

б) составляющая, параллельная линии кордона:

$$T_{\rm m} = Q_{\rm m} \cos \beta \cos \alpha;$$
 (12')

в) вертикальная составляющая:

$$V_m = Q_m \sin \beta. \tag{13'}$$

В формулах (11'), (12') и (13') швартовная нагрузка $Q_{\rm m}$ принимается по табл. 5.

Примечание. При наличии специального обоснования значение угла α может быть принято большим, чем указано выше.

25. Расчет сооружений ведется при невыгоднейших сочетаниях составляющих швартовных нагрузок с другими действующими на сооружение нагрузками. Угол в, принятый при выборе расчетного значения вертикальной составляющей швартовной нагрузки, должен соответствовать уровню воды перед сооружением, принятому при определении других нагрузок.

VI. НАГРУЗКИ ОТ УДАРА СУДОВ ПРИ ПОДХОДЕ их к сооружению

26. Нагрузка от удара судна при подходе ero к сооружению определяется в зависимости от массы судна, скорости в момент подхода к сооружению, угла подхода, от упругой податливости сооружения, отбойных приспособлений и корпуса судна.

27. Величина ударной нагрузки N_{v} на сооружение определяется по формуле

$$N_{y} = \gamma v_{\pi} \sin \alpha \sqrt{\frac{M}{c_{1} + c_{2}}} , \qquad (14)$$

ү коэффициент, учитывающий поглощение кинегде тической энергии подходящего судна, принимаемый равным: для отдельно стоящих пал и пирсов — 0,5; для сооружений с вертикальной стенкой — 0,4; для сооружений, имеющих подпричальный откос, -- 0,3;

 v_n — скорость подхода судна к сооружению в $m/ce\kappa$; α — угол подхода судна к сооружению; M— масса судна = $\frac{W}{g}$;

W— водоизмещение судна к грузу в τ ;

g — ускорение силы тяжести, равное 9.81 $m/ce\kappa^2$;

 c_1 — сумма коэффициентов упругой податливости сооружения и отбойных устройств;

с₂ — коэффициент упругой податливости корпуса судна.

28. Коэффициент упругой податливости сооружения н отбойных приспособлений c_1 , равный деформации в mот силы, равной 1 т, определяется:

а) для отдельно стоящих быков и пал по формуле:

$$c_1 = f_n + \frac{f_0}{n} \,, \tag{15}$$

где $f_{\mathfrak{n}}$ — величина смещения центра приложения ударной нагрузки на пале или быке в направлении, перпендикулярном лицевой поверхности сооружения под действием силы, равной 1 т, B M/T;

 f_0 — величина деформации отбойных устройств на 1 т силы, приложенной к одному отбойному устройству (кранцу или амортизатору), в м/т;

n — количество отбойных устройств, на которые одновременно передается сила удара судна;

б) для причальных сооружений с непрерывной причальной линией по формуле

$$c_1 = \frac{f_c}{l} + \frac{f_0}{n} \,, \tag{15'}$$

где $f_{\rm c}$ — величина смещения центра приложения ударной нагрузки в направлении, перпендикулярном линии кордона под действием силы, равной 1 τ на 1 nos. м сооружения, в m^2/τ ;

1— длина участка сооружения, на которую передается усилие от удара, в м.

Примечание. Значения величин $f_{\rm n}, f_{\rm c}, f_{\rm 0}$ определяются по формулам строительной механики. При определении $\hat{f}_{\rm 0}$ учитывается пластическая деформация древесины.

- 29. Коэффициент упругой податливости корпуса судна c_2 может определяться:
 - а) для морских судов по формуле

$$c_2 = \frac{0,015}{35 + 0.9(L - 70)}; (16)$$

б) для морских судов с ледовыми подкреплениями по формуле

$$c_2 = \frac{0.015}{35 + 1.8(L - 70)} \,. \tag{16'}$$

При L=70 м; $c_2=0.0004$ м/т;

в) для речных судов c_2 принимается равным 0.

- 30. Угол подхода судна к причальным сооружениям α при отсутствии специальных обоснований принимается равным 20°.
- 31. Скорость подхода судов к сооружению v_{ii} при отсутствии дополнительных требований об ее ограничении рекомендуется принимать:
 - а) для морских судов по табл. 6;
 - б) для речных судов 0,5 м/сек.
- 32. Направление действия ударной нагрузки N_{ν} принимается нормальным к лицевой грани сооружения.

Нагрузка от удара судна распределяется по длине и высоте сооружения в зависимости от конструкций и жесткости сооружения и отбойных приспособлений.

Место приложения усилия от удара по высоте сооружения принимается, исходя из условий наиболее невыгодной работы конструкции, в соответствии с п. 11 и рис. 1.

№	Район расположения причалов	Скорости подхода в <i>м/сек</i> для судов водоизмещением							
п/п ———	и условия акватории	до 2 000 т вкл.	от 2 001 до до 10 000 т вкл:	более 10 000 т					
1	Незащищенная акватория с высотой волны более 2 м								
2	в географических районах по п. 6 а	0,6	0,45	0,3					
3	в географических районах по п. 6 а	0,2	0,15	0,1					
4	в географических районах по п. 6 б	0,75	0,55	0,4					
	в географических районах по п. 66	0,4	0,3	0,2					

33. Значение силы удара судна о сооружение $N_{\rm y}$, принимаемое в расчетах, не должно превышать допускаемого давления N_{π} в τ на корпус судна.

Для этого должны быть соблюдены условия:

а) для морских судов без ледовых подкреплений

$$N_{\pi} \leqslant 50 + 1,3(L - 70);$$
 (17)

б) для морских судов с ледовыми подкреплениями

$$N_{\pi} \le 50 + 2.7 (L - 70);$$
 (18)

в) для речных судов

$$N_{\pi} = L - 20$$
 (19)

Примечание. В случае, если сила удара, определенная в соответствии с пп. 26, 27, превышает допускаемую величину, необходимо ограничить скорость подхода судна к сооружению или изменить конструкцию отбойных устройств, увеличив их податливость.

34. При расчетах сооружений следует учитывать силу T_{v} , направленную по касательной к сооружению, определяемую по формуле:

$$T_{y} = N_{y} f_{m}, \qquad (20)$$

где $N_{
m y}$ — ударная нагрузка по п. 27; $f_{
m m}$ — коэффициент трения судна об отбойные устройства.

Для деревянных отбойных устройств принимается $f_{..} = 0,4.$

ПРИЛОЖЕНИЕ [

РАСЧЕТНЫЕ ХАРАКТЕРИСТИКИ ОСНОВНЫХ ТИПОВ РЕЧНЫХ СУДОВ

		PACHETIDIE XAPA	KIEPHCI	MKM	OCHOBA	DIA I MIIC	D PE	IDDIA	СУДОВ	
Виды	№	Типы судов	Проект	Класс реги-	Водоизме- щение судна в	Боковая парусность судна по-	l 500-	а сухого а в м	длина прямо- линейной части	Габаритная длина судна
флота	n/n	7 2	N⊵	стра	грузу W	рожнем <i>F</i> в м ²	с гру- зом	без гр уза	бортового об- носа l _в в м	L B M
-g	1	Грузопассажирский теплоход	ГДР	0	1461	845	1,9	2,2	46	96,3
ac	2	Грузопассажирский ди-	1 ДР		1401	040	1,9	<i>2,2</i>	40	90,5
грузопасса- суда		зельный электроход	Чехо- словакия	0	1000	593	1,2	1,5	44	80,2
и е су	3	Грузопассажирский теплоход	860	0	7 54	629	2,1	2,3	47	77
ки	4 5	То же Пассажирский тепло-	646	M	635	F00	10	2	32	62
ирские и жирские	9	ход	780	0	177	500 192	1,8 1	1,2	32 20	62 42,6
сир	6	Тоже	839 A	Ö	75,3	95	1,2	1,3	9 7	29,2
Пассажирские жирскі	7 8	Скоростной пассажир-	544	P	52,6	58	0,5	0,7	7	27,2
Ĕ		ский теплоход на под- водных крыльях		P	23,9	72	1,4	2,1	18	27
<u> </u>	1	Сухогрузный теплоход	507	0	6 700	896	2	4,7	100 74	135
cy 1	$\frac{2}{3}$	То же	791 11	M O	4 000 2 711	772 552	2,2 2	4,5 3,2	53	93,2
ые Одн	4	,	573	0	1 499	422	1,3	2,2 2	55	80,3
OBI	5 6	,	ГДР 765	O PO	940 845	259 305	0,5 0,5	2 1,8	53 43	6 7, 3 6 5, 6
Грузовые суда самоходные	7	,	898	P	413	169	0,8	1,7	38	51,8
	8	,	821	P	267	1 42	1	2	28	43

Виды	.№	_	Проект	Класс	Водоизме- щени е	Боковая парусность		сухого ав <i>м</i>	Длина прямо- линейной части	Габаритная
флота	п/п	Типы судов	. ₩	реги- стра	судна в грузу W в т	судна по- рожнем <i>F</i> в м ²	с гру- зом	без груза	бортового об- носа l _в в м	длина судна Lвм
	1	Озерная открытая бар- жа для вождения спо- собом толкания	461-Б	0	3 270	454	1,3	4,1	61	86,3
ные	2	Озерная палубная бар-	560-Б	 0	3 270	397	0,6	3,3	63	85, 2
ход	3	Речная палубная баржа	425-Б	PO	3 327	381	0,6	3,3	62	88,8
гесамо	4	Открытая сухогрузная баржа	567	0	2 105	335	1	3,1	54	78,2
суда несамоходные	5	Речная баржа-площад- ка для вождения спосо- бом толкания	459	P	1 772	203	0,7	1,5	65	78
Грузовые	6	Речная баржа-площад- ка	565	P	1 180	204	0,5	1,7	47	66,3
Гру	7	Речная баржа-площад- ка для вождения спосо- бом толкания	279	P	1 178	170	0,5	1,7	58	67,2
	8	Баржа для вождения способом толкания	341	P	721	146	0,7	1,7	54	64,9

ПРИМЕРЫ РАСЧЕТА

Пример 1. Определение нагрузки от удара морского судна, подхолящего к причальному сооружению в виде железобетонной свайной эстакады (рис. 1).

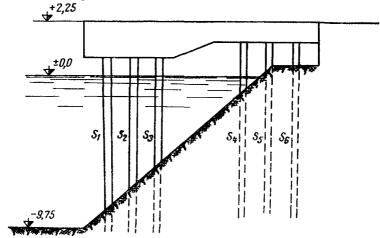


Рис. 1. Схема конструкции причальной железобетонной эстакады

Дано. Тип судна — сухогрузное, водоизмещение в грузу $W=15\,900$ т, длина L=153.9 м.

Скорость подхода судна к сооружению $v_n = 0.4$ м/сек, угол подхода $\alpha = 20^\circ$.

Опоры-сваи железобетонные сечением 0,4×0,4 м (модуль упругости бетона свай $E_6 = 240\,000$ кг/см²); свободная длина свай $S_1{=}11,5$ м; $S_2{=}10,5$ м; $S_3{=}9,2$ м; $S_4{=}6,5$ м; $S_5{=}4,5$ м; $S_6{=}3,5$ м. Длина секции $l{=}48$ м с количеством поперечных рядов в секции

m=17, шаг свай в продольном направлении a=3 м.

Коэффициент ү, учитывающий поглощение кинетической энергии подходящего судна, равен 0,3.

Отбойные устройства. В расчете рассматривается два типа отбойных устройств:

а) деревянные стойки и брусья сечением 0.24×0.24 м;

б) резиновые цилиндры диаметром $d = 0.4 \, \text{м}$.

Требуется определить ударную нагрузку N_{v} на сооружение.

Pacuer. Ударная нагрузка $N_{\rm v}$ на сооружение определяется по формуле (14)

$$N_{\rm y} = \gamma v_{\rm n} \sin \alpha \sqrt{\frac{M}{c_1 + c_2}}$$
.

Коэффициент c_1 определяется по формуле (15')

$$c_1 = \frac{f_{\rm c}}{l} + \frac{f_0}{n} ,$$

где f_0 — деформация отбойного устройства под действием единичной нагрузки;

n— число отбойных устройств, на которые передается усилие от удара судна;

 $f_{\rm c}$ — смещение центра приложения ударной нагрузки, вызываемое деформацией сооружения, определяется методами сопротивления материалов по формуле

$$\frac{f_{\mathbf{c}}}{l} = \frac{1 (m-1) a}{m \cdot 3 \cdot E_6 J \sum_{\mathbf{c}} \frac{1}{S^3} l}.$$

Момент инерции сечения свай

$$J = \frac{bh^3}{12} = 0,0021 \quad m^4;$$
$$\sum \frac{1}{S^3} = 0,0408.$$

После подстановки численных значений получаем

$$\frac{f_{\rm c}}{I} = 0,0000955 \ \text{m/r}.$$

а) При деревянных отбойных устройствах и передаче усилия от удара судна на одну стойку отбойной рамы (n=1) величина деформации бруса и стойки отбойной рамы в пределах ширины стойки от силы P = 1 т определяется по формуле:

$$f_0 = rac{ph_{
m p}}{E_{
m a}F_{
m p}}$$
 ,

где $E_{\rm A}$ — модуль упругости дерева на сжатие; $F_{\rm p}$ — площадь брусьев отбойной рамы в пределах ширины стойки, подвергающихся деформации;

 $b_{\rm D}$ — толщина бруса и стойки, подвергающихся деформации.

После подстановки численных значений получаем $f_0 = 0.0000555 \ M/T$.

$$c_1 = 0.0000955 + 0.0000555 = 0.000151 \, \text{m/r}.$$

Коэффициент c_2 определится по формуле (16)

$$c_2 = \frac{0.015}{35 + 0.9 (L - 70)} .$$

После подстановки численных значений получаем

$$c_2 = 0.000136 \ \text{M/T}$$
.

Суммарный коэффициент упругой податливости сооружения, отбойных устройств и корпуса судна получается равным

$$c_1 + c_2 = 0,000151 + 0,000136 = 0,000287 \text{ m/r}.$$

После подстановки численных значений в формулу (14) получим

$$N_{y} = 97.5 \ r.$$

б) При резиновых отбойных устройствах вместо величины $\frac{f_0}{n}$ вводится величина деформации f_p резиновых цилиндров от силы $P\!=\!1$ r. При передаче усилия от удара судов на 1 noe. M резинового цилиндра величина f_p определяется по формуле

$$f_{\rm p} = \frac{pd}{E_{\rm p}F_{\rm p}} ,$$

где d — диаметр резиновых цилиндров, равный $0.4~\mathrm{M}$; F_{p} — площадь сжатия $1~\mathrm{noe.}~\mathrm{M}$ резиновых цилиндров; E_{p} — модуль упругости резины на сжатие, равный $80~\mathrm{ke/cM^2}$. После подстановки численных значений получаем

$$f_{\rm p} = 0.00125 \ \text{M/T}.$$

Тогда

$$c_1 + c_2 = 0,0000955 + 0,00125 + 0,000136 = 0,00148 \text{ m/r}.$$

После подстановки численных значений в формулу (14) получим

$$N_{\rm v} = 42.7 \ r.$$

Пример 2. Определение нагрузки от удара морского судна, подходящего к причальному сооружению в виде гибкого пала из 27 металлических полых свай (рис. 2).

 \mathcal{L} ано. Тип судна — сухогрузное, водоизмещением в грузу $\mathcal{W}=15\,900\,\tau$, длина $L=153.9\,\mathrm{m}$.

Скорость подхода судна к сооружению $v_{\rm n} = 0.4$ м/сек, угол под-

хода судна $\alpha = 20^\circ$.

Материал пал — трубы из стали марки Ст. 4, $D_{\rm Hap}=1~020$ м.м. $\delta=14$ мм, модуль упругости стали E=2~100~000 ка/см², глубина забивки свай h=15,7 м, свободная длина свай H=15 м. Длина пала l=12 м.

Коэффициент ү, учитывающий поглощение кинетической энергии подходящего судна, равен 0,5.

Отбойные устройства — деревянные стойки сечением 0.24×0.24 м. Коэффициент упругой податливости грунта принят равным $k=3~000~T/m^3$.

Расчет. Ударная нагрузка на сооружение определяется по формуле (14)

$$N_{\rm y} = \gamma v_{\rm m} \sin \alpha \sqrt{\frac{M}{c_1 + c_2}}$$
.

Для отдельно стоящих пал

$$c_1 = f_n + \frac{f_0}{n} ,$$

где $\frac{f_0}{\mu}$ — деформация отбойного устройства;

 $f_{\rm n}$ — величина смещения центра приложения ударной нагрузки определяется путем сложения двух перемещений свай $f_{\rm n}=f_1+f_2$ (рис. 2);

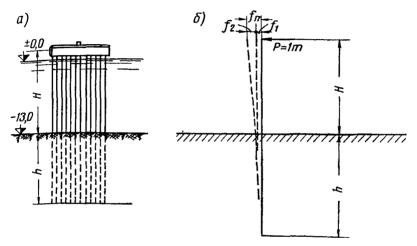


Рис. 2. Гибкий пал
а) схема конструкции; б—схема расчета

 f_1 — перемещение в результате поворота в упругой среде, равное 0,0000211 (определено как для балки, заделанной одним концом в упругое полупространство);

 f_2 — перемещение в результате прогиба свободного конца, вычисленное равным 0,000781.

$$f_{\pi} = f_1 + f_2 = 0,0000211 + 0,000781 = 0,000802$$
 м/т;
$$\frac{f_0}{n} = 0,0000555$$
 м/т (см. пример 1);
$$c_1 = f_{\pi} + \frac{f_0}{n} = 0,000802 + 0,0000555 = 0,000857$$
 м/т;
$$c_2 = 0,000136$$
 м/т (см. пример 1).

Суммарный коэффициент упругой податливости сооружения отбойных устройств и корпуса судна

$$c_1 + c_2 = 0,000857 + 0,000136 = 0,000993 \text{ M/T}.$$

После подстановки численных значений в формулу (14) получаем

$$N_{y} = 86 \ r$$
.

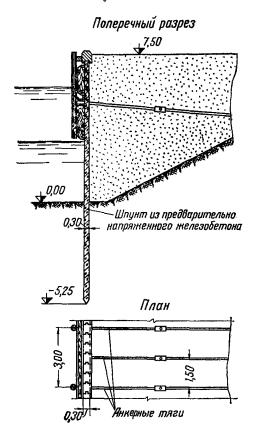


Рис. 3. Схема конструкции причальной тонкой стенки с грунтовой засыпкой

Пример 3. Определение нагрузки от удара речного судна, подходящего к причальному сооружению в виде тонкой стенки с грунтовой засыпкой (рис. 3).

Дано. Тип судна — сухогрузный теплоход водоизмещением в грузу $W=2\,711\ \tau$.

Поперечный разрез

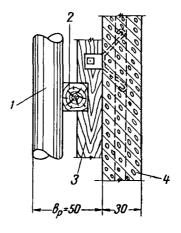


Рис. 4. Схема конструкции деревянных отбойных устройств

I—кранец; 2—горизонтальный брус; 3—вертикальный брус; 4—шпунт

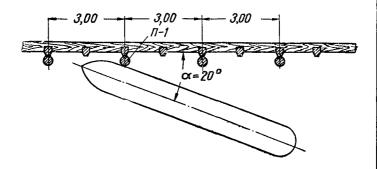


Рис. 5. Схема подхода судна к причальному сооружению

Скорость подхода судна к сооружению $v_n = 0.5$ м/сек, угол подхода судна $\alpha = 20^{\circ}$ (рис. 5).

Жесткость конструкции $EJ = 5\,000\,$ тм² на 1 пог. м стенки.

Протяженность сооружения, на которую с учетом жесткости конструкции распределяется сила удара, l=1.5 м. Коэффициент γ . учитывающий поглощение кинетической энергии подходящего судна, равен 0,4.

Отбойные устройства (рис. 4). Деревянные кранцы с расстоя-

нием между ними 3 м (рис. 5).

Расчет. Ударная нагрузка N_{v} на сооружение определяется по формуле (14):

$$N_{\rm y} = \gamma v_{\rm n} \sin \alpha \sqrt{\frac{M}{c_1 + c_2}}$$
.

Коэффициент c_1 , учитывающий упругую податливость сооружения и отбойных устройств, определяется по формуле (15'):

$$c_1 = \frac{f_c}{l} + \frac{f_0}{n} ;$$

 $f_{\rm c}$ — для тонкостенных сооружений с грунтовой засыпкой, определенное из условия работы стенки как конструкции на упругом основании, получено равным $f_c = 0.0003 \, \text{м}^2/\text{т}$;

 f_0 — величина деформации отбойных устройств на 1 τ силы удара, приложенной к одному отбойному устройству, определяется по формуле

$$f_0 = \frac{1 \cdot b_{\mathbf{p}}}{E_{\mathbf{n}} F_{\mathbf{p}}},$$

где $b_{\mathbf{p}}$ — толщина сжимаемого слоя отбойных устройств, включая

отбойные брусья судна; $E_{\mathtt{д}}$ — модуль упругости влажной древесины для сжатия поперек

F_p — площадь опирания обносного бруса судна на отбойные устройства.

После подстановки численных значений получаем

$$f_0 = 0.00065 \ \text{M/T}.$$

Коэффициент упругой податливости сооружения и отбойных устройств

$$c_1 = \frac{0,0003}{1,5} + \frac{0,00065}{1} = 0,00085 \text{ m/T};$$

$$c_2 =$$
 по п. 32 равно 0.

После подстановки в формулу (14) расчетных значений получаем

$$N_{\rm v} = 39 \ \tau$$
.

СОДЕРЖАНИЕ

	CTr.
Основные принятые обозначения	3
I. Общие положения	5
II. Расчетные скорости ветра	6
III. Расчетные характеристики судов	7
IV. Нагрузки от ветрового навала судов, стоящих у при-	
чального сооружения	8
V. Нагрузки от натяжения швартовов	1
VI. Нагрузки от удара судов при подходе их к сооруже-	
нию	20
Приложение 1. Расчетные характеристики основных типов	
речных судов	
Приложение II. Примеры расчета	

* * *

Госстройиздат Москва, Третьяковский проезд. д. 1

* * *

Редактор издательства Γ . Д. Климова Технический редактор H. В. Шерстнева

Сдано в набор 16/XI 1960 г. Подписано к печати 25/II 1961 г. Т-02755. Бумага 84 ×108¹/₃₂ = 0,5 бум. л. — 1,64 усл. печ. л. (1,6 уч.-изд. л.). Тираж 3500 экз. Изд. № VI-5791. Зак. № 861. Цена 8 коп.

Типография № 11 Управления полиграфической промышленности Ленсовнархоза. Ленинград. ул. Марата, 58

ОПЕЧАТКИ

Страница	Строка	Напечатано	Следует читать
10	Табл. 1, 3-я графа справа, 4-я строка снизу	1,	1,9
10	Табл. 1, 6-я графа справа, 1-я строка снизу		1,1
22	1-я снизу	f=	$f_{\mathbf{m}} =$

Зак. 861.

Изменения в CH 144—60¹

Постановлением Госстроя СССР от 24 марта 1969 г. № 33 в «Технические условия определения нагрузок от судов на причальные сооружения» (СН 144—60) внесены и с 1 июля 1969 г. введены в действие следующие изменения:

- 1. Примечание 4 к п. 1 изложено в следующей редакции: «4. Нагрузки от судов, вызванные воздействием течения, волнения и тягуна, определяются в зависимости от местных условий специальным расчетом».
 - 2. В п. 2 «а» исключено слово «ветрового».
- 3. Пункт 3 изложен в следующей редакции: «3. Нагрузки от судов на причальные сооружения входят в основные сочетания нагрузок».
- 4. Последний абзац п. 8 изложен в следующей редакции: «Длина прямолинейной вставки для пассажирских, грузовых и рыбопромысловых судов определяется в соответствии с проектом судна, а при отсутствии данных может быть приближенно принята равной 0,4L».
- 5. В п. 12 исключены: таблица 1 и ссылки на нее; слова «морских и» в первом абзаце; слова «для морских судов по п. 6 и» во втором абзаце.
- 6. Первая фраза примечания 1 к п. 19 изложена в следующей редакции: «При отсутствии данных об условиях швартовки для прикордонных тумб принимаются: $\alpha=30^\circ$, $\beta=30^\circ$ ».
 - 7. Примечание 4 к табл. 4 исключено.
- 8. Пункт 27 изложен в следующей редакции: «27. Энергия, передаваемая корпусом судна при ударе причальному сооружению и отбойным устройством, определяется по формуле

$$E' = \frac{k}{2g} W v_{\rm n}^2, \tag{14}$$

где W — расчетное водоизмещение судна (в грузу или порожнем) в τ ;

• оп — скорость подхода судна, нормальная к лицевой поверхности сооружения, определяемая по п. 31, в м/сек;

k — коэффициент, учитывающий поглощение и рассеивание кинетической энергии подходящего судна, а также влияние массы сооружения и присоединенной массы воды, определяемый по таблице 5а или иными обоснованными метолами.

Таблица 5а Коэффициент k

№ п. п.	Тип причального сооружения	Значение коэффициента <i>k</i> для судов					
			Морск	их при подходе			
		реч- ных	лагом	под углом со скоростью <i>v</i> п в <i>м/сек</i>			
				0,25	0,05		
1	Сооружения со сплошной вертикальной стеной	0,2	0.5	0,3	0,6		
2	Набережные-эстакады и ото-						
3	рочки-эстакады	0,3	0,6	0,4	0,7		
4	и рядовые палы	0,4	0,7	0,5 0,9	0,9 1,5		

Примечание. Для промежуточных значений скоростей подхода значения k определяются интерполяцией.

 Пункт 28 изложен в следующей редакции: «28. Для определения силы удара судна о сооружение предварительно назначается тип отбойных устройств и схема их расположения.

По деформативным характеристикам отбойных устройств (график нагрузка—деформация), определяемым по паспортным данным или опытным путем, и деформативным характеристикам сооружения, определяемым по правилам строительной механики, строится кривая (рис. 3 — график 1) зависимости между нагрузкой и суммарной деформацией отбойных устройств и сооружения. На основе графика 1 строится интегральный график 2 зависимости между энергией E' и суммарной де-

¹ См. «Бюллетень строительной техпики», 1969, № 6, стр. 27.

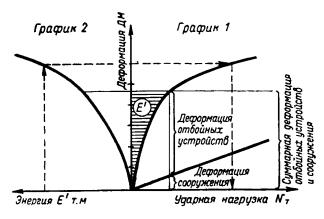


График зависимости ударной нагрузки (1) и энергии (2) от суммарной деформации отбойных устройств и сооружений

формацией (значения E' на графике 2 равны площадям, заключенным между кривой и осью деформаций графика 1).

По энергии, определенной по формуле (14), при помощи графика находится соответствующая суммарная деформация, значение которой позволяет при помощи графика 1 определить величину ударной нагрузки».

- 10. Пункт 29 исключен.
- 11. Пункт 30 изложен в следующей редакции: «30. При определении числа отбойных устройств, воспринимающих ударную нагрузку, следует учитывать угол между диаметральной плоскостью судна и линией кордона, который при отсутствии специальных обоснований следует принимать не более: а) при подходе лагом --3°; б) при подходе под углом — 20°.

Примечание. Для морских судов предельная величина этого угла, а также способ подхода судов к сооружению (лагом или под углом) регламентируется обязательным постановлением по каждому порту. Подход судов водоизмещением в грузу более 30 000 г осуществляется, как правило, лагом».

12. Пункт 31 и таблица 6 изложены в следующей редакции: «31. Скорости подхода судов v_n , нормальные к лицевой поверхности сооружения, при отсутствии дополнительных требований об их ограничении, рекомендуется принимать по табл. 6, независимо от способа подхода.

Таблица 6 Скорости подхода судов ип

Ж п. п.	Географический район	Скорости подхода _{и в м/се} судов водонзмещением в г в т				
	и условия акватории	1500 и ме- нее	3000	10 000	30 000	50 000 и более
	Морские суда					
1	Защищенная акватория в районах по пп. ба и бб	0,15	0,13	0.10	0.08	0.07
2	Незащищенная акватория в районах по п. 6а.	0,20	0.18	0.15	0.10	0.09
3	Незащищенная акватория в районах по п. 66	0,25	0,23	0,20	0,15	0,12
4	Речные суда					
	(независимо от районов и условий акватории)	0,20	0,17	0,10	_	-

Примечания: 1. При наличии волнения с высотой волны 1,5 м и более или течения с нормальной к линии кордона скоростью 0.3~м/сек и более, не учитываемых специальным расчетом, значения скоростей подхода в поз. 2~н 3 таблицы необходимо увеличивать на 50%.

2. Для промежуточных значений водоизмещений судов значения v_{Π} определяются интерполяцией».

13. Второй абзац п. 34 изложен в следующей редакции: «Для деревянных отбойных устройств в продольном и вертикальном направлениях принимается $f_m =$ =0,4; для резиновых элементов: в продольном направле $f_{m} = 0.6$, в вертикальном направлении $f_{m} = 0.4$ ». 14. Приложение II исключено.