гострой СССР

Tail Strain

типовые конструкции и узлы зданий и сооружений

СЕРИЯ 1.431-20

ПЕРЕГОРОДКИ ОДНОЭТАЖНЫХ ПРОИЗВОДСТВЕННЫХ ЗДАНИЙ

13805

выпуск о

материалы для проектирования

ГОСТРОЙ СССР

типовые конструкции и узлы зданий и сооружений

СЕРИЯ 1.431-20

ПЕРЕГОРОДКИ ОДНОЭТАЖНЫХ ПРОИЗВОДСТВЕННЫХ ЗДАНИЙ

выпуск о

материалы для проектирования

РАЗРАБОТАНЫ ИНСТИТУТАМИ ЦНИИПРОМЗДАНИЙ И ХАРЬКОВСКИЙ ПРОМСТРОЙНИИПРОЕКТ

УТВЕРЖДЕНЫ И ВВЕДЕНЫ В ДЕЙСТВИЕ ГОССТРОЕМ СССР € 1.04.79 г. ПОСТАНОВЛЕНИЕ от 5.12.78 г. №224

A .	COREPACAHHE		
Пояснительняя Эяписка.	CT CTP.	SHET	
UBARCT 6 ПРИМЕНЕНИЯ И CAOCOBЫ АНТИ-	5÷10	KING AND DOLLEGO DE CONCEPTOBEIS TOMONH	
коррознонной защиты панелей перегородок		NPOLONGHAZ NEPETOPOLOK BARAHHAZ C	
Облицовочные татериалы для панелей	11	покрытием типа "Берлий и "ЦНИИСК"	
MADOK NNKI U NNK2. MATEPHANG DIA OTTIEL-		HOMEHENATYPA PARBEPKOBSIR MENE.	
KU NAHEREH MAPOK NNG, NNG, NNG, NNG, NNK	(c)	306ETOHH612C KOMOHH	
Ключ ила подбора панелен перегородог	12	COOPOUHDIE CREMBI KONOHH 161, 162,	
HOMEHICHATYPA DEENESOGE TOHHOR NAHENEH	13	163a, 165, 165a, 166a, 168, 168a, 1611,	
I NOICHBATEIN PACCCOUR MATERINANOB	6 14÷16	K6 Ha, K6 16, K6 16a, K622, K622a, K630, K630a, K641 K640, K651 K6510, K658, K6580	
HOMEHKAATYPA	- 14 - 70	1541, K641a, K651, K651a, K658, K658a	
ONEHRUMOPH POMOCETONNOIS, PROPERTO -	17	CBOPO4HBLE CXEMB/ KUNUHH KB3, KB4, KB6,KB7,KB9,KB10, KB 12,KB14,KB17,KB19,	
KANOY AND NOABORD WENESOBETONHOUS GENEREP-	-	K624,K627, K6 33, K6 37, K6 44, K648,K653,K65520	
KOBEIX KONOHH NONEPEYHENX NEPENDAGOK	. 18	CEOPONHEIE CREMEI KONOHH KE13, KE15,	
КЛЮЧ ДЛЯ ПОДБОРА ЭСЕЛЕЗОВЕТОННЫХ		K6 15a, K6 18, K6 18a, K6 20, K6 20a, K6 208,	
PARBEPLOBERC KONOHH NPORONEHEIX		K6208, K626, K626a, K6268, K628, K628a,	
перегородок	19	K6288, K6288, K6289, K6281, K635, K6352,	
KAINY ANA NOAGOPA WAXBEPKOBGIX		K6 36, K6 38, K6 382, K6 388, K6 388, K6 38,	
CTATIONOUS KONOMY NONEDE Y H 6 1 %		K5 39a, K5 46, K6 46a , K546 8, K5 47, K547a,	
REPEROPOROR	20	K6 476, K6 478, K6 472, K6 47 9, K6 54,	
KNOY ANA NOAGOPA GAZBEPKOBEISE	-	K6 54a, K6 548, K6 56, K6 56 a, K6 56 8,	
TRACHOT RATIONAL APPROPRIATE		K6 56 6, K6 56 2, K6 569 21	
REPETOPOROK	÷12 21÷C2	CEOPOYHEIE CICEMEN KONOHH LEE 21,	
MOY ANA NORBOPA CTRAGHOUX ARE-		KE 29, KE 29a, KE 32, KE 40, KE 40a, KE 400,	
MEHTOB ,, T" DAS OCHOBHOLE KONOHH . HOMEH-		K6 43, K6 43a, K6 49, K6 49a, K6 50, K652,	
KAATYPA CTRAGHGIOC SAEMEHTOBUT"	23	K652a, K6528, K657, K657a, K6578,	
KNOY AND NOASOPA ANDSEPTOSSIX		K6 59, K6 59a, K6 60, K6 61, K6 61a, K6618,	
KONOHH NONEPEYHEIR NEDETO PODOK		1562, KB 62a, FB 628, KB 63, KB 63a,	
B SAAHHAR C NORDWIHEM TUNA		K6 63 8	
"БЕРЛИН " И "ЦНИИСК "	24		
		mt7	Т
		Содержание	
			į
		1977	ſ

	_		
Stein	CT CTP.	A	_
TUNG PACYETHAIX CXEM INCENESOGETOHMAIX KONOHH. TAGNUUA PACYETHAIX HAPPUSOK		MUCT. U WATOM XCENE306E10HH612C QPEPM MOKPG1THA NOQ MANOYKNOHHYHO KPOB -	Gp.
HA KOTOHHGI U BETHYHHGI OTOPHGIX		NO 6M48	
РЕАКЦИЙ	3 <i>33</i>	Пример решения продольной перь-	<i>58</i>
TABANUA PACYETHBIX HAPPIOK HA		PODOLICH B SARHHH 5E3 MOCTOBEISC	
KOROHHGI U BERHYHHGI OROPHGIX		KARHOS C WATOM CREAHUSE KONOHH	
РЕЯКЦИЙ (продолжение) 24	+29 34+39	12m H WATOM XCEAE305ETOHH613C	
HOMEHKARTYPA OPRIBEPKOBEISC		PEDM NOKPEITHA 6M49	
CTANGHGIOC KONOHH30	÷31 40÷41	Пример решения продольной пере-	59
CEOPHEIE CEEMEI CTRIBHBUE KONOHH 30		TOPOGEN B 3GRANA 663 MOCTOBOLE	
THING PRESETHANCE COMEN CTANGHAID KONDHH.		Кранов С шагот средних колонн	
TABAHUA PACYETHUK HARPISOK HA KOMOHHBI U		12M W WATOM CTANGHOIX OPEDM NOKPOI -	
ВЕЛИЧИНА ОПОРНЕКЕ РЕЯКЦИЙ	3 48	Tun Cun	
TABANUA PACKETHEIX HAPXSOK HA KOROHHEI	70	Пример решения поперечной пере-	60
и величины опорных режини (прополжение)39	1÷43 49÷53	COPOLKU & SLAHUM, OBONYOBAHAOM	
Пример РЕШения поперечной пере-	.0		
TOPODEU B SARHUU BES MOCTOBOIX		МОСТОВЫМИ КРАНЯМИ ГРУЗО,ПОДЗЕМ - НОСТЬЮ 20 T, С ШАГОМ КОЛОНИ И	
крянов с шягом колонн 6м и		CTRACHOIX OPEDIA NOLPOTUM GUAH 211	61
PORPETHEM DO SICENESOBETONHOIM			61
6ANKAM	54	ПРИМЕР РЕШЕНИЯ ПРАДОЛЬНОЙ ПЕРЕЮ- РОДКИ В ЗДАНИИ, ОБОРУДОВАННОМ	
Пример Решения продольной пере-		MOCTOBEIMU KPAHAMU [PY30-	
TOPODICH B 3DAHHH BE3 MOCTOBEIX		MOQBEMHOCIGIO 10 W 201, C WAROM	
кранов с шагом колони 6 м и покры-		KONOHH H MENESOBETOHHBIZ	
THEM NO ICENESOBETONHOM BANKAM	5 <i>55</i>		40
Noumed Demended Nonedestroy nede-		AREAM NOKABUTHA 6M	62
городки в здянии без тостовых		Притер решения продольной	
крянов с шагом колонн 6 м и покры-		ПЕРЕГОРОДКИ В ЗДАНИИ, ОБОРУДО-	
THEM NO CTANGHOM DEPMAM	5 56	BAHHOM MOCTOBOMH KORHAMU	1380
Притер решения поперечной перего-		TRYSOMOREEMHOCTERO 107, C	1.000
PODKU 8 3DAHHU BE3 MOCTOBELY KPA-		WATOM KONOHH W ACENE 30BETOH -	
HOB C WATOM CPEQHAX KOMOHH IZM H XKE-		ных ферм покрытия 12т53	63
ЛЕЗОБЕТОИНЫХ ФЕРМ ПОКРЫТИЯ 6м47	57		
Пример решения поперечной пере-	•		
городки в здании вез тостовых		TK	CEPH
KANHOD C WATOM COERHHIC KONOHH 12m		Сопержание	1.431-8
HANDOO C MINION CHOMINING KUNUNIN 16111			104.0040
HAMINOS C MAININ CHERTINE KONONIA 12711		1977	PAINYCK N

The color The	ſ					
Притер Решения прадовной пере- граден в зарини реорисовников том решения полужений пере- граден в зарини реформации зарини реформации пере- граден в зарини реформации зарини реформации пере- граден в зарини, реформации в зарини реформации пере- граден в зарини, реформации в зарини реформации пере- граден в зарини, реформации в зарини реформации в заринуте в меженерименом програменом про					4	
Породки в задинии водопростинном постою водина колони на постою вод с штот среднах колони на постою вод с штот среднах колони на постою вод с штот среднах колони на постою вод с штот колони и стите о вод о вод с штот колони и стите о вод о вод с штот колони и стите о вод	$ \hat{y} $	ЛИСТ	cTp.	an and	477	-1
TOUGHT & 3 grinny Googlegorium matter processed a 3 grinny Googlegorium matter of the control of	DOCK H H	ГОРОЦКИ В ЭДАННИ, ОБОРУДОВАННОГА МОСТОВЫ МИ КРАНАМИ ГРУЗОПОДЭЕМ- НОСТЬЮ 207, С ШАГОМ СРЕДИНИХ КОЛОНН		PODEU 8 3.994411 663 MOSTORNIC 1644- HOR C POSPETHEM US NETCHIE METRI- NUMECUAE POMETPYCUMIN TUNA, GERNUM"	ety.	
TIK TO COREPRONIUM FORWARDUM FOR THE STATE STAT	Z.F.B.	PRIMITEP PEWEHHA NONEPEYHDN NEPE-	64	или "ЦНИНСЕ"	6 9	
Reperpopare 8 superior of the first control of the		мостовымы кранамы грузоподъем- ностью 20т, с шагом колонн и		THIC METAMAYECKASE KOHETPYKLAVI THIO "BEPMHI" HIGH "LIHVHCK"	70	
Дованном мостовыми крана- ми грузопадзетностью 207, с шигот средних колонн 12т и шигот стальных ферт покры- тия 6т. Притер решения продольной перегородки в здании, оворудо- заниот мостовыти кранаты грузопадзетностью 30т, с шигот стальных ферт покрытия 6т. Притер вешения продольной перегородки в здании, оворудо- заниот мостовыти кранаты грузопадзетностью 30т, с шигот стальных ферт покрытия 6т. Притер вешения продольной пере- городки в здании, оборудованист мостовыти кранати грузопадзет- ностью 30т, с шигот кранать постовыти кранати грузопадзет- ветонных ферт покрытия 6т. ТК Содержоные	100 m	12 м	65	NYMMEN PEWEHHA NOOQONGHOU NEDETOPONEH 8 3 49HHU NEOPYGO 8 9HHON MOSTOBONAH KOP - HAMH C N OOO GTHEN H3 NETEKYC METARKURO-		
шягот средных колонн 12т и перегородки з межнения учаетков програнетве з заришения учаетков градом- ных перегородки в межнеретения програнетве в заришения учаетков градом- ных перегородки в межнеретения програнетве в заришения учаетков градом- ных перегородки в межнеретения програнетве в заришения учаетков градом- ных перегородки в межнеретения програнетве в заришения учаетков градом- ных перегородки в межнеретения програнетве в заришения учаетков градом- ных перегородки в межнеретения програнетве в заришения учаетков градом- ных перегородки в межнеретения програнетве в заришения учаетков градом- ных перегородки в межнеретения програнетве в заришения учаетков градом- ных перегородки в межнеретения програнетве в заришения учаетков градом- ных перегородки в межнеретения програнетве в заришения учаетков градом- ных перегородки в межнеров програма- програма- ных перегородки в межнеров програма- ных перегородка на пер	2 2 2 2	дованном мостовыми крана-		INVINED PEWEHERS REDETOROGEN B RISITE -	7/	
THY 6M. 56 65 That map The first of the	MAHAM MAHAM ETOLOGI WAREO	шагот средних колони 12т и		THE THE PEWCHETS BEDZHER GROTH	7 <u>2</u>	
ВАНКОМ МОСТОВЫМИ КРАНЯМИ ГРУЗОПОДВЕМНОСТВЮ ЗОТ, С ШЯГОМ СРЕДНИЗЕ КОЛОНИ {2M и шагом Пример решения продольной перегородки в здрании резоридованном Постовыми кранами грузопадвем— НОСТВЮ ЗОТ, С шагом колони и железо- Бетонных ферм покрытия 6м	CHED ST	тия 6т	65	NAMMEPON BANONHEHARA YUREKEDE NEPEROPOAOK BANEKOOSEPMEHHUNT	73	
СТАЛЬНЫХ ФЕРМ ПОКРЫТИЯ 6М	Contraction of the second	ВАННОМ МОСТОВЫМИ КРАНАМИ ГРУЗОПОДЪЕМНОСТЬЮ ЗОТ, С ШАГОМ		PMMEP6 39100HEHM9 YYPOTLOB NACQOIG- H6132 NEJETOJOQOZ & MEXCAPEDMEHHON1	74	
ПОСТОВЫМИ ГРЯНЯМИ ГРУЗОПОДЪЕМ- НОСТЬЮ ЗОТ, С ШЯГОМ КОЛОНН И ЖЕЛЕЗО- БЕТОННЫХ ФЕРМ ПОКРЫТИЯ 6М	1357	стальных ферт покрытня вт57 Пример решения продольной пере-	67	пространетье в зданняю с мосто- Выми кранами 0=30т при шаке		
ТК Содержение (1491-20	, Z	тостовыми крянями грузолодъем-		ЗОБЕТСИНЕГОС ФРЕДИТ ПОГРЕГУНЯ 6М 65	<i>75</i>	
Содержание 1.491-20	MOHHILL SOSECELLI SOSECELL		68	ПЛАНА "Р	76	
Содержание 1.491-20	TONE T.			mx	CENTS	
	12. MEN. 012. 12. KONE 18818. 6		-		1.431-20	7

NOACHUTENBHAA

3ANHCKA

1. OBULASI YACTG. 1.1. НАСТОЯЩАЯ СЕРНЯ ВЫПУЩЕНА ВЗАМЕН СЕРНИ [.431-2

₩ 1.431-3 B COCTABE:

BUINCK O. MATEPHANOI ANA NOOEKTHPOBAHAA BUNNEK 1. NAHENU NEREBOBETOHHUE, PABOYNE YEPTENCH.

BUNYCK 2. NAHERIA FUNCOBETONHBIE. PABOUNE YESTERCH. BURYCK 3. NAHERH KAPKACHO-OBWHBHBIE PABOYNE YEPTERCH

4. Колонны фрахобрка стальные Чертежы КМ. Beinyck BUTTYCK 5. KOTOHHUI APACCEPICA ЖЕЛЕЗОБЕТОННЫЕ РАБОКИЕ ЧЕРТЕЖН. BUINYCK 6. MONTANCHUE YBNO! PABOULE YEPTENCH.

Выпуск 7. Стальные изделия.

4ACT6 | APMATYDAWE H BAKTAQAWE HBGENAR K MAHEMAIN. PAGOYNE YEPTENCH.

BUINVOK 7. GANGHUIE WARENHA

чнеть 2. Армитурные и закладные издельна к железо-BETOHHUM KONOHHAM U COEQUHUTENDHUE USделия. Равочие чертежи.

1.2. NAHENBHBIE NEPETOPORKU PASPABOTAHBI AND ORHOSTAK-

HUX TOOM 3BOOKTBEHHOLX 3AAHHU, BOINDAH FEMOLX TO YHHODH-LUPOBAHHAM TABAPHTHAM COEMAM, DAA PAHOHOB C CEHCMHY-HOCTON HE BONGE 6 GANNOB NOW OTCYTCTBHH CNEUHANGHOICE ТРЕБОВАНИЙ К ЗВУКОИЗОМИЦИИ И ГЕРМЕТНУНОСТИ ПЕРЕГОРАВОК. 1.3. DEMACTH DOLMEHEHUR DAHENEY & DOMEWEHHAR C PASINYHEIMU TAPAKTEPHETHKAMU TABOBOH CRESSI H CAOCOGEI PHTHKOPPOSHO HHOÙ BRILLHTSI NAHENEÙ NPUSEREHSI B TAGNILLE 1. 1.4. PREMEN OTHECTONICOCTH REPETOPOROK US BLEEK BHOOS

NAMEREN COCTABINAET 0.75 YACA NON YCHOBHH MANECENHA OFHESAULITHOFO NORPOITHA HA CTANGHGIE SMEMENTG APACE-ВЕРКА И УЗЛОВ БРЕПЛЕНИЯ; ПРИ НЕЗАЩИЩЕННЫГО СТАЛЬНЫГО MEMEHTAX OFHECTONICOCTO NEPEROPOQUE COCTABINAET 0.25 YACA.

1.5. AM GECEPAMOBBIOC SAMMALI NORMEHUMBI BCE NAMEAU

NEPETOPOLOC, PASPABOTANHOIE B ARHHOLI CEPHH, ANT EPAHOBOX BRAHHU H BURNHUH C OSOPYDDORHHETTI, OKABBIBARULUM BIHHAMIH-YECKOE BOSAELICTBHE HA KAPKAC SAAHHA TOMMEHHMGI

MAHERU H3 TARKEROTO W METKOTO BETOHOB. MEPETOPORKU ANA BAAHHA C PABAHHHAMH PENCH-MAMU PAGOTEI EPANOS OTANYANOTOS HEICOTOPEIMU MONTASC-

HOMU YBARMU KPEMMEHUR MAHEMEN : ANT BARHHU, OBOPY-ROBAHHOIX MEKTPHYECKHMH MOCTOBUMH KPAHAMU TA-MENOTO DESCHMA PASOTO H SIBHHLI C OSOPYROBAHHEM,

OFASAIBAHOWHM QHHAMHYECEOE BOSQEHCTBHE HA KAPKAC DANHHA, CNEAVET NOHMEHATG MOHTA XCHOIE Y 81161 C HHZERCON, T." 1.6. Крепление панелей к желеговетонным колонним

B BECKPAHOBBIX BARHURIX UB BARHURIX C KORHRINU NETROTO U CPEQHETO PERCUMOS PASOTO! OCYMECTEMAETCA NPU NOMOWH COE-DAHHTENSHOOD UBGENUU, NPHBAPHBAEMGIOD K CTANSHOIM HAKNAD-KAM, NOUCT DE NEHHOIM LIBSEN AMU, HALL & BALARAHOIM HOLENHAM

B KONOHHADE. KONUNECTBO DIOGENEN B YSMAX EDERMENUM NAHENEN K

KONOHHAM STOYHAETCH PACYETOM B KOHICPETHOM PROEKTE. MEETA APHET PENKU AKOBENEW B KOHKPETHOM APOEKTE

СЛЕДУЕТ УТОЧНЫТЬ В ЦЕЛЯЗС ИСКЛЮЧЕННЯ ВОВМОЖНОСТИ ПОВРЕЖДЕ-HUA PASOYEL APMATYDEL

Пристрелься дюбелей должина осуществляться в

NOACHHTEABHAA BANHOKA

CEDHA 1.431-20 BLINNER AMER

CAPEKOBOKHH CAPEKOBOKHH

или с Обор Действие — СТЕЛЯЕТСЯ РИВАЕМЫ IX КОЛОННЯ:С. КРЕ ВЛЯЕТСЯ ПРИ ВАЕМЫХ К 1.7. Мог ЭЛВЕРШЕНИЯ

NEDETOPOROK.

HINDHHIED COURT

соответствни с тревованиями инструкции: "Пистольт монтажный поршневой ПЦ-62-1. Техническое описание и инструкция по эксплуатации". В ЭДАНИЯС С КРАНАМИ ТЯЖЕЛОГО РЕЖИМА РАБОТЫ ИЛИ С ОБОРУГОВАНИЕМ. ПКАЗЫРАЮЩИМ ЛИНАМИКЕТСЯ ВОЗ-

В ЗДАННЯК С КРАНАМИ ТЯЖЕЛОГО РЕЖИМА РАБОТЫ ИЛИ С ОБОРЖОВАНИЕМ, ОКАЗЫВАЮЩИМ ДИНАМИЖЕСТЕ ВОЗДЕЙСТВИЕ НА КАРКЯС ЗДАНИЯ, КРЕПЛЕНИЕ ПАМЕЛЕЙ ОСИЩЕСТЕЛЯЕТСЯ ПРИ ПОМОЩИ СОЕДИНИТЕЛЬНЫК ИЗДЕЛИЙ, ПРИОЯРИВАЕМЫКС К ЗАКЛЯДИЫМ ИЗДЕЛЬЯМ В ЖЕЛЕЗОБЕТОННЫКЕ

Кремение панелей к стальным колоннам осуществляется при помощи соединительных идделий, приваривлемых к колоннам.

1.7. Монтаже панелей перегородое производить после эмвершения монтажен панельй покрытия и наруженого стенового ограждения.

Схемы монтажен конструкций перегоранок после монтакон каркасн здания приведены в навоте ЦИНОМТП Госстроя СССР, Схемы комплексной механизации монтажн подвесных потолков и перегородок одноэтажных промышленных зданий, "Стройнэдат, ЦБТИ ЦИИНОМТП, 1967-(моская К-12, зл. Кибышева, 3/6). Уклания по монтажку элементов перегородок

и устройству узлов кремення даны в пояснытельной записке к выхожу 6. 1.8. Конструкции перегородок допускают их демонтаж 563 нарушення элементов здания и элементов самых

1.9. Темперипурные швы в перегородила должны Устранваться в местах температурных швов эдання. 2. Нагрузки и расчет конструкций. 2.1 Нагрузки на перегородки принятог:

a) ot coectbenhoro beca saementob reperopo-401:- Bedthlanghhole;

b) or betpa - ropusohtanbhore;

ВЕРТИКАПЬНЫЕ НАГРХЭКИ В ЭКСПЛУАТАЦНОЧНОМ СЛУЧАЕ ДЛЯ ВСЕХ КОНСТРУКЦНЫ ПРИНЯТЫ С КОНФРИЦНЕНТОМ ПЕРЕГРУЭКИ $\Pi=1.1$, ГОРИЗОНТАЛЬНЫЕ — $\Pi=1.0$.

ПРИ РАСЧЕТЕ КОНСТРУКЦНИ В СТАДИИ ПОДЪЕТА ПРИ РАСПАЛУБКЕ И МОНТАЖСЕ ПРИНАТ КОЭРРИЦИЕНТ ДИНАМИЧНОСТИ П=1.5, В СТАДИИ ТРАНСПОРТИРОВКИ — П=1.6.

РАСЧЕТНАЯ ВЕТРОВНЯ НАГРУЗІЛ В СООТВЕТСТВИИ С 1.6.8 СИН Л II-6-74 ИА ПЕРЕТОРОДКИ С МАССОЙ 100 КР/ m^2 И ВОЛЕЕ

ПРИНАТА $0.4 \, q_0 = 82 \, \text{krc/m}^2$, я на перегорацки с массой менее $100 \, \text{kr/m}^2 - 0.2 \, q_0 = 44 \, \text{krc/m}^2$, где q_0 -скоростной напор ветра для $11 \, \text{ветрового}$ района.

2.2. PACYET NAHENEN NEPEROPOLOK NOVASBEZEH HA:

a) FORMSOHTANGHBIE BETPORBIE HARPISKU NO N.2.1;

DEPTHEATICHCHE MATPYSKH; 8)MECTHOE CMATHE NPH ONUPAHHH NEPETOPORON HA MASETONEH AMMANMENTOS U CTANCHGIE CTOUNCH;

B) BHEYENTPEHHOE CHATHE C SYETOM CASSANHORD SEC-LEHTPHYTTETH C = - cm, compcho n. l. 22 CHMI II-21-75

"BETONHWE W MENESOGETONHWIE KONCTYMUNH." 2.3. PACYET APARBEPKOBWIR KONOHH NEPSTOPOROK

TK

Пояснительная записка

СЕРНЯ 1.431-20 1800 ЛИС

Senser THET

произведен на усилия : a) OT COECTBEHHOLD BECH, BOSHULAROWHE при подъемно-транспортных операциях. При этом прочность бетона принималась равной 70% пробитной;

6) OT BETPOBEIX HAPPYSOK B COYETAHHH C COECTBEH-HUM BECOM KONOHHU U BECOM YACTU NEPETOPORKU, ONHPAROUERICA HA KONOHHY.

NPU CTATHYECKOM PACYETE PARBEDIKOBBIL KOMOHH ПРИНИМАЛОСЬ ШАРНИРНОЕ ОПИРАНИЕ НА ФУНДАМЕНТ И НА KOHETPYKLIHU NOKPOITHA.

3. KOHETPYKTHBHOE PEWEHHE NEPETOPOGOK.

3.1. NAUBASKA NEPETOPOROK B MAHE NAHHATA NO FA-HAM KONOHH BARHHAY.

3.2 Перегородки по высоте делятея на 2 части: HUNCHAA YACTG BOINDAHAETCA H3 NAHENEH, BEPICHAA YACTG LOTOPAN NO YCHOBHAM MOHTANCA HE MONCET EGITG BOINCH-HEHA W3 NAHEREN, BUNOMHAETCA W3 KAPKACHO-OBUHBHGIS

BKAAAGIWEH BECOM AO 100KT NO CTAMBHOMY KAPKAEY. BKNAGGIUH PREGETABRAIOT COBORI TRESCRIONIHWO KOHCTONKLUHO C HADNACHGIMH CADAMH H3 NAOCKHIZ ACECTO-LEMENTHOIX ANCTOO W CHEAHUM CHOEM HIS MONYREETICHES MUHERAROBATHERE MILIT.

KOHCTPYKUHA BEDOCHELI YACTU NEDETODOGOK PAZDA-BATGIBAETON B KOHICOETHOM NODEKTE NO THINY APHIMEDA PEWEHHA, NOHBELEMHOTO HA NHETAX 62+65 3.3. WAS KONOHH, I KOTOPHIM KPENATOR NAHERU, NOH-HAT 6.0 M. NOU OTCATCTBULL OCHOBHEISE KONOHH BRAHHA C WASOM 6.0M NOUMEHANOTCH PAREBEPROBLE KONOHHUI. 3.4. NAMEABHAR 4ACT6 NEPETOPOQUEU PEWEHR NO CAMOHECYMEN

KOHCTRYKTHBHON CICEME. HANCHHE MYICHE MAHENU US TAIKE-NOTO, NETICOTO H RYELICTOTO BETOHOS ONHIPAKITCA HA MAGE-TOHELI ADYHAMMEHTOB HALI HA DAODHGIE CTDANKLI MA KOMOH-HAXC; HAXCHUE NAHENA C QBEPHEIMA NOOEMAMA, A TAKKEE BCG NAHERU U3 THNCOBETOHA U KAPKACHO-OBIUNBHWE YOTA-HABAHBAHOTCH HA ODYHAAMEHTHGIE BANKH.

PREDEMENAN BOICOTA CAMOHECYMETO YYACTKA NEPE-TOPOGICU H3 XCENE3055 TOHH6192 PAHERELY H ARHHA YYACTKA MX ONUDAHUA HA HABETOHKH ANHAAMEHTOB H CTANGHGIE CTONHEU GONNEHUI APHHUMATECA B COOTESTCTBHU C DAHHOH TABAHKEH.

_	SPETERANNE BALOTTU CAMONECYTUEN YACTU NEPETOPOLOGE B M.											
ANHA YYACTKA	NAHENU	HB RYEUCTO MAPKU 50		NAMENU NA TAMENOCO								
Опирания	Rnp	Krc /cm	BETOHA	BETONA								
mm	22	18	/3		MAPEH 100							
140	6.0	4.8	3.6	10.2	6.6							
190	7.8	6.6	4.8	11.4	9.0							
340	8.4	8.4	7.2	11.4	10.2							

BEICOTA CAMOHECYMETO YYACTKA NEPETOPODIKU US THROOFETONHERS IN ERPKACHO-OBMINEMBLE RAHEREN HE RORNCHA NDEBOWATE 6.0 M. NOU BONGWEN BOICOTE NEPETOPOLICA HEOBOO-DUMA YETAHOBICA MENESOGETOHHBIX NAHENELI 6E3 NOCEMOS C WATOM NO BEI COTE 6 M , DEI MONHAION HIC PONE OFBA BOYHETCE FAMOR.

MORCHHTENBHAR BANHEKA

1.431-20 SINYEK SHET

CHOOKCOOCKU

TAUHH.

B AAHHOU CEDHU B XCERE 308E TOHHOIX ADAX 8EPXO-BOIX KONOHHAX TIPETLYCMOTPEHA YCTAHOBKA BAKNARHOIX ИЗДЕЛИЙ ДЛЯ КРЕПЛЕНИЯ СТОЛИКОВ ПОД ПАНЕЛИ, РАСПОЛО-WEHHOLE BOILDE CAMONECYMEN 30HO NEPETOPORKH. Привазия стопиков принати для перегородок с панелали на тноского ветона. При применении панелей перегородок из другизс татернагов не-OBSCORUMO B KOHKPETHOM PROBICTS PROMBASKY SAKRARHOISE HSGERHA ANA KRENNEHHA CTONMEOS AATS COOTBETCTBEHHO PASMERAM CAMONE-СУЩИХ УЧАСТКОВ ПЕРЕТОРОДОК, УКАЗАННЫХ В ВЫШЕПРИВЕДЕННОЙ ТАБЛИЦЕ. 3.5. NAHERU NEPETOPODOK HAD BOPOTAMU OTHORIOTCA HA PAMY BOPOT. 3.6. Hunchan yacig neperopagak or otmetich 0.00 go otm. 3.0m MONTHCHA BOINDAHATOCA, KAK APABHAO, 43 MENEBOBETOHHOID NAHE-NEH, KAK HAHBONEE CTOUKHOE K PABAHYHAM MEXCAHHYECKHM BOSDEWCTBHAM. 3.7. Перегородки запроектированы из панелей высотою 3.0; 1.8;1.5;1.2 m. MAHEMA BOLGOTORO 3.0m MPHAMTOL B KAMESTEE OCHOBHOTO TUNA U ANTOGHAMOTCA FRANCHMU U C GBEPHUM RPDEMOM PASMEPON 1520×2400. При необходитости, в конкретном проекте, допускается Выпостт панели с дверными пробмяти других размеров, A THEWE PRYERU C OTBEPCTUAROU ANA MOONYCHA PASAUYHEISE KOM-МУНК-КТИЦИЙ; ПРИ ЭТОМ ДОЛЖИНА БЫТЬ ПРОВЕРЕНА ПРОЧНОСТЬ ОСПАБ-ЛЕННОЙ ПАНЕЛИ НА СТАДИАЯ ИЗГОТОВЛЕНИЯ, МОНТАЯСА И ЭКСПЛУА-

3 S. Mrs 10 XX ITSE 8 REDETODORIENSE MENTOSHIBISE OKOHHBISE APOE-MICS REPERSIA TOPUSONTAMENSIE HATPYSOK HA COCERHINE NA-

HERN HE GONJONATICA

39 PILEY NEDSTOPODOK SANDOEKTHOOBAHGI H3: OF PANTAPOR SHHOLD THE WELLOW DETOND WARRY 100 C OFFEN- HON MACCON 2200 + 2500 Kr/m3

6) ADMINDOBANHADO NETICHOO BETONOO MADOCH 75 NA MOPNICTAGO BANDAHHTERAR C OBBENHOW MACCON 1000 +1200 KP/m3; 6) ADMINDOBANHOIX AGENCIOIX BETONOO MADKN 50 C OBBERG-HOW MACCON 800+900 KM/M3;

2) FUNCOBETONA MADKU 35 C OBBEMHOÙ MACCOÙ 1250KF/m³ C AEPEBAHHOIM KAPKACOM; d) REPERSIMHORD ICADICACA, OBMINITORD AUCTORUM MATERIA-NOM, C 3ANOAHEHHEM H3 MILHERMOBATHBIR PAWT BALL GENEHTHOTO PHEPORHTA.

Облицовка каркасно-общивных панелей производится B COOTBET CTBHH C TABAHUBH 2.

3.10 Толщина каркасно-общивных панелей с заполнением H3 PHEDORINTODERCE MANT COSTABAGET 95MM, TORIGINA BOESE OCTABE-HADE NAHEREH - 80mm.

3.11. B LEMANC MCKMOYEHHIA ONEDALLHU NO CRESKE MOHTANCHOIC ME-

DIEMEROBETOHHORS MAHEMBAS MAHHATOI METAW, HE BUICTYMAKOWWE RA MAHO NOBEDICHOCTU NAMERU, 8 TUNCOGETONHOICE NAMERAICE NOM HATOL NETRIU C ... TAUN POLITHMAY " KONGLAMA, B. KADKACHO-DEWHBHECC PRHETISC PETAU YTANIHBAROTCA.

TENS BO BREMTH MONTANCA I BOSMONCHOCTH DEMONTANCA DAMENELL B

MENEROBETONHOLE MANERU, YETAHABAUBAEMOLE & BEDINEU YACTU TEPETOPOQOK, MMEROT DONORHUTENGHGIG OTBEPETHA DIA BARCBATA NAHERH CREGHARGHOM MOHTAXCHOM NOHCROCOBREHHEM.

3.12. ПАНЕЛИ 0603 НАЧЕНЫ МАРКАМИ, СОСТОЯЩИМИ НЗ ДРОБИ, В

NOACHUTENGHAS SANHCKA

CEPHA 1.431-20 BUNYEK AHET npomerpowwwnipaerer

OBEDHA LYMPKOBR

1977 ODOBEDHA Y

MADY 1977 OR

CATOMET | LOBOTTEU CHUL

YKCANTERE KOTOPOÙ RAHBI OBOBHAYEHUR KOHETPYKYNU RAHEAU [МАТЕРНАЛ, ТИПОРАЗМЕР], А В ЗНАМЕНАТЕЛЕ-РАЗМЕРЫ ПО ФРАСАДУ В М. MAS-REPETOPORIONARY NAMEND US TAXESTOTO BETOMA; MAN - TO HCE, US METKOTO BETCHA; MATO HEE, HIS SYENCTORO GETONA; NNT-TO KE, US THROOFFTOHA; NNK! - TO IKE, KAPKACHO-OBWHBHAA C MHHEPANODATHGIM JANOA-HUTELENI; ППК2- ТО ЖЕ, КАРКАСНО-ОБШИВНАЯ С ФИБРОВИТОВЫМ ЗАПОЛНИ-TENEM. LUPPPOBOU UNDEKC OGOSHAYAST HOMEP TUNOPASMEPA NAHE-AH, A DONORHUTENGHOW HHILERC " " YKASHORET HA HAMHYUE **ПВЕРНОГО ПРОЕМА В ПАНЕЛИ; ДОПОЛНИТЕЛЬНЫЙ ИНДЕКС "В"УКАЗЫ-**BAET HA HAMHYUE B NAHEAU DONOAHHTENGHOOD OTBEPETUU DAN SACCBATA MAHERU MAH YETAHOBKE EE B BEDOHEH YARTU MEDELODUKH. HA MADIKH POBOYHBIX: CXEMIAX U & KIHOYE QUA NOQ BODA NA-НЕПЕЙ ПЕРЕГОРОДОК ПАНЕЛИ ЗАМАРКИРОВАНЫ БЕЗ УКАЗАННЯ МИТЕРИАЛА. 3.13. Факоберговые колонны для грепления перегородок PROPREDITANTE & ABYCE BADMANTACE: MERESORETONHOLE IN CTAMBAGE. В ЭДАНИЯХ С НЕСУЩИМИ ИСЕЛЕЗОВЕТОННЫМИ КОЛОННАМИ CRECISET, KAK MARBHAO, MAMBHATE MERESOBETOHHEIE APASSED-KOBGIE KONOHHGI; B 34, PHHARZ C HEEYUUHMH CTPATGHGIMH KONOHHA-MH - ND HMEHATG CTAMBHBIE OPRICEPROBBIE KONDHHBI. B DEPICHEU YACTU KENEGOBETOHHBIX H CTANBHBIX PARBEDKOBOIX KONOHH PANDAPUBANTON CTANGHOLE SMEMENTOL "I" ALLA KDENNEHHA APAREBEPKOBBIX KONOHH K KOHCTPYKциям покрытия. В вержней члети основных колони SARHHA TAK HE YETAHABAHBABARTCA CTANBHDIE DIEMEHTGI "T" ДЛЯ КРЕПЛЕНИЯ ПАНЕЛЕЙ И ФРАЖВЕРКА ВЕРЖНЕЙ ЧАСТИ

Перегородок.

Для крепления стальных элементов "Т" в основных колониях в конкретном проекте должны быть предуститрены заклюдные изделия соглаено уэлям крепления элементов "Т" к колониям Для крепления стальный элементов "Т" к конкрет-

к конструкциям покрытия здания в конкрыт. Ном провить должны быть предустотрены закладные изделия в железоветонных конструкциях покрытия согласно соответствующим узлам.

3.14. Фундатенты под фактериковые колонны выпол-

HAIOTCA & KOHKPETHOM PROSETE.

HAIPYSKU HA GOVHLAMEHTEI OT GREBERKOBEIX

KERESOBETOHHOIX KONOHH PRUBELEHEI & TABMULKK HA

NUCTAC 23+29, A OT GARBEPROBEIC CTMAGHEIC KONOHH — HA JUCTAC 38+43.

колонн — на листах $38\div43$.

3.15. Маркировка фахверсовых колонн прината буквати K6 для железобетонных колонн и K0 - для стальных колони и цифрати. Пераяя цифра обозначает номер марки ниженей части колонны, вторая цифра - номер марки верхнего стального заемента "Т". Например, марка K0-7-2 обозначает, что колонна состоит из ниженей части марки K0-7 и верхней части марки T2.

3.16. Антикоррозионная защита бетона и прмату-

PGI NAME NEW NOUBEREHA B TAGNULE 1.

TK

Пояснительняя записка

1.431-20 BUNYER AHET PHILICOPPOSUDHHAR SALLATA COECHHUTENG-HGIX USGENUU U CBAPHGIX UBOB B MOHTARE-HGIX YSNAX NPU HOPMANGHOM OTHOCHTENGHOM ONAXHOCTH BOSGYXA U OTCYTCTBUU RIPECCUBHOM CPEQGI NPU KPENNEHUU NAHENEU K KCENESOGETOHHGIM KONOMHAM BONOMMETCA B BURE METANNUYECKOFO NOKPGITUR YKRSAHHGIX SIEMEHTOB B COOTBETCTBU C N.N. 3.18 - 3.20 CHU NII-28-73 B YSNAX KPENNEHUR NAHENEU

К СТЯЛЬНЫМ КОЛОННЯМ МЕТЯЛЛИЧЕСКОЕ ПО-КРЕГТИЕ НЕОБЖОДИМО ТОЛЬКО ДЛЯ УПОРНЫХ УГОЛКОВ И БОЛТОВ ПРИТЯЖКИ ПЯЧЕЛЕЙ, ОСТЯЛЬНЫЕ ДЕТЯЛИ СОЕДИНИТЕЛЬНЫХ ИЗДЕ-ЛИЙ ОКРАШИВЛЮТСЯ ТАКЖЕ, КАК И СТЯЛЬ-НЫЕ КОЛОННЫ. ЗАЩИТЯ СТЯЛЬНЫХ КОНСТРУКЦИЙ КО-

ЛОНН И ДРУГИХ ЭЛЕМЕНТОВ ФРАХВЕРКА ПРИ-НИМПЕТСЯ ТАКОЙ ЖСЕ, КАК И ОСНОВНЫХ МЕТАЛЛОКОНСТРУКЦНЫ КАРКАСА ЗДАНЫЯ. АНТИКОРРОЗИОННУЮ ЗАЩИТУ СОЕДИНИ-

TENGHOIX MORENIAI BO BARNCHOIX II AFPEC-CHBHOIX CPERAX CNERVET NPHHUMATE ORUMAICOBON C SAWATON AHANOFUYHOIX MEMEHTOB HAPYNCHOIX CTEH RAHHOFO ORAHUA B COOTBETCTBUN CO CHUNII-28-73.

BCE MEPONPUATHA NO PHTUKOPPO-3404HOÙ 3AUUTE, BOIEPAHHGIE B COOT-BETCTONU C YKAZAHUAMU HACTORUETO NYHETA, DONACHGI 66176 OFOBOPEHGI B KOHEPET-HOM NPOEKTE. 3.17. YKABAHUA NO UBTOTOBASHUM NAHENSY U BREMEHTOB APAZBEPKA NEPETOPOROK RAHGI

B COOTBETCTBYIOMHIE BGINYCKAIE HACTORIYEH CEPUH.

K NOACHUTENGHAA JANUCKA.

СЕРНЯ 1.431-20 Выпуск ОНСТ

CTENEHS ASPECCUBHOSO	ΓΡΥΠΠΑ	OTHOCUTE ALHAS	Cri	особы зящі	176) ЖEЛE30	BETOHHUE !	<i>ПАННЕЛЕЙ</i>		[UNCOBETOHHBIE
ВОЗДЕЙСТВИЯ ГАЗОВО — ВОЗДУШНОЙ	AFPECCH8HAIX	BNAMCHOCTS BOBDYICA	БЕТОНЯ	АРМЯТУРЫ	Бетона	RPMRTYPH	БЕТОНЯ	<i>Арматуры</i>	H KAPKACHO- ОБШНВНЫЕ
		помещений в %	ПАНЬ ИЗ ЯЧЕНСТЫ		ПАН ИЗ ЛЕГКИХ	ESH SETOHOB	MA TANKENO		ПЯНЕЛЦ
	BES AFPECCUB-	≤ 60							БЕЗ ЗАЩНТЫ
	ных газов	61÷75		ЗАЩИТНОЕ	Н		H		HE PUMEHAIOTO
HERTPECCUBHAS	A	<i>≤</i> 60	БЕЗ ЗЯЩИТЫ	NOKÁBI TWE (GMOTPHTE CHUN II- 28-73 ,	БЕЗ ЭАЩИТЫ	БЕЗ ЗАЩИТЫ	<i>५६३ अमाप्रभाग</i>	БЕЗ ЗАЩИТЫ	553 3AWHT61
		61÷75		NYHET 3,7)	осо опщини				HE OPHMEHANTO
	Б	≤ 60							без защиты
СЛАБОЯГРЕССИВНАЯ	5E3 REPECCHB- Hbix er308	> 75	не при	л <i>еняются</i>	НЕ ПРИЛ	MEH9ЮTC9			
	A	>75	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				Н	БЕЗ ЗАЩИТЫ	НЕ ПРИМЕНЯЮТС
	Б	61÷75	NAKOKPACOYHOE NOKPHITUE <u>II</u> FPYNNH	3AUUTHOE NOLPH- TWE (CM. CHUNIL-80- 73, NYHKT 3.7)	TI NAKOKPAGOYHOE NOKPUTHE TI TPYNNU	БЕЗ ЭЯЩНТЫ	БСЗ ЭРЩИТЫ		
	8	≤ 60	70 же	70 XE	БЕЗ ЗЯЩИТЫ				БЕЗ ЗАЩИТЫ
	Б	>75			НЕ ПРИМ	рЕНЯ ЮТСЯ	n		не применяются
СРЕДНЕ ПТРЕССИВНАЯ	В	61÷75	HE MPU!	пеняются	П ЛАКОКРАСОЧНОЕ ПОКРЫТИЕ Й ГРУППЫ	БЕЗ ЗАЩИТЫ	NAKOKPAGO4HOE NOKPLITHE <u>I</u> I rpynnu	БЕЭ ЗАЩИТЫ	
	Γ	≤ 60				осо опщиты	<u>u</u> reanco		5E3 3AЩ4761
	Прит	ЕЧАНИЯ							

- 2. PRUMEHENUE MAHENEN HS DETENT BETONDS HE DONYCLAETCA B CPEQHE-
- ПОТНОСТИ, П ПЛОТНЫЙ).

ΤK

OBNACTS RPHMEHEHHA И СПОСОБЫ АНТИКОРРОЗИОННОЙ ЗАЩИТЫ 1977 ПАНЕЛЕЙ ПЕРЕГОРОДОК

CEPHA 1.431-20 BUINGER SHET 18/2/

ОБЛИЦОВОЧНЫЕ	МАТЕРИЯЛЫ	מתם	ПВНЕПЕЙ	MDDAY	ППКІ	,,	ΠΠΚΟ
	THILLMINIO	ACT X	UTHENCH	MAPUR	1/////	И	111111 4

NN n/n	Найменование материала	ГОСТ или ТУ	Кряткая характеристика материала	ОГНЕСТОЙ КОСТЬ МЯТЕРИЯЛЯ	Способ облицовки
1	WTYKATYPEA Funcobas cyxas	С МИНЕРАЛЬНЫМИ ИЛИ ОР		НЕСГОРЯЕ МЫЙ МАТЕРИЯЛ	КРЕПЛЕНИЕ ШУРУПАМИ К ДЕРЕВЯННОМУ КАР- КАСУ ПАМЕЛИ НА ЗАВОДЕ ИЗГОТОВИТЕЛЕ
2	АСБЕСТОЦЕМЕНТНЫЕ ПЛОСКИЕ ЛИСТЫ (ПРИ УВЯЗКЕ РАЗМЕРОВ ЛИСТОВ С РАЗБИВКОЙ ДЕРЕВЯН- ИОГО КАРКАСЯ ПАНЕЛИ)		Плиты из АСБЕСТА И ПОРТПАНДЦЕМЕНТА, ТОЛЩИНА 10 ММ	НЕСГОРАЕМЫЙ МЯТЕРИАЛ	КРЕПЛЕНИЕ ШУРУПАМИ НА ЗАВОДЕ ИЛИ НИ МОНТАЖНОЙ ПЛОЩАДКЕ

Таблица 3

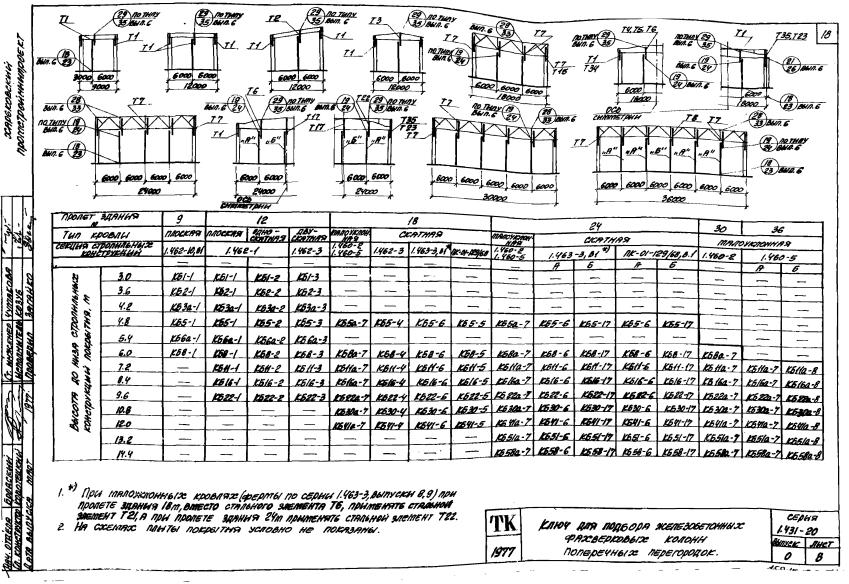
Мятериялы для отделки панелей марок ППБ, ППЛ, ППЯ, ППГ, ППК

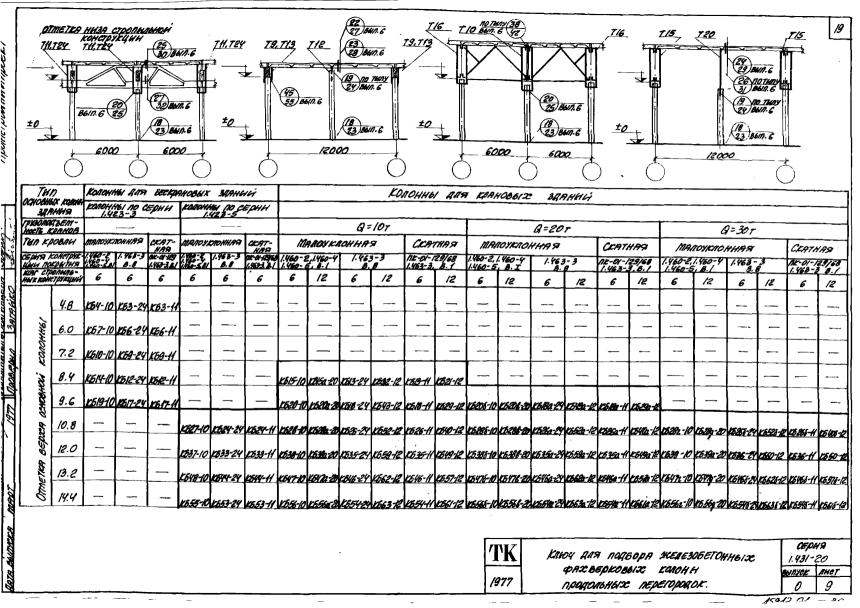
Марка Панелн	Краски , эмали	Бумяжно-слоистые пластики толщиной I÷2mm ГОСТ 9590-76	Моющиеся (впягостойкие) Обои	Поливинилхлоридная Пленка	ОБЛИЦОВОЧНЫЙ КОВЕР (КЕРАМИЧЕСКАЯ ПЛИТКА, МРАМОРНАЯ КРОШКА ИТ.Д.)
ППБ ПОДГОТОВКА ПОВЕРЖНОСТИ ППЛ ОКРАСКА		Подготовка поверхностей, наклейка пистов клеями: фенольными, резорциновыми, карбамидными, вустилат	Подготовка поверхности, наклейка на синтетическом клее парки КМЦ	ПОДГО ТОВКА ПОВЕРХНОСТИ, НАКЛЕЙКА, КЛЕЕВОЙ СЛОЙ НАНОСИТСЯ НА ОБОРОТИЗЮ СТОРОНУ ПЛЕНКИ НА ЗАВОДЕ	Отделка панелей Производится при их изготовлении
Πη 9	To *E	To HE	To AE	To *E	To HE
חחר	To *KE	To ske	To *E	TO WE	
ппк	To ske	To ACE	To the	To *KE	

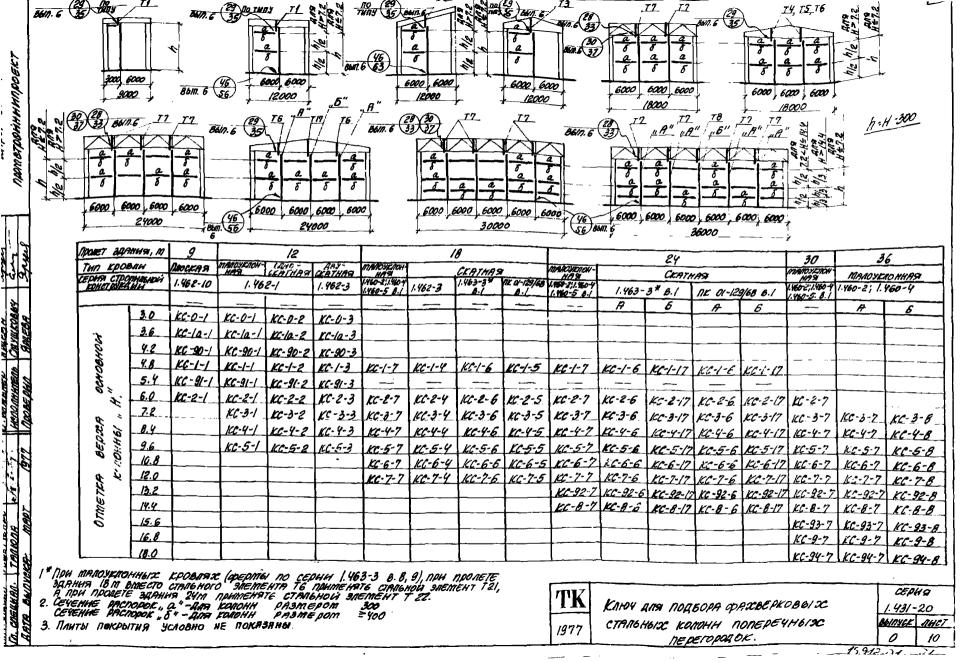
1977

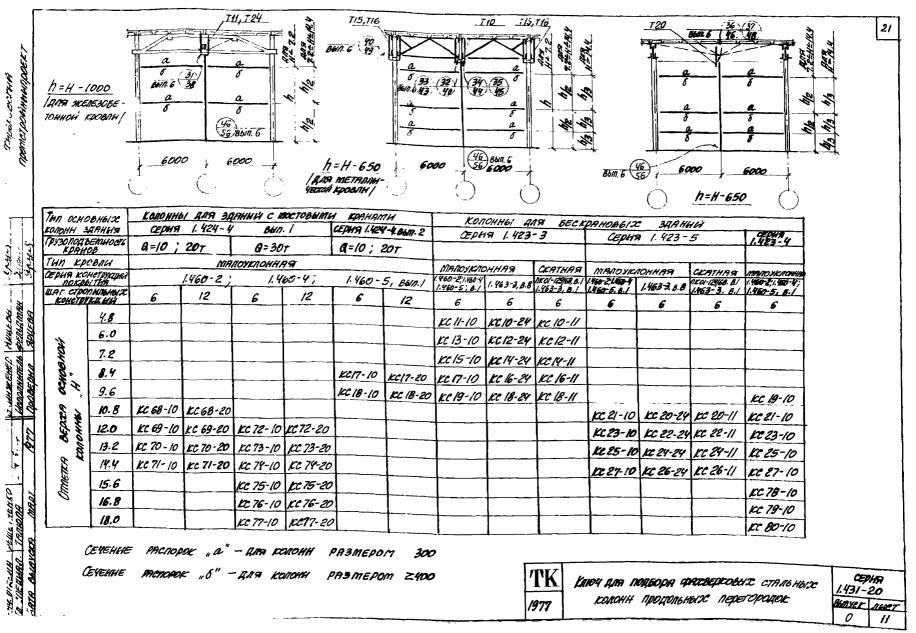
ОБЛИЦОВОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПАНЕЛЕЙ МАРОК $\Pi\Pi KI$ и $\Pi\Pi K2$. МАТЕРИАЛЫ ДЛЯ ОТДЕЛКИ ПАНЕЛЕЙ МАРОК $\Pi\Pi B$, $\Pi\Pi\Pi$, $\Pi\Pi\Pi$, $\Pi\Pi\Pi$, $\Pi\Pi\Pi$, $\Pi\Pi$

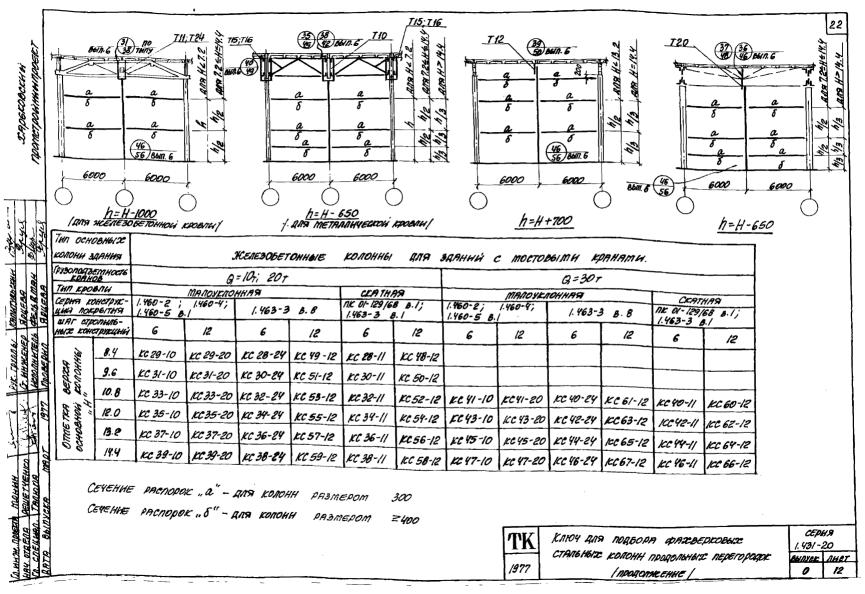
СЕРИЯ 1.431-20 BUINYCK SHICT

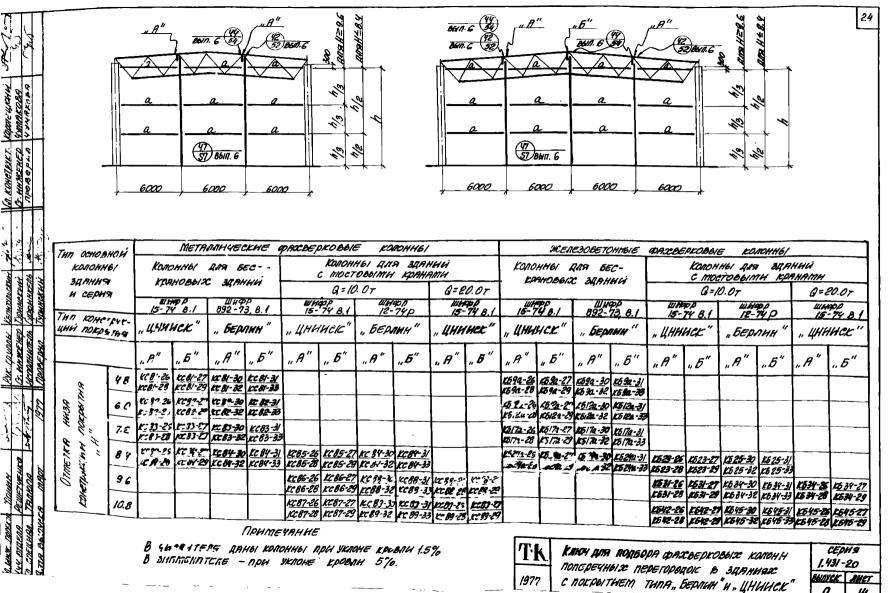

iekt			Клю	4 ДЛЯ ,	подвора	NAHENE	A NEPERO	ОРОДОК		Тавлица	4	13
domm	H mm	5980	5770	5720	5670	5560	5270	5220	5170	5060	4880	
Пролегренинипроек	2985	NN-I NN-I-A	NN-5 NN-5-A	_	:!				-			
iodu	1785	nn-2*	nn-6*	_	. —	·			<u> </u>		<i>ПП-17</i> *	*
	1485	<i>пп-3</i>	<i>nn-7</i>	Nn-9	nn-10	nn-11	NN-12	חח-וץ	NN-15	NN-16	NN-18	
	1185	nn-4	nn-8		-		<i>ПП-13</i>				NN-19	
972.	ВОЗМОЖНОЕ МЕСТО - ПОЛОЭКЕННЕ ПЯНЕПИ	Рацсеня Пянель	новыти консоль- ти колонн в-чоо при шяге 12 т и няружены с стен с номевой привязькой в поперечных	Между подгра- новыми консо- нами стяньних колонн в = 450-500 пр шеге 12 м в продолених перегородинх в междрермен- ном пространстве	MERCAY PORCORRATE CORCORRATE CORCORRATE FOR TOWN B = 560 ÷ 600 POR WAR E 12 M	1 <i>HOM</i>	ПЕЯСДУ ПОДКАНОВЫТЫ КОНСОПЯТЫ КОНСОП	КОНСОЛЯМИ СТЯПЬНЫЕ КОЛОНН 6=450÷500 С ШЯГОМ 12М Э ТОРЦЯ ЭДЯНЫЯ И ТЕМЛЕРИЯРОГО	в=550÷600 при шаге 12т у торца здрина и температурного	MENCLY MOREPHOSSIMU KONCASHU KONC	ППНЕЛЬ ДЛІ ПОПЕРЕЧНОЙ ПІ ПОРОВЕЧНОЙ ВІНЕ ПОРОПЕРЕНОВО В МЕЖОВЕРОВОВО В МЕЖОВЕРОВОВОВОВОВОВОВОВОВОВОВОВОВОВОВОВОВОВ	REPERENT R. P.
BATA BALINOCES MADT	ГИПСОБЕТ ПП-5-Д; I КАРКЯСНО- 2. *) ИЗГОТО ЩЕЙСЯ О ОСНЯСТЕ	OHHOE NAHEN NN-6; NN-8. OSWUBHOE N BNEHUE NAH CHACTLE QO U QRA NAHE	PHME PHME	TRENSI BCER MAROK NA-1; TO MAROK NA-1; THEH. JAKA3 THEH. JAKA3	NN-1-4; NN-2 -4; NN-8. QYCMATPUBA U UBROTOBA E NPOUBBUU	; NN-4; NN-5 E7CA BUMEN EHHE HOBOH	TK	осч дая подб	оря Пянєлєї	н перегорода	Серы	191 20


<u> </u>		Нот	ЕНКЛАТУРА ЖЕЛЕЗОБЕТОН	інь/ж	ПАНЕЛ	EÚ H	ПОКА	BATES	и РАС	ходя	MAT	ЕРИ	91108	Тябз	лица 5 <u>ју</u>
вский инпроєкт	NN n/n	Эскиз и разтеры панели, т	Назначение панели	Толщина панели тт		PACIOA CTANU ET	ЯчЕ ис Марка Панели	THE BE MACCA THE SPH OBT MACCE BETT 800	нели, т	Марка	Macca	DETOR DAHEA DETORA 1100	OH , T	Тя ж. Марка Панели	ЕЛЬІЙ БЕТОН МАССА ПАНЕЛИ, Т ПРИ ОБЪЕМНОЙ МАССЕ БЕТИНА 2500 Kr/M³
ХЯРЬКОВСКИЙ ПРОМСТРОЙНИНПРОЕКТ	1	5.98	Рядовня пннель	80	1.43	31.8 35.4	<u>ППЯ~1</u> 5.98v 2.986	1.17	1.32	<u>ППЛ-I</u> 5.98×2.98	1.46	<u>!</u> 61	l 75	<u> </u>	3.61
	2	5.98	РЯДОВНЯ ПННЕЛЬ С ДВЕРНЫМ ПРОЕМОМ	80	1.14	<u>54.4</u> 58	<u>NN9~1~A</u> 5.98×2.985	0.97	1.08	<u>ПЛЛ-I-Д</u> 5:98×2:985	1.20	1.31	1.42	<u>MN6-I- D</u> 5.98×2.985	2.91
	3	5.98	Рядовня панель	80	0,85	21.5 22.6	<u>ППЯ-2</u> 5.98×1.785	0.70	0.80	<u> </u>	0 .87	0.96	1.04	[[1]6-2 5.90×1.78 ⁵	2.15
YSMAKOSA YSMAKOSA	4	5.98	Рядовня панель	80	0.71	15.8 16.9	ПП Я - 3 5.98×1.485	0.58	0.65	ППЛ-3 5.98×1.485	0.73	0.80	0.87	<u> 7705-3</u> 5.98×1.488	1.80
CT. HANGONHATEDO	5	5.98	Рядовня панель	80	0.57	<u>13.7</u> 14.8	<u>ППЯ-Ч</u> 5.98×1.185	0.47	0.53	<u>/////////////////////////////////////</u>	0.58	0.64	0.70	<u>ППБ- Ч</u> 598×1.189	1.44
in the h	6	5.77	Панель перегородки у наружных стен	80	j. 38	<u>30.8</u> 34.4	<u>ППЯ~5</u> 5:77×2:985	1.13	1.27	<u>ППЛ-5</u> 5.77×2.90%	1.41	1.55	1.70	<u>ппБ-5</u> 5.77×2.985	3.48
Kyaneyos Kyaneyos Kopoteyehi	7	5.77	Панель перегородки У наружных стен	80	1.09	53.6 57.2	<u>ППЯ-5-Д</u> 5.77×2.985	0.93	1.03	<u>ППЛ-5-Д</u> 5:77× 2:98\$	/./4	1.25	1.36	ППБ-5- <u>Д</u> 5.77×2.985	2.78
In MAR OF HAY. OTGENA In ECHETO			ПРИМЕЧАНИЕ РАСХОД СТАЛИ ДЛЯ ПАНЕЛЕЙ И ЛЕ-ДЛЯ ПАНЕЛЕЙ ИЗ ТЯЖЕЛОГ			стых	T]	┥ "		УРА ЖЕ ТЕЛИ Р				ПАНЕЛЕ ИЯ ЛОВ	СЕРНЯ 1.431-20 Выпуск Лист О 4


		Номе	нклятура ЖЕЛЕЗОБЕТОНН	ыж П	ЭНЕЛЕI	i H	ПОКАЗА	телн	PACXO	DAR MA	788	1810	8	TABAHI (neodoan)	15 (15)
7							ЯЧЕНС	THE 6	ETOHЫ	SECK	HE	6 E T O F	461	Take	ЕПЫЙ БЕТОН
HUPOEK	NN n/n	ЭСКИЗ И РАЗМЕРЫ ПЯНЕЛИ, М	Назначение панели	Тол ц ина пан е ли па п	OBBEM BETOHA M	Рнсход стали кг	Марка Панелн	TAPH 053	1848.74, T 16 MHON 10 I A KT/M ³ 100	Мяркя П янел н	neu	OF DEM BETOHA	ной	Марка Панели	МАССЯ ПАНЕЛН, Т ПРИ ОБЪЕМНОЙ МАССЕ БЕТОНА 2500 Kr/m3
пРомстРойниипРоєкт	8	5.77	Панель продольной перегородки между подкрановыми консолями колонн 6=400 при шаге 12 м. Панель поперечной перег ород ки в межферменном пространстве	80	0.82	<u>18.8</u> 19.9	<u> </u>	0.67	0.75	<u>17114-6</u> 5.97×1.985	0.84	0.92	1.0	<u>ППБ-6</u> 5.77×1.78\$	2.07
UP.	g	5.77	Панель перегородки у наружных стен с нулевой привязкой. Пянель поперечной перегородки в межферменном пространстве	80	0.69	15.5 16.6	<u> [[] [] [] [] [] [] [] </u>	<i>0</i> . 57	0.64	<u> </u>	0.71	0.77	0.84	<u>nns-7</u> 5:77×1.48 5	1.74
	10	5.77	Панель продольной перегородки между подкрановыми консалями коломн 8=400 при шаге 12м, Панель поперечной перегородки в межферменном пространстве	80	0,55	<u>13.4</u> /4.5	1119-8 5,77×1.185	0.45	0.51	<u>ППД-8</u> 5: 77 ×1.185	0.56	0.62	0.67	<u>NN6-8</u> 5,77×1,185	1.40
	//	5.72	Панель продольной перегородки между подкрановыми консолями колони 6-450÷500 при шаге 12м в межферменном пространстве	80	0.68	_ <u> 5.5</u> 16.6	<u> </u>	0.56	0.63	<u>ППЛ-9</u> 5.72×1.485	0.70	0.76	0.83	<u>ППБ-9</u> 5.7 2 ×1.4 85	1.72
	12	5.67	Панель продольной перегородки между подкрановыми консолями колони в=550÷600 при шаге 12 м	80	0.67	15.4 16.5	<u> 7179-10</u> 5.67×1.485	0.55	0.62	<u>ППП-10</u> 5.67×1.485	0.68	075	0.82	<u>ППБ-10</u> 5.67×1.485	1.70
1 1977	13	5.56	Пянель продольной перегородии между годирановыми консоляти колонн 6=400 при шаге 6 м в межферменном пространстве	80	0,66	15.0 16.1	<u>17199-11</u> 5.56×1,485	0.54	0.61	<u>[[[]]]- </u> 5.56×1.48\$	0.67	0.74	0.81	<u> </u>	1.67
LATA BELLYCKA MAPT 1977C	14	5.21	ПАНЕЛЬ ПРОДОЛЬНОЙ ПЕРЕГОРОДКИ МЕЖДУ ПОДКРАНОВЫМИ КОНСОЛЯМИ КОЛОНН В=400 С ШЯГОМ 12 М У ТОРЦЯ ЗДАНИЯ И ТЕМПЕРЯТУРНОГО ШВЯ С ПРИВЯЗКОЙ 500 ММ В МЕЖФЕР— МЕННОМ ПРОСТРАНСТВЕ	80	Q 6 3	14.2 15.3	<u> </u>	0.52	0.50	<u> </u>	0.64	0.71	0.77	<u>11116-12</u> 5.27×1.48 5	1.60
TA. KOHCTP. ARTA BEITY	-anne fay or .	В числителе указан РІ БЕТОНОВ, В ЗНАМЕНАТЕ	ПРИМЕЧАНИЕ ЭСХОД СТАЛИ ДЛЯ ПАНЕЛЕЙ ИЗ Л ЛЕ-ДЛЯ ПЯНЕЛЕЙ ИЗ ТЯЖЕЛОГО)	1 ЯЧЕИСТІ Я	ых	T 197	— н	170KA3A		ACXO,	QA M		 ПАНЕЛЕ! Ч. АЛОВ	9 СЕРИЯ 1.431-20 Выписк Лист 0 Б


	Номен	нклятуря железобетонны	x NA	нелей	ип	10KA3A	телн	PRCXOD	IR MR	ТЕРИН	าภขะ			HUA 3 THEHUE)
NN n/n	Эскиз и р язмер ы пянели м	Назначение панели	Т олщ ина панели мм	Объем бетона м	РАСХОД СТАЛИ КГ	ЯЧЕНС Марка панелн	TIPH O	7 OHBI ПАНЕЛИ, Т ТОЕМНОЙ ТОНА КГ/М ³	Марка	NPH MACCE	A NAHE	ΕΛΗ, Τ Μποή 1 ΚΓ/Μ³	MAPKA	ВЕЛЬІЙ БЕТОН МАССЯ ПЯНЕЛИ, Т ПРИ ОБЪЕМНОЙ МАССЕ БЕТОНА 2500 KT/ M ³
15	5.27	Панелі продольной перегородки между подкряновыми консолями колоння в 4400 с штом 18 торця здания и температурного шва с прив язкой 500 мм и в межферменном пространстве	80	0.50	12. Y 13.5	<u>ППЯ - 13</u> 5. 2 7×1.18	0.41	0.5	<u> </u>	0.51	0.56	0.61	<u>ППБ-13</u> 5.27×i.185	1.26
16	5.22	Пянель продольной перегородки между подкрановыми консоляти колонн 8=450 ÷ 500 с шагом 12м у торца здания и температурного шва с привязкой 500 мм	80	0.62	14. Y 15.5	ППЯ-14 5.22×1.40.	0.51	0.57	<u>ППЛ-14</u> 5.22×1.48	0.63	0.70	0 76	<u>ППБ-14</u> 5.22×1.4 85	1.56
17	5.17	Пянель продольной перегородки тежду подкрановыми консоляти колодн в=550 ÷600 с шягом 12м у торца зряния и температурного шва с привязкой 500мм и в межферменном пространстве		0.61	14.3 15.4	<u> </u>	0.50	0.56	<u>1717.17-15</u> 5.17×1.485	0.62	0.70	0.74	<u> 11115-15</u> 517×1.485	1.54
18	5.06	Пянель продольной перегородки тежду подкряновыми консолями колонн 6=400 с шягом 6 м у торцов и температурного швя с Привязкой 500 мм	80	0.60	14.2 15.3	<u> 1119-16</u> 5:06×1.48	- 1 <i>0.30</i>	0.55	<u> 1717-16</u> 5.06×1.485	0.61	0 67	0.73	<u>ППБ - 16</u> 5.06× (485	J.5!
19	4.88	ПАНЕЛЬ ДЛЯ ПОПЕРЕЧНОЙ ПЕРЕГО- РОДКИ В МЕСТАЖ ПРИМЫКАНИЯ К ПОДКРАНОВОЙ БАЛКЕ	80	0.70	<u>16 6</u> 17 7	<u>1119-17</u> 4.88×1.785	0.57	0.64	<u> </u>	0.72	0.80	0.86	<u>ППБ-[7</u> 4.88×1.785	1.77
20	4.88	ПАНЕЛЬ ДЛЯ ПОПЕРЕЧНОЙ ПЕРЕПО- РОДКИ В МЕСТАХ ПРИМЫКАНИЯ К ПОДКРАНОВОЙ БАЛКЕ, ПАНЕЛЬ ПРОДОЛЬНОЙ ПЕРЕГОРОДКИ В МЕЖФЕРМЕННОМ ПРОСТРАНСТВЕ	80	0.58	13.8 14.9	<u> </u>	0.47	0,53	<u> </u>	0.60	0.65	0.71	<u> [][[6- 8</u> 4.88×1.485	1.47
21	4.88	ПАНЕЛЬ ПРОДОЛЬНОЙ ПЕРЕГО- РОДСИ В МЕЖФЕРМЕННОМ ПРОСТРАНСТВЕ У Т ОР ЦА ЗДАНИЯ И ТЕ М П Е РЯТУРН ОГО Ш В Я	80	0.46	11.8	17119-19 4.88×1.188	0.37	0.42	ППЛ-19 4.8 8 ×1.1 05	0.47	0.52	0.56	<u>ППБ- 19</u> 4.88×1.185	. 1. 16
KA11 00:110		ПРИМЕЧАНИЕ ГРАСХОД СТАЛИ ДЛЯ ПАНЕЛЕЙ И ЕЛЕ-ДЛЯ ПАНЕЛЕЙ ИЗ ТЯЖЕЛОГО			PC76/2C	13. T	И	МЕНКЛАТ ПОКАЗАТ		1CXOA	A M		ПЯНЕЛЕЏ НЯЛОВ	CEPUЯ 1.431-20 Boinyck Suct 0 6


		Номенклатура	гип	COBETOH	<i>НЫ</i> Д	e j	i K	APK	;ACHO) — 05 WA	18 H b	1x	<i>17 A I</i>	4 E N (εΉ		Табі	лнца	6		1
			7	Fugens	ГИПСОБЕТОННЫЕ ПАНЕЛИ С МИНЕРАЛОВАТНЫМ ЗАПОЛНИТЕЛЕМ С ФИБРОЛО																
NN n/m	Э СКИЗ И РАЗМЕРЫ ПАНЕЛИ,	Management House	Тапщина ПАНЕЛИ							C MHHEPAJ MAPKA	DOB ATE	HUM 3	Anon	HUTE.	DEM	С ФИБРС	MACCO	bir :	3ANOA VOEDEN	PACTE	NES
n/n nhhenu,			MM	МАРКА ПАНЕЛИ	TRHEON	TOHA 103	RPEBE- CHMH M3	En KI	CTRIN KI	ПАНЕЛИ	MAGCR NAHEDH	BHHUB- HATERI M3	CUMBI 173	1803 - DEN VI	ETANH	ПЯН Е ЛИ	лянели	94610- DHTH 173	OBBEST APERE- CUHUI M3	TBOS - TEN KI	ci
,	5.98	Рядовня панель	80	ППГ-1 5.98× 2.98	1782	1.43	0.064	0.43	16.4									_	_	_	
2	5.98	РЯДОВАЯ ПАНЕЛЬ С ДВЕРНЫМ ПРОЕМОМ	80	<u>ΠΠΓ- -Ω</u> 5.98×2.986	1417	1.13	0.073	0.78	16.4		_		_				_	_	_		
3	5.30	Рядовня пннель	80	<u> </u>	1064	0.85	0.051	0.37	(0.4				_				_	_			
4	5.98	Рядовня панель	95	<u>ППГ- Ч</u> 5.98 × Į. I 85		0.56	0.048	0.38	7.6	<u>ППКІ-Ч</u> 5.98×1.185) <i>33 /</i>	0.34	0.08	1.1	14.8	<u> </u>	100	ay	0.1	1.1	/
5	5.77	Пан ел ь перег ородки У няружных стен	80	<u>ΠΠΓ~ 5</u> 5:77×2985	1719	<i>1.</i> 37	0.062	0.43	16.4		_	_		_			_	_		_	
6	5.77	NAHENS NEPETOPOAKH C ASEPHSIM NPOEMOM Y HAPYMHSIZ CTCH	ון טט ו	<u>ппг-5-д</u> 5:77×2985	1 35 5	1.08	0.071	0.78	16.4				_				_	_			
7	5.77	Панель продольной перегородки между подкрановыми консолями желони 6=400 при шаге 12 м Панель паперечной перегородки в межферменном пространстве	80	<u>ППГ-6</u> 5.77×1.7 85	, 1027	0.83	0.05	0.37	10.4											_	
8	5.77	no nn. 5,7	80* 95	<u> </u>	681	0.54	0.046	0.38	7.6	<u>ΠΠΚΙ- 8</u> 5:77 × Ι.1 85	1 2 1 1	0.33	0.08	1.1	14.8	ППК 2-8 5.77×1.185	451	0.4	0.1	1.1	
*	*) 80 mm - ДЛЯ ПАНЕЛЕ 95 mm - ДЛЯ ПАНЕЛ		<u>H</u>			1			TK	ФИБР	L OMEH ONU	LI IKNA: 10861	ж н	KRP	PKACH	 БЕТОНН 40 - ОБШ	ыж, ивні	5/X	1.4	CEPH: 431-2 14CK J	20
									1977					HEN					O		- 2



Марка ПРЛ ЬЦА	CEYEHUE BREMEHTA	H MEMEHTA	MACCA BT.	MAPKA	CEYEHHE PAEMEHTA	H 3/IEMEHTA	MACCA BT.	KII	0 30 c	ША	r KPAN	HHX A	колонн	6 m		Шаг КРАЙНИХ КОЛОНН 12 М							
	Ö	1400	0.08	T19	TO CXEME	500	0.04	000	эположение Ной колонны СА ЭДАНИЯ		CPEQH OHH 6 M			СРЕДН ОНН 12		ШАГ СРЕДНИЯ КОЛОНН 12 М							
	1200							PETO	0 x 2	Tun	кров.	пи и	СТРОПИ	1ЛЬНЫХ	KOHCT	TP3KUNÁ							
72		1550	0.07	T20	[] <u> </u> 250	4390	0.22	7 1761	MECTON OCHOBHO KAPKACH	CKATHAG NAOCKAS			HHAS CKATHAS		улонна я	СКАТНАЯ	MRACYK	ساست. فرد ده ای					
73		1950	0.1	T21	200	3390	0.17	TMO	Kap	DEEDESO- SETONNAS	DELLE 30- BETOKKA A	СТАЛЬНАЯ	OKEAE30- GETO NHR 9	XCETTE 30- GETOHMAA	СТАЛЬНАА	ACENE 30 - BETOHMAR	MEN	i Asea					
14		2150	0.1	722		3620	0.17	чняя	Крайняя	T1	T23	77	71	723	77	71	294	7;					
<i>T5</i>	,-	2850	0.13	T23	[]	3100	0.12	Поперечняя перегородкя					T36	739		ļ							
76		3200	0.15	724	[]	3800	0.22	TION	Средняя	TI	723	17	T37 T38	T40 T41	7 15	71	723	77					
77	, 100 J	3970	0.22	T 25	[] 535	3700	0.15	COJEHAS TOPOGKA	СРЕДИВЯ	79	T 13 T 34	T/6	TII	724	716	T 9		ĩ 15					
<i>T8</i>	,	4150	0.23	726	NO CXEME	420	0.03	OGCAL			T 13						185 115	, <u> </u>					
79	С	1300	0.04	727	"	5/0	0.04	TIPC	У ТЕМПЕ- РАТУРНО- ГО ШВА; У ТОРЦЯ ЗДЯНИЯ	79	T34 T35	T15*	714	T25	T/5**	79	T34 T35	715					
T10	(eso)	4100	0.24	728		630	0.04	*	· 1. При	устройс	.78E []	РОДОЛЬН	ых лери	EFOPODO	K. B. 3/	DAHUGY	eo er	AJAH					
T		2700	0.12	T29		930	0.04		МИ ФЕР НЫХ КОЛ	При устройстве ПРОДОЛЬНЫХ ПЕРЕГОРОДОК В ЗДАНИЯХ СО СТАЛЬНЫ ФЕРМАМИ МАРКИ ФС 36-8.45 (СЕРИЯ 1.460-2, В.1) НА ОСНОВ- КОЛОННАХ ВМЕСТО ЭЛЕМЕНТА Т15 УСТАНАВЛИВАТЬ СТАЛЬНОЙ ЭЛЕ-													
7/2	I	600	0.03	730		420	0.05	\ ,	MEHT TIG. IPH STOM REPEROPOLICA B SOME MEXCREMENHORO REPORTEMENTA ROSHOCTON BURDANETCA US KAPKACHO-OGWIBKORO SARIOSHEHUR, PRISPR-GATUBREMORO B KOHKPETHOM REPORTE. 2. LIA KPERILEHUR CTANOHUK PIEMENTOB "T" B OCHOBHUK KOSOHHAX SASOKUTE SAKSALHUE USAESUR COOTBETCTBEHHO KOHCTPSKUJU RPUHRTOÙ														
713	750	3100	0.12	T 31		5/0	0.05																
T14)335] []	2500	Q./3	T32		630	0.06		MAPKU MEHHUX NO TUNY	CTAAbHOI HA OCH	ГО ЭЛЕМІ ЮВНЫХ	ehta. Kojohk	KPENNEHN IAX. K	1E CTA. Gaemen	Abhbix :	ONEMEHT TOKOUTU	OB, PAC 18 OCHU	TOAO ECTRI					
T15		3700	0.2	T33		930	0.06		CO6 KPE	ПЛЕНИЯ	УТОЧНИ	76 B	KOHKPET	HOM T	POEKTE.	- <i>901</i> K	onom.	.,					
T/6	[] 680	3700	0.2	T 34 T 35	350 734 650 735	3100	0.12																
717	[]	3850	0.2	7 36 7 37 7 38	600 736 700 737 800 738	2600	0.15 0.15 0.15			ТK	Ключ	для /	ПОДБОРА НОВНЫЕ	СТАЛЬН	ных элг	EMEHTO		EPH 9					
				1 00																			

Тип основных

KONOHH

BURHHA W

CEPHS

THIN COHOTOUR.

Unietres concrpsicum

la coeques. Transona 24.

HHH MOKPETTHA

Ĭ,

4.8

6.0

7.2

8.4

9.6

10.8

Ш**МР**Р 5-74 В./

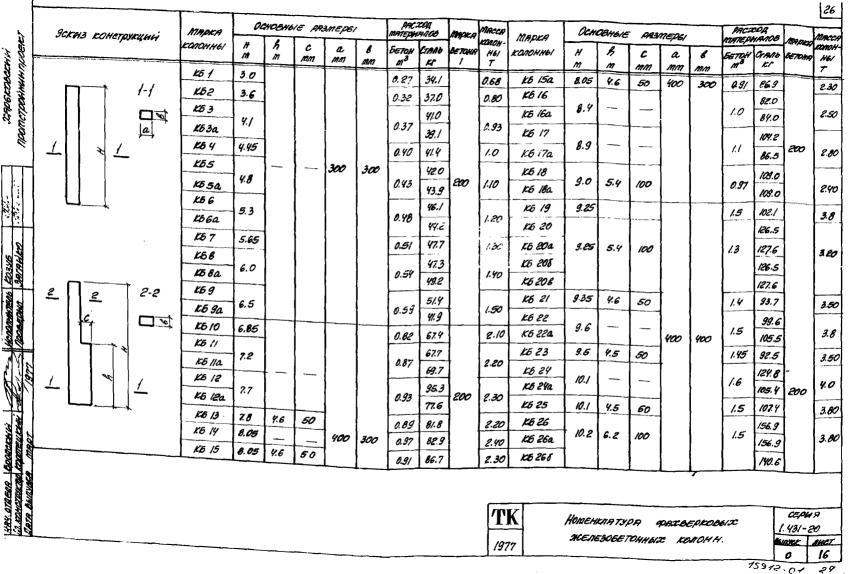
" LHHHACK

KC 81-18

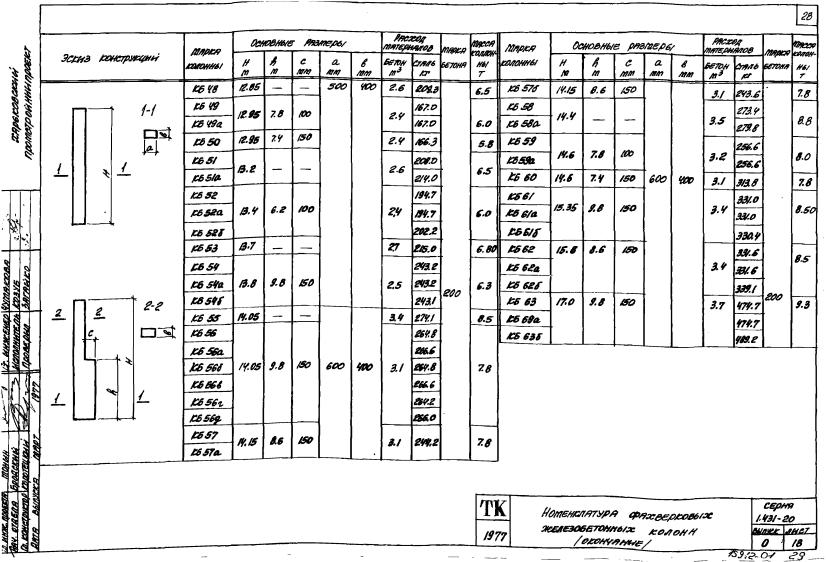
KC 82-18

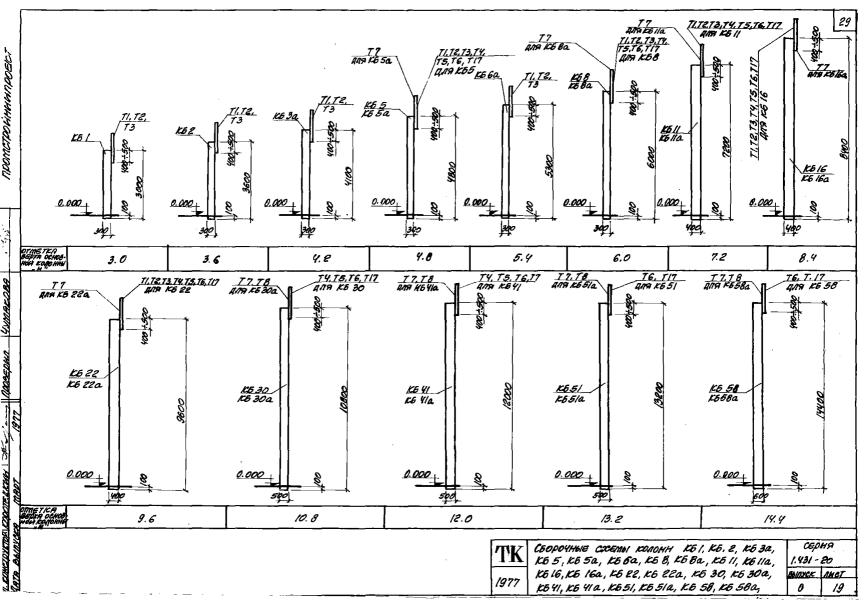
KC 83-18

KC 84-18

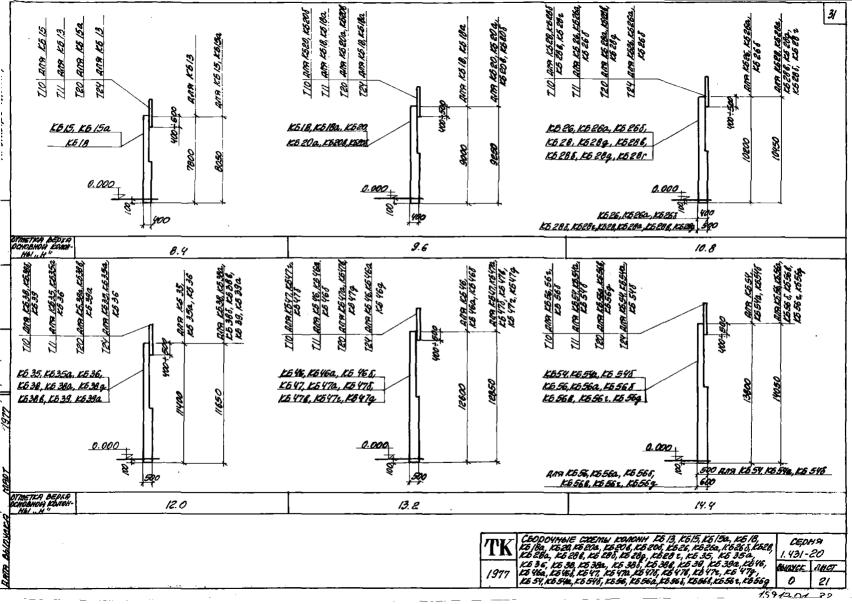

25

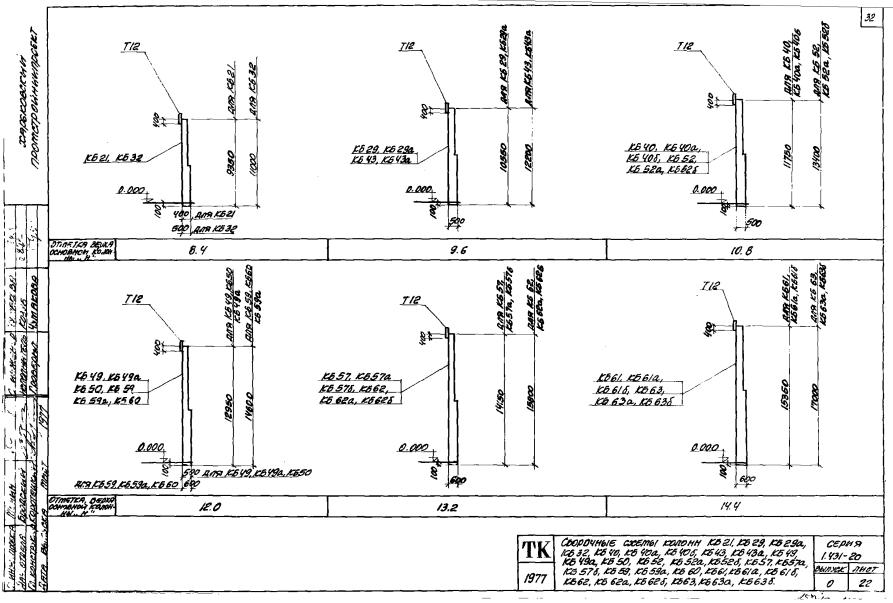
13805 CEPHA

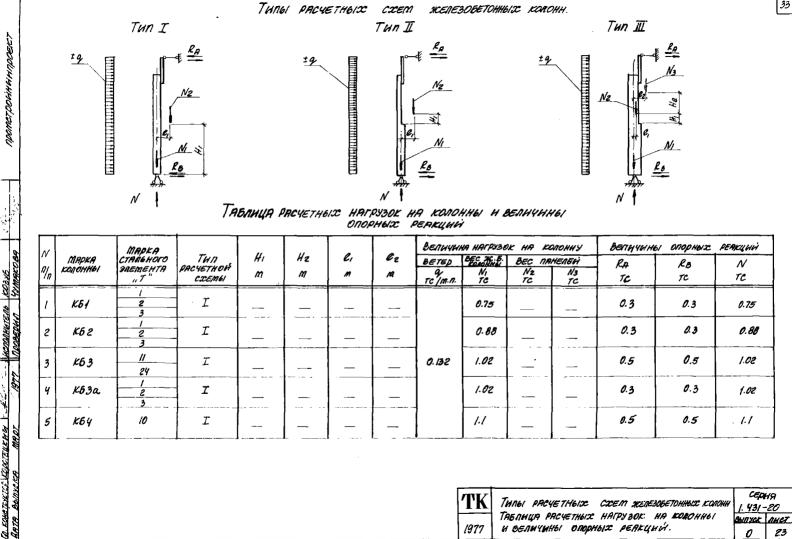

15912-01


1.431-20 BUNYEK MHET


15




		Меркя	MADICA OCHOBHGIE PASMEDGI MATEPHIMAOS MAI								MACCA KONDH-	MAPICA	a		Расход		27 Marca				
ЭСКИЗ КОНСТРУКЦИЙ		EONO HH61	H	h	C	a mm	g penn	БЕ 10H м ³	CTAM6 ICT	6670MM		KONOHH61	H	R M	C mm	a	l mm	MATE PA BETOH M ³		М АРИ А БЕТОНА	KONOH- H61
		K527	10.45					21	130.5		5.3	KB 388	11.65	7.8	100	MHII	11111	2.2	165.9		
	1-1	KE 28							130.9			K5 39			100				163.9	1	5.5
		K6 28a	1	ļ	1	,		1	132.5	1		K5 39a	11.65	7.4	150	1	1	2.1	165.2	-	5.3
		FB 288	10.45	6.2	100	500	400	1.9	130.9	1	4.8	KE 40	-	<u> </u>		ł	1			1	
_ ,		K6 28 6	1		1				132.5	1		K6 40a	11.75	6.2	(22				154.2		5.3
	* 1	K6 282	1						130.6	1		KE 408	""	5.6	100	}		2./	154.2	-	
1		KB 284	1				<u> </u>	}	132.2	1		16 4/			}	1			153.9	-	
		K6 29	10.55	5.4	100	ł	ļ	1.9	122.5	†	4.8	KB 410	12.0	_	_	1		2.4	159.7	-	6.0
		KE 29a	1					"		1		K6 42	" 1	-	ļ <u>.</u> .	ļ		<u> </u>	165.7	-	
		K6 30	10.8	-		ł		-	122.5	┨	-	K5 43	11.9	6.9	50	500	400	2.3	153.9	4	5.8
		K6 30a	1		_			2.2	127.4	1	5.5	K6 43a	12.2	5.4	100		ļ	2.2	150.9	-[5.5
		K6 3/	10.7	5.7	50	ł	}	-	 	200		 	10.5	 		-			158.9	200	
ДΠ	2 2-2	K6 32	11.0	4.6	50		1	2.0	121.0	1	5.0	KE 45	12.5	-		1		2.5	170.9	-	6.3
2	2 2-2	K6 33	11.3			ł		2./	120.5	ł	\vdash	K5 46	/6.5	6.9	50	1	l	2.4	160.1	-	6.0
	4 🗆 🗖	K6 34	11.3	5.7	50	ł	l	2.3	138.0	1	5.8 5.5	K6 46a	12.6	8.6	150	l		2.3	204.9	1	5.8
L	<u></u>	K6 35				t		2.2	161.4	1	-	K5 468	1			ł			201.8	1	
	1 1	K6 35a	11.4	7.8	100			2.1	161.4	†	5.30	K6 47			 	1	1	-	232.3	1	
,		KB 36	11.4	7.4	150	t		2.0	173.4	†	6.0	K5 470	i i						233.6	1	
_	1 1 4	K6 37	4.65	_		500	400	2.3	162.0	†	5.8	K6 478	12.85	8.6	150	1	ŀ	23	232.6	1	5.8
		K6 38			<u> </u>	†	~~		164.3	1		ICE 478	1			ļ	1		233.6	1	
		KB 38a	11.65	2.8	100			2.2	165.9	t	5.5	K6 472					ĺ		232.2	1	
		K5 38 8	1						164.3	†		K5 479							233.5	1	
							L	!			T	K	Номен	IKA A TY J	0A 90.	AXBE P	P EOB 6/3	······································		CEPH : 431 - 20	
											197	77	ICENE3		HH612C ONXCER		OHH		a		IHCT 17



1977

1. NOODON HEEHHEY.

26

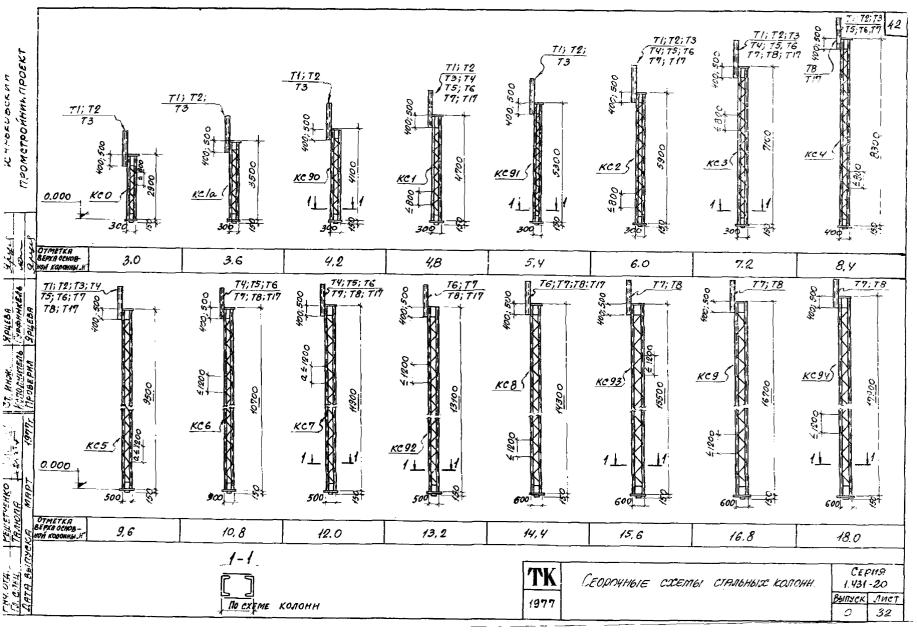
45~

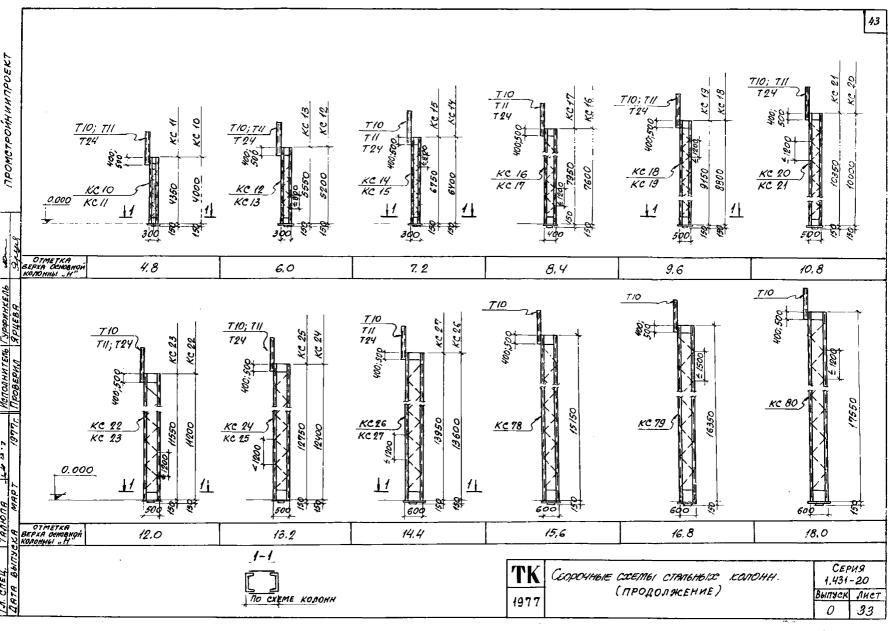
15912-C1

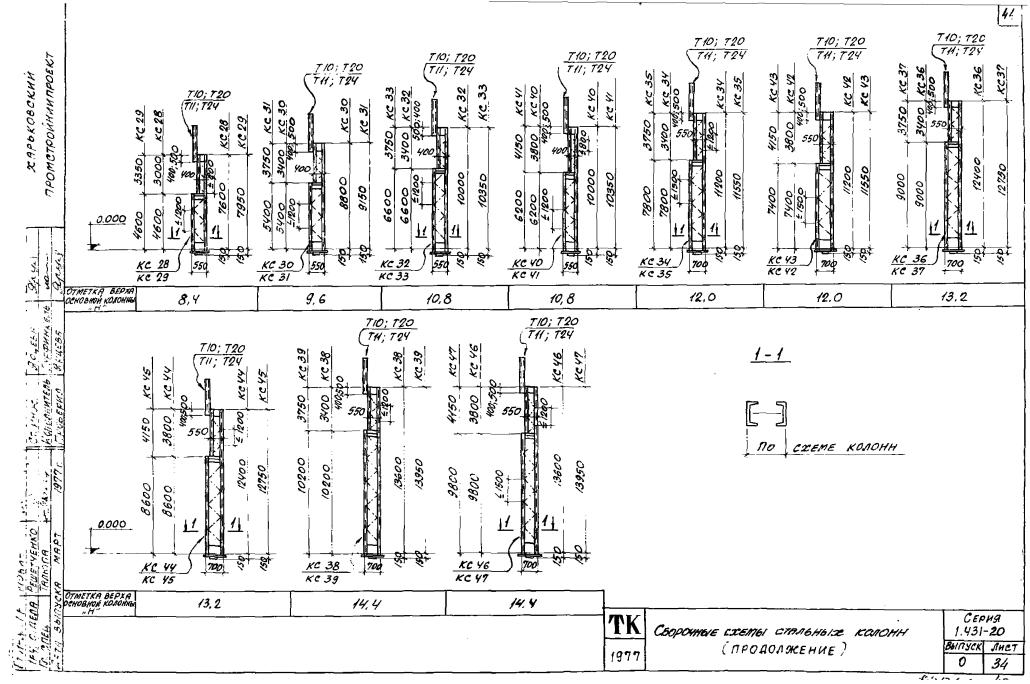
28

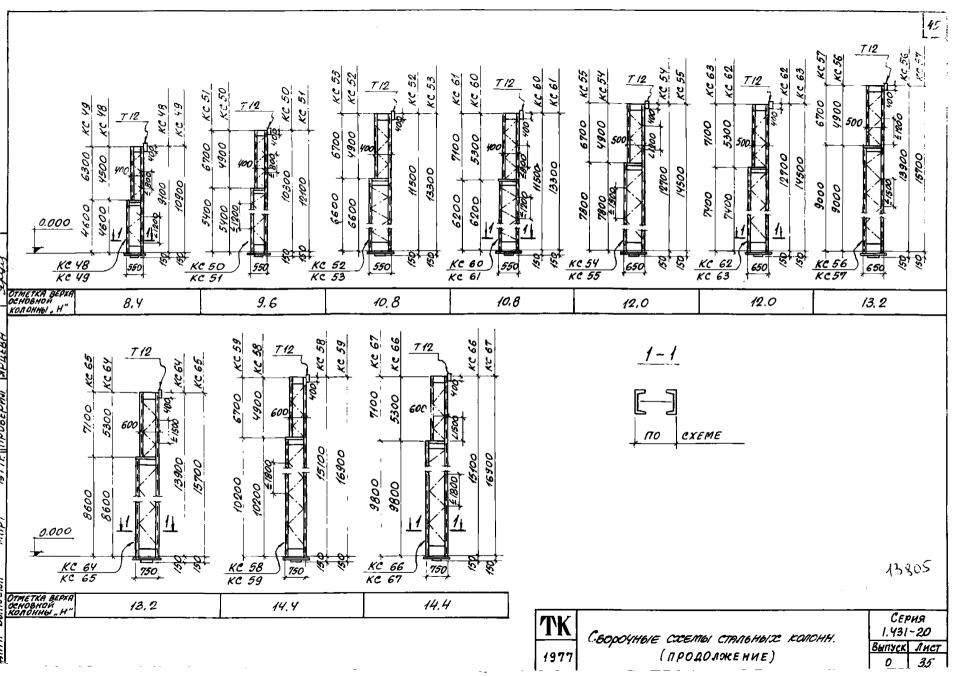
15912-01

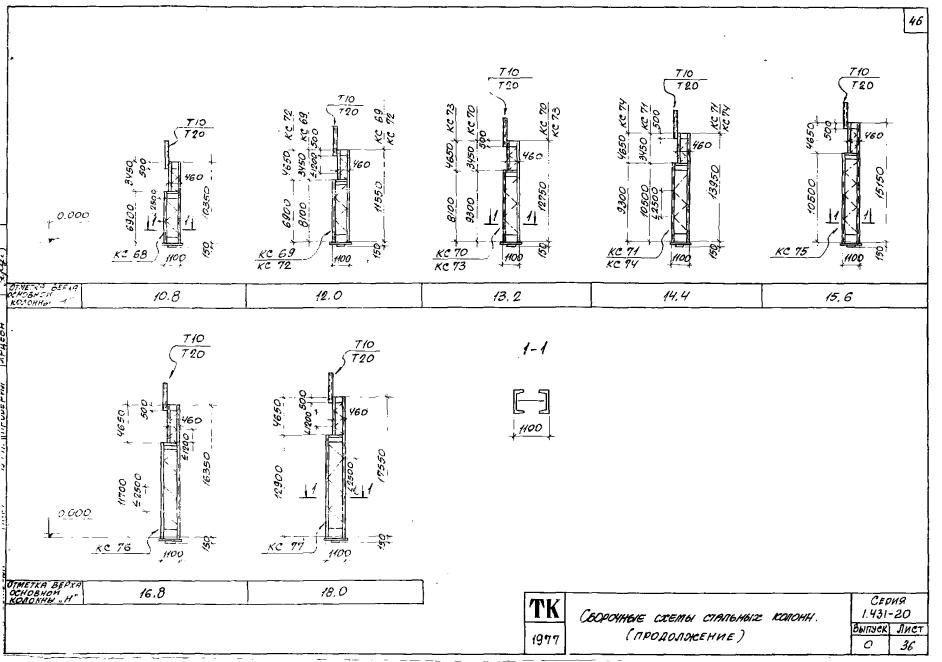
1 102				10.5		1 0.57			J.7	10.0		7.2	1 47	1.5.7
103	1656	10	I	2.5		0.19	<u> </u>		8.6	7.2		1.2	1.8	15.8
104	K&56a	20	$I\!\!I$	2.5		0.19			8.6	7.2		1.2	1.2	15.8
105	15568	10	I	2./		0.19	_	Ī	8.6	7.8		1.2	1.2	16.4
106	KO 568	20	I	2.1		0.19			8.6	7.8	_	1.2	1.2	16.4
107	Ľ5 56 r	10	<u>II</u>	1.7	3.0	0.11	0.19]	8.6	3.9	4.2	1.2	1.2	16.7
108	15 56g	2C	<i>W</i>	1.7	3.0	0.11	0.19]	8.6	3.9	4.2	1.2	1.2	16.7
109	KB 57	12	I	2.5		0.19		1	8.6	4.1		1.0	1.0	12.7
110	1557a	12	Ī	2.1		0.19		ĺ	8.6	4.6		1.0	1.0	13.2
///	16578	12	I	1.7	3.0	0.11	0.19	0.132	8.6	3.9	1.2	1.0	0.9	13.7
112	K658	6,17	I	10.3		0.34		Ì	9.7	9.0		1./	1.3	18.8
112	. K. 58a	7,8	T	10.3	_	0.34		j	9.7	9.9		1.2	1.4	19.6
114	KS59	12	$I\!\!\!I$	2.5		0.24		Ī	8.8	5.9		1.0	1.1	14.7
1 100	K653a	12		2./		0.19]	8.8	7.0		1.0	1.1	15.8
115 116 117	K560	12	$I\!\!I$	1.7	3.0	0.1/	0.19		8.6	3.9	3.5	1.0	1.1	16.0
117	10561	12	I	2.5		0.19		1	9.4	4.1		1.0	1./	13.5
118	KE 6/a	12	I	2./	_	0.19		1	9.4	4.6		1.0	1.1	14.0
119	K5618	12	II	6.7	3.0	0.11	0.19	1	9.4	3.9	3.5	1.0	1.0	16.8
120	K562	12	- I	2.5		0.19		Ī	9.4	6.5		1.1	1.1	15.9
18:	K562a	1 12	$I\!\!I$	2.1		0.19	·		9.4	7.8		1.1	1.2	17.2
182	K6628	12	<i>III</i>	1.7	3.0	0.1/	0.19	1	9.4	3.9	3.5	1./	1.0	16.8
	K563	12	I	2.5		0.19	_]	10.2	6.5		1./	1.2	16.7
123 124	10083a	12	I	2.1		0.19]	10.2	7.0		1.1	1.2	17.2
135	25 638	12		1.7	3.0	0.11	0.19	1	10.2	3.9	3.5	1./	1.1	17.6

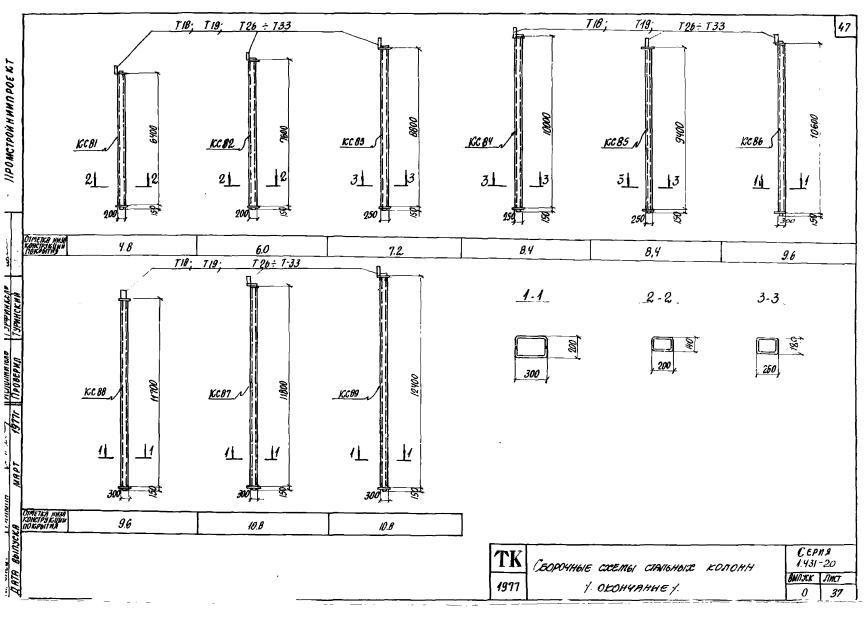

1977

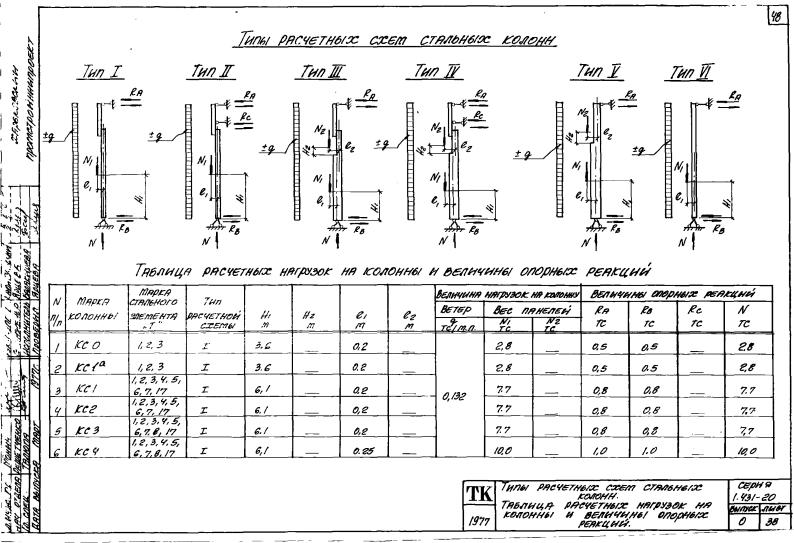

TREMULA PACYETHEIR HAPPYSOK HA KOROHHEI H BENLYHHAI ONOPHAIX PERKUHH · OKOHYAHHE /.

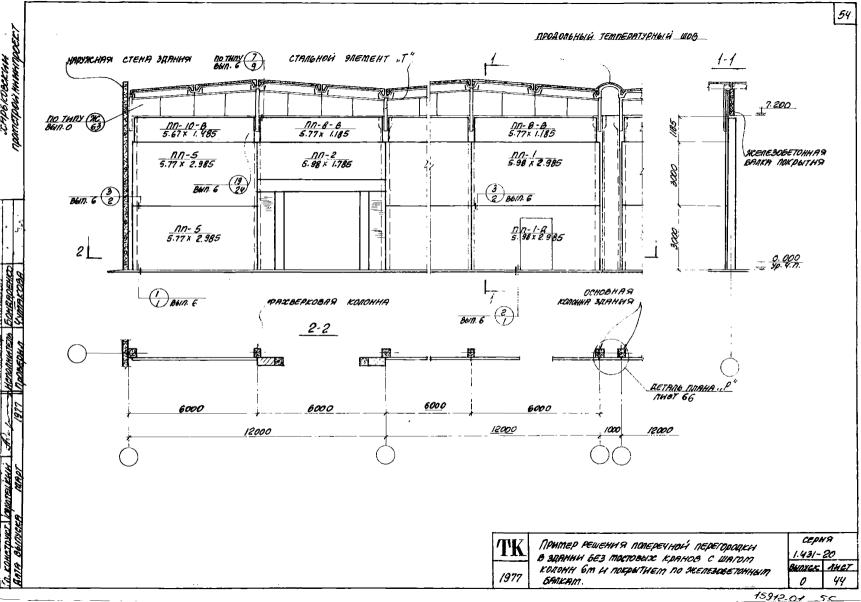

CEPHA 1.431-20 86IAXXX 29


	9CKH3	Марка	Осно	DHWE	MEAL	HTHE	E PA	SMED	54 (_											
SEK.	KOHCTPYKUH H	KOROHHGI		h	a	a'	a_{6}	an	8	m	Massa	MAPKA	Основ	H61E	MEN	DHTH6	VE PA	ame pe	u (mn	7)	40
2001	ET THE	KCO	3050				1	-	_	c_	MACCA B T.	KOROHNEI	H	h	a	a'	a6	an	8	c	MACCA B T.
14.0		KC/a	3650	-		=			120	1/ 1	0.17	KC 23									0.6
	TT TE ST	KC ?	4850 6050		300		=	_	160		0.18 0.25		12550 12900		500		 		200	-	0.6
итрексесия ПРОМСТРОЙНИИ		KC3	7250						160	_	0.3		13750		600				220		0.65
80		KC4	8460		400				·		0.32	KC 27					<u> </u>		100		0.8
	<u>1-1</u> 2-2	KC 5	96 50 10850		500		_	=	200		0.5	KC 28	7750 8100	4750 4750	_	_	1		İ		0.44
72	6 7 7	KC 7	12050		500				200	_	0.55	KC 30	<i>895</i> 0	5550			400	550			0.5
	a a	KC B	14450		600				220		0.6 0.63	KC 3/		5550 6760		_	1		160		0.5
8		KC 10	16850 4150								0.75	KC 33									0.6
200	3 3	KC H	4500								0.2	KC 34	11350 11700	7950 7950			1			-	0.6
Seuseba Seuseba	- c	JC 12			300				140		0.25	KC 36				_	550	700	200		0.64
u TE O	 	KC 19	5700 6550								0.26 0.27		12900				-		200	1	0.65
HODOREDHO DOGEDHO	ति ति	KC 15	6900	_			-				0.28		13750 14100				1		200	150	0.63
70		KC 16	7750	-	400		 _				0.37	KC 40	10150	6350	 - -	<u> -</u> -	400	550	-	1	0.7
10		KC 17				_					0.47	1091	10500		<u> </u>	 -		-	160		0.5
200	<u>3-3</u>	rc 19	<i>8950</i> <i>9300</i>		500			_	160		0.47	1	11700		_	=-	1	ļ		-	0.57
	24	KC 20	10150							<u> </u>	0.46	KC 44	12350	8750		<u> </u>	550	200	200	1	0.63
A ANDORA	↓ <u>~</u> •		10500	_	500				naa	_	0.47	11	12900			 -	4		160		0.6
NCKS	<u>4-4</u>	KC 22	<i>11350</i>			ı —_	<u> </u>	<u> </u>	200		0.6		13750		L				<u></u>		0.75
200	E-3						-				T		OMEHI CTA			0110H.	BEPKO H.	B6/20	2	1.43/	- 20
4.00	a_n										197	7								BUNYCK ()	AHET 30

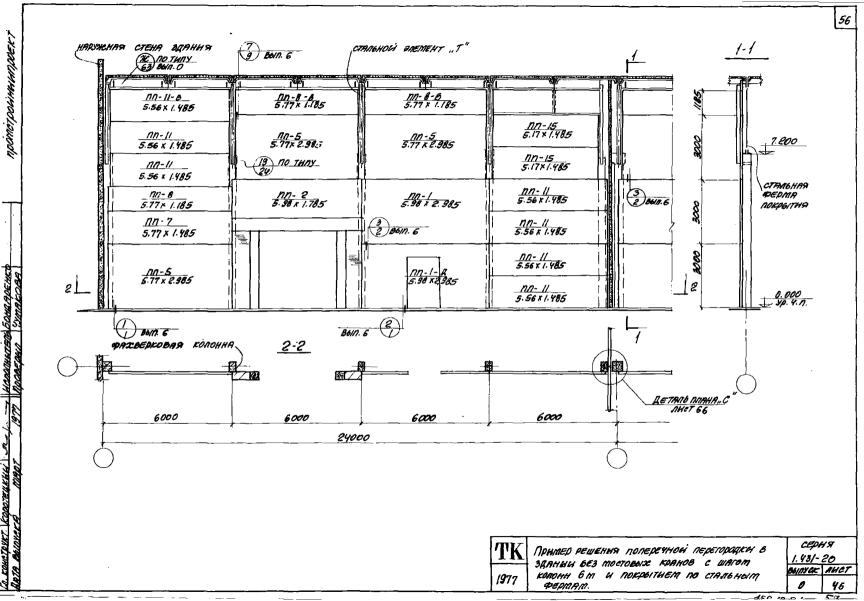

ſ		MAPKA	Основ	HOE I	<i>АБА РИ</i>	THOIE	PR3N	Ep61	(mm)			Марка	Осн	0 6 H6/8	F (196)	PONTHE	SIE PI	93MED I	y (nam		· · · ·
1,3%	KOHETPYKUHÚ	KOROWHE	H	h	a	a'	ag	a _H	в	c	MACCA B T	колонны	Н	h	a	a'	as	a,	8	c	MACCA
1 2	== + H +	KC 47	14100	9950			550	700	200		0.76	KC 71	14100	10650		_	†			<u> </u>	B T.
1 1 1		KC4B	9250	4760								KC 72		7050]				0.9
3 1	1/	rc 49	11050	4750							0.54	KC 73					1		200		0.75
CAPGRODE EU U TOT POURMUNT		KC 50	10450	5550			400	550			0.52		19100	9450			460	1100		640	0.8
LAPSCOOCTU		KC 51	12250	5550		<u> </u>			160		0.58	100 75		10650			1	1,00		1 70	0.84
8		KC 58	11650	6760							0.57	KC 76					1		\		0.96
		KC 53	13450	6750							0.6	KC 77	i		_		1	1			1.0
	1-1 2-2	KC 54	12850	7950	<u> </u>						0.7	KC 78				_			220		4.1
20 20	E-3 C	KC 55	14650	7950		<u> </u>	F.00				0.77	ſſ	16500		600		_]		0.9
333	a 2'	KC 56	14050	9150			500	650			0.75	KC 80			Ī				1		1.0
dia	,,	KC.57	15850	9150	<u> </u>		L			150	0.82		6550		_	200		_		_	1.0
3	[KC 58	15250	10350			600	750		١.	0.8	KC 82				200	_		140		0.25
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	13 3	KC 59	17050	10350]	0.84	KC 83	8950				_				0.3
HOW.	c.N	KC 60	11650	6350			400	550	180	ŀ	0.7	KC 84	10150			250			180		0.35
7 70	14	KC61	13450	6350			ļ <u>. </u>				0.7	KC 85	9550				<u> </u>	<u> -</u> .	<u> </u>		0.4
26.00	4 41	KC 62	12850	7550		<u> </u>	500	650			0.7	KC 86	10750		<u> </u>	ļ		<u> </u>]		0.5
A 100 00		KC 63	14650	7550			100				0.76	KC 87	11950	_		300		<u> </u>	200		0.5
2.020		KC 64	14050	8750			600	750			0.67	KC 88	11850		ļ			<u> </u>	1200		0.5
13 4	-	KC 65	15850	8760							0.8	KC 89	12550	<u> </u>			<u> </u>	<u> </u>			0.5
	<u>3-3</u>	KC 66	15250	9950	L <u></u> .		600	750		1	0.76	KC 90	4850		300		<u> </u>		120		0.25
3.1	6.	KC 67	17050	9950							0.76	rc91	5450		300	_			160		0.33
2 2			10500				1				0.77	KC 92	13250		500				200		0.74
	α_{θ}	KC 69	11700	8250			460	1100	200	640	0.75	KC 93	15650		600		<u>_</u>		220	_	0.9
12 12 18	4-4	i	12900							l	0.86	KC 94	18050		600	_		I_	220		1.0
22 2		126.70																		CEP	
7 77	E—3 ——3										T	K Ho	MEHKI	PATYPA	9 4992	BEPKO	0.861 IC	CTANE	6 H613C	1.431	-20
	an										19:	77		KONOH	H /M	0401	XCE HH	E)		Bunyee	AHET 3/
181aa														•					155	12-01	

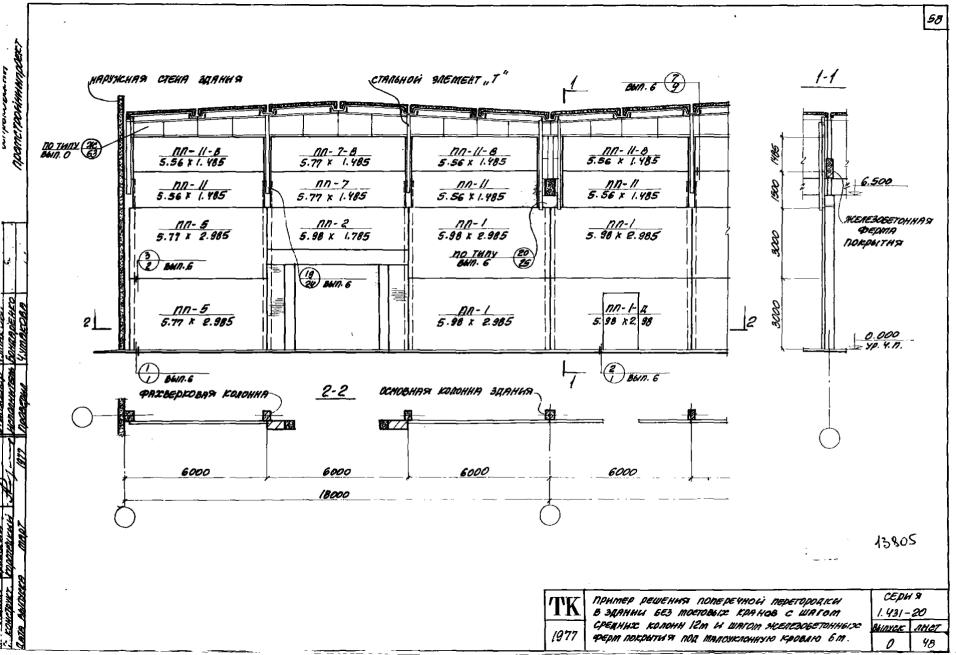


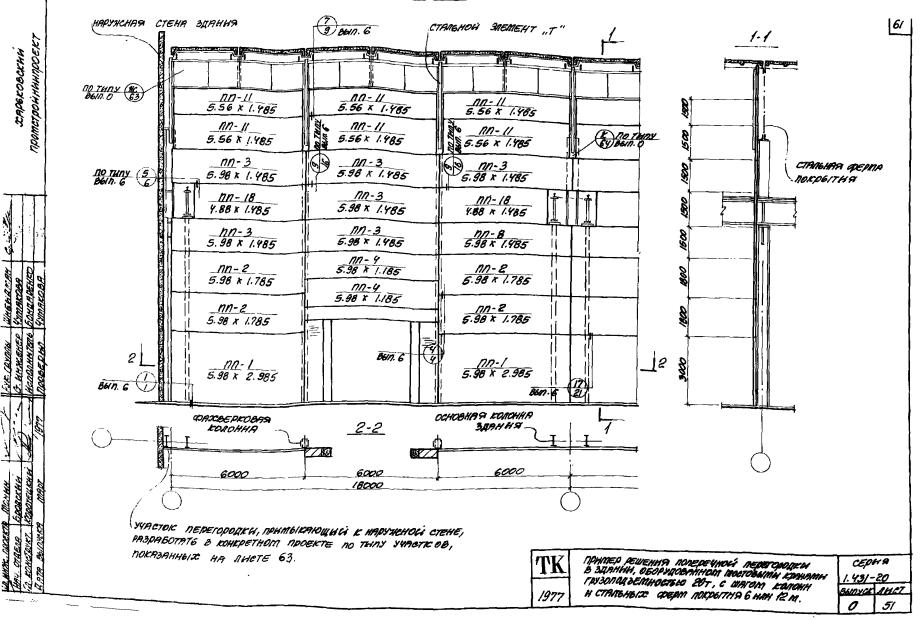


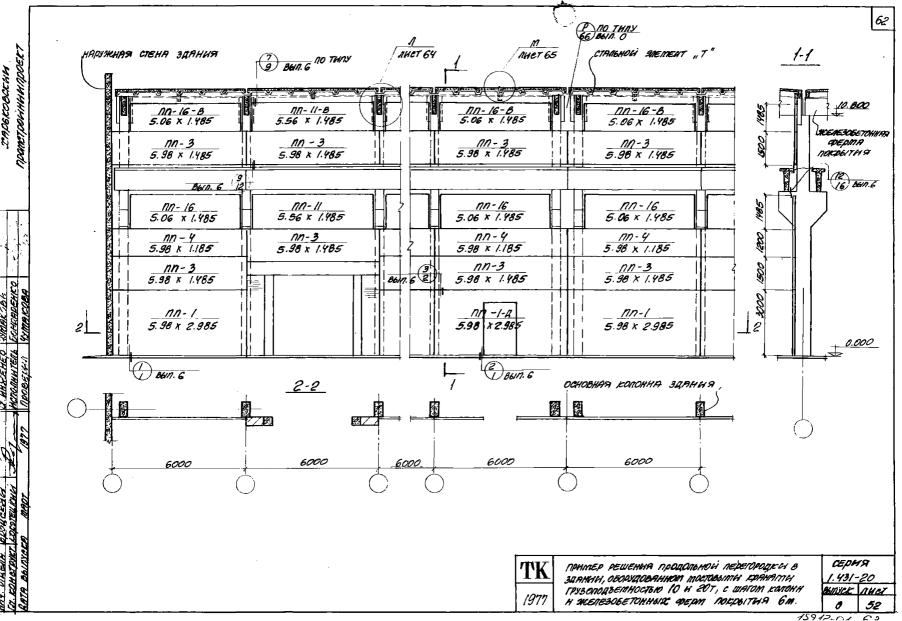

12			TAB	ПИЦА РАСЧЕ	THOIX HA	TPY30K	HA KON	OHHE: H	BENUS	14461 01	00,046120	PEAKUH	ii (npo	HONHEL	4HE)	يا
1,200		v	MADICA	МАРКА СТАЛЬНОГО	TUD					Вепичина.			BENHYUR	TEI ONOPHI	GIX PERK	<i>.पाराधं</i>
XPPSKOBCKHÚ NPOMOTPOHHHHNPOCKY	1 1	•	KONOHHU	MEMEHTA "T"	PACYETHOÚ CXEMEI	H _I	H2 M	e _i	e 2	BETEP TE/M.N.	BEC NI	N2 TC	RA TC	Ro tc	Re TC	N TC
2000 14.44		7	KC5	1,2,3,4,5,	T	6.1		0,3			11.0		_1:2	1.2		11.0
1906		8	rc6	1,2,3,4,5,	I	6.1	<u> </u>	0.3		1	11.0	l	1.2	1.2		11.0
x'x		9	KC 7	4.5, 6, 7,8,17	I	6.1	<u> </u>	0.3		_]	15.8		14_	14		15.8
1		10	KC B	6,7,8,17	I	9,1	<u> </u>	0,35		_	18.0	<u> </u>	1.6	1.6		18.0
		//	KC 9	7,8	<u>r</u>	9,1		0.35		_	20.0		1.7	1.7	<u> </u>	20.0
		12	KC 10	11, 24	<u> </u>	6,1		0.2			6.0		0.2	1.0	1.2	6.0
30 3		13	KC 11	10	ZZ	6.1	<u> </u>	0.2		1	6.0	<u> </u>	0.3	1.0	1.2	6.0
Sand	1	14	KC 12	11, 24	I	6,1		0.2	<u> </u>		6.0		0.2	1.0	1.2	6.0
laterik A DESA		15	KC 13	10	II	6.1	<u> </u>	0.2	<u> </u>	0.132	6.0	L	0.3	1.0	1.2	6.0
Ganalisana Sanarao Spucaa		16	KC 14	11,24	I	6.1		0,2			6.0		0.2	1.0	1.2	6.0
		17	KC 15	10	I	6./		0,2	<u> </u>		6.0		0.3	1.0	1.2	6.0
Per Tricite General Meneral Monecal		18	KC 16	11,24	<i>I</i> Z	6.1		0.25	<u> </u>		7.6		0.2	1.1	1.3	7.6
S SHE		19	KC 17	10, 20	I	6./		0.25			7.6		0.3	1.1	1.3	7.6
\$ 43 8		20	KC 18	10.11, 20,24	Z	6./	L	0.3		_	10.5	<u> </u>	0.3	1.2	1.4	10.5
1.7.2		21	KC 19	10	Z	6./	<u> </u>	0.3			10.5	<u> </u>	0.3	1.2	1.4	10.5
		22	KC 20	11.24	I	6./		0.3			10.5		0.8	1.2	1.4	10.5
137		23	KC 21	10	I	6./	!	0.3			10.5		0.3	1.2	1.4	10.5
18 ENEC		24	KC 22	11,24	I	9.1		0.3]	13.8		0.2	1.5	1.8	13.8
Permer 1						•	•					-		*,		
WAY DO	,									TK	Kono	HUA PAC	ЭЕЛНЧИ.	461 000		CEPHA 1.431-20 BUNYOR REG
<u> </u>	_	_								1977	PEAK	uni. (M	ОДОЛЖЕ.	HHE)		0 39

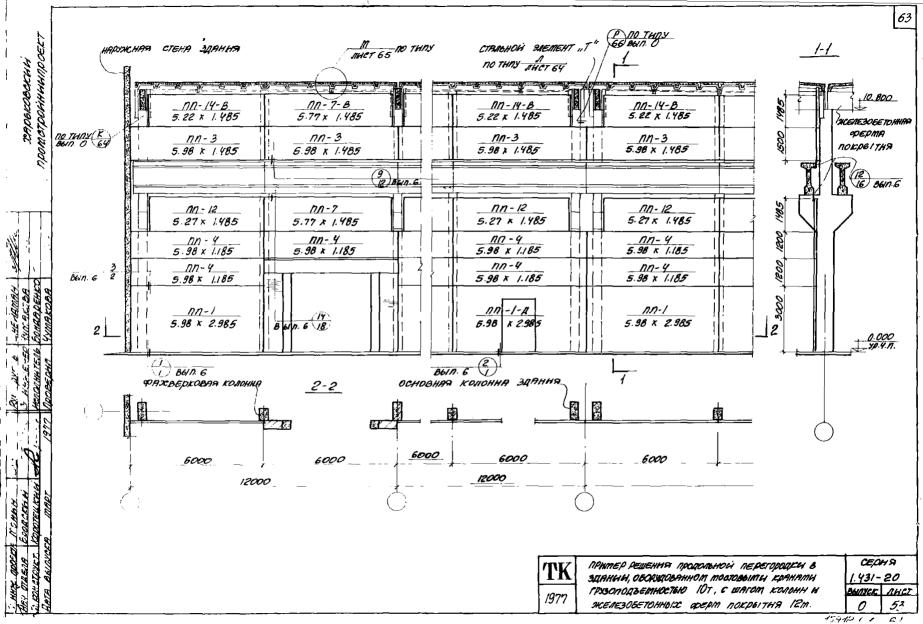
		MANYA	HALL	Y30K	HA KOS	70HH61	U BENH	144461	опорнь.	IX PEAK	प्रमान (продолж	CEHHE)		50
N	MAPER	CTAMBHOTO	Tun]			Величина н	нагрузок ин	KONOHHY	ВЕЛИЧИК	161 ONOPH	NIC PER	KUHH	٦
n/n	KG10H.46!	SNEMEHTA	PACYETHOU CREMG:	H1 M	H2 M	e, m	C2 M	BETEP G TC/M.n.	BEC NA.	NE NE TC	RA TC	RB TC	Re re	N TC	
25	KC 83	10	II	9,1		0.3			13.8		0.3	1.5	1.8	13.8	4 !
26	KC 24	11.24	Z	9.1		0.3			13.8		0.2	1.5	1.8		7
27	KC 25	10	I	9,/		0.3			13.8		0.3	1.5	1.8]
28	KC 26	11,24	<u></u>	9.1		0.35		1	[7.]		0.2	1.6	1.9	17.1	1
29	KC 27	10	I	9.1		0.35	<u> </u>	ļ	17.1		0.3	1.6	1.9	17.1	
30	KC 28	11,24	Ī		1.6	ļ -	0.26]		8.0	0.2	1.2	1.4	8.0	י [
3/	KC 29	10	III.		1.6	<u> </u>	0.26			8.0	0.3	1.2	1.4	8.0]
32	KC 30	11, 24	W		1.6	ļ	0.26	A 120	L	8.0	0.2	1.2	1.4	8.0	
33	KC 31	10	III II		1.6	<u> </u>	0.26	0,152		8.0	0.3	1.2	1.4	8.0	
39	ICC 32	11,24	Ī	6./	1.6	0.41	0.34		1.0	8.5	0.2	1.0	1.2		۱ ۲
35	KC 33	10	III.	6./	1.6	0.41	0.34		1.0	8.5	0.3	1.0	1.2		7
36	EC 34	11.24	IV.	6.1	1.6	0.41	0.34		4.1	8.5	0.2	1./			1
37	KC 35	10	III IV	6./	1.6	0.41	0.34	1	4./	8.5	0.3	1.3			7 '
38	KC 36 _	11.24	ĪŶ	6./	1.6	0.41	0.34	1	4./	8.5	0.2	1.1	1.3		7
39	KC 37	10_	III	6./	1.6	0.41	0.34		4./	8.5	0.3	1.3	1.6		7
40	KC 38	11.24	ĪV	6.1	1.6	0.41	0.39]	5.7	8.5	0.2	1.1	1.3	14.2	7
41	KC 39	10	III TV	6.1	1.6	0.41	0.34		5.7	1	0.3	1.4			7
42	KC 40	11.24			1.6	0.41	0.34								1
			· • • • • • • • • • • • • • • • • • • •				-		+ · · · · · · · · · · · · · · · · · · ·		,	+	1-/:6	1 0.0	_1
									KONO	HH61 H	BENHY	HH61 ONG	PPH612C	CEPH 9 1. 431-2 BUNYEE 11	0
	25 26 27 28 29 30 31 32 33 39 36 37 38 39 40	25 KC 23 26 KC 24 27 KC 25 28 KC 26 29 KC 27 30 KC 28 31 KC 29 32 KC 30 33 KC 31 34 KC 32 35 KC 33 36 KC 39 37 KC 35 38 KC 36 39 KC 37 40 KC 38	25 KC 23 10 26 KC 24 11.29 27 KC 25 10 28 KC 26 11.29 29 KC 27 10 30 KC 28 11.29 31 KC 29 10 32 KC 30 11.29 33 KC 31 10 34 KC 32 11.24 35 KC 33 10 36 KC 38 11.24 37 KC 35 10 38 KC 36 11.29 39 KC 37 10 40 KC 38 11.29 41 KC 39 10							REMONSHIPS SHEMSHIPS PACYCETHON H1 H2 R1 R2 R2 R2 R2 R2 R2 R					

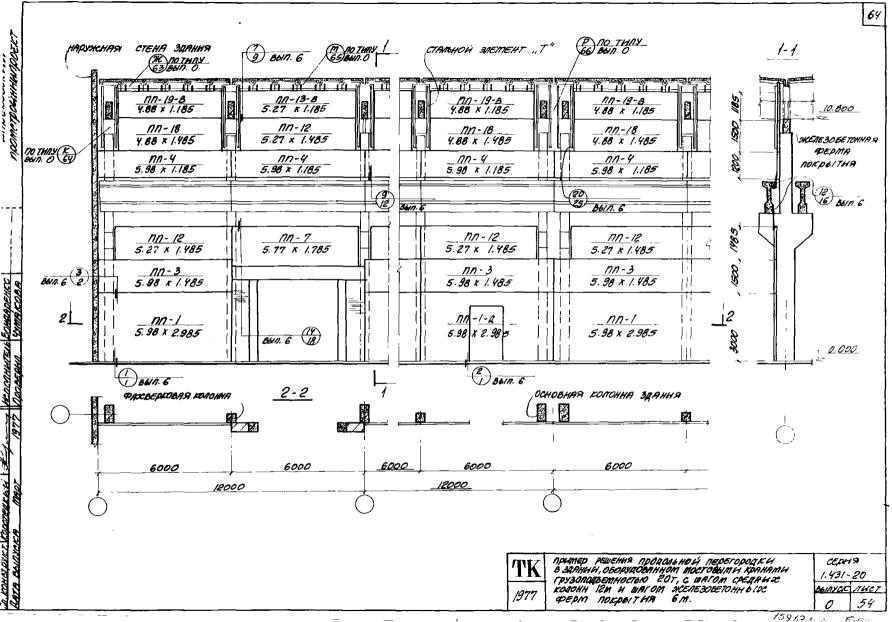

Ķ			Тавлица	PACYETHE	ых нагруз _о	OK HA	KONOHHE	U H BE	личин	61 0000	H61X)	PEAKY H G	i (npoa	ONXCEHH	(=)	51
, k	۱۱	./		MAPKA	Tun					ВЕЛНЧИНА				61 ONOPH		444
ZAJOKO BACUM JOOMOT POWI HUMIT POET	. 1	N N n	MAPKA KONOHHGI	CTAAGHOFO PREMEHTA "T"	1 **** 4	H1 m	Hz M	e i m	ee m	BETEP TE IM. N.	BEC NA NI TC	NETE U	RA TC	RB TC	Rc TC	N TC
1. O		43	KC 41	20	77 12	6./	1.6	0.4/	0.34		1.0	8.5	0.3	1.2	1.4	9.6
390	} {	44	KC 48	11,24	T¥.	6.1	1.6	0.41	0.34		4./	8.5	0.2	1.2	1.4	12.6
3, 2		45	rc 43	20	III IV	6.1	1.6	0.41	0.34	}	4.1	8.5	0.3	1./	1.3	/3.3
Q.	4 1	46	KC 44	11,24	ĪŪ	6.1	1.6	0.41	0.34		4.1	8.5	0.2	1./	1.3	12.6
		47	KC 45	20	亚亚	6,1	1.6	0.41	0.34		4.1	8.5	0.3	1.1	1.3	12.6
	1 [48	KC 46	11.24	IV	6.1	1.6	0.41	0.34] .	5.7	8.5	0.2	1.1	1.3	14.2
13/3/3		49	re 47	20		6,1	1.6	0.41	0.34]	5.7	8.5	0.3	1.4	1.3	14.2
01/6/2	1	60	KC 48	12	$ar{m{v}}$		1.6		0.26]		7.0	1.2	1.2		7.0
10000 H		51	KC 49	12	V		1.6		0.26	0.132		7.0	1.2	1.2		7.0
		52	KC 50	12	Ī		1.6		0.26	1		7.0	1.2	1.2		7.0
0 200		53	KC 51	12	Ē		1.6		0.26]		7.0	1.2	1.2		7.0
	1 1	54	KC 52	12	Ī	6.1	1.6	0.34	0.26	1	0.3	7.6	1.2	12		7.9
		55	KC 53	12	<u>V</u>	6.1	1.6	0.34	0.26	1	0.3	7.6	1.2	1.2		7.9
3936	1	56	KC 54.	12		6.1	1.6	0.39	0.3/	1	3.6	7.6	1.3	1.3		11.2
100		57	KC 55	12	$\overline{\underline{\mathit{F}}}$	6./	1.6	0.39	0.3/]	3.6	7.6	1.3	1.3		11.2
	1 1	58		12	<u> </u>	6.1	1.6	0.39	0.3/	1	3.6	7.6	1.3	1.3		11.2
132	1 1	59	KC 57	12	Į.	6.1	1.6	0.39	0.31	1	3.6	76	1.3	1.3		11.2
TO BEEFE	1	60	KC 58	12	Z	6.1	1.6	0.44	0.36		5./	7.6	1.4	1.4	1 =	12.7
	,		1100	1 16	L <u>+</u>	0.1	1 /.0	<u> </u>	<u> </u>	L		1 /-10	1.7	1_1.7	L_=	14.7
TURE S																
										TI		HUA PAC				CEPHA 1.431-20
										<u> </u>	¬ "" '	колонна		-		BUNYOK NHET
1344										1977	Onopi	461X PEA	KUHH (N	родолже	HHE)	0 41

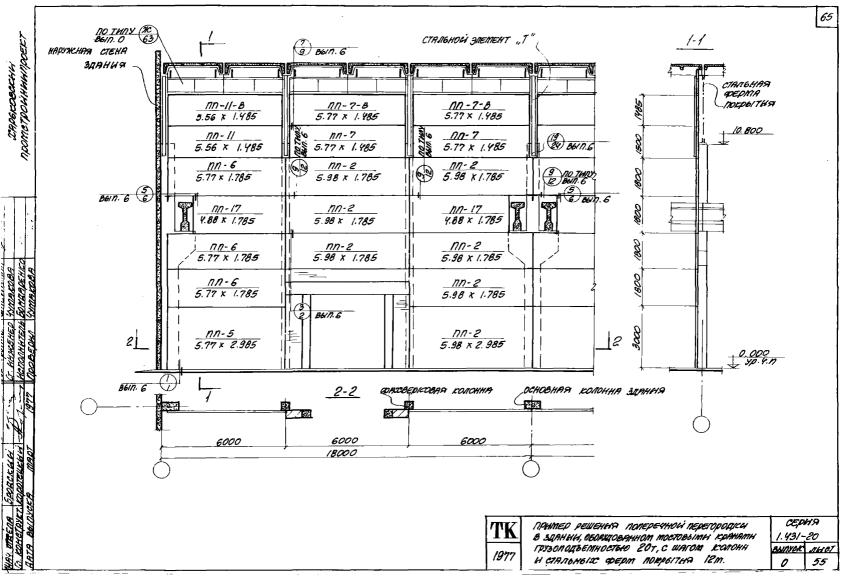

1		Таблиці	PACYETH	GIOC HATON	30K H	A KONOH	1H61 H	ВЕЛИЧИ				(продол.			<u></u>
протетройнич проєк	N njn	МАРКА КОЛОННЫ	MAPKA CTANGHOFO 3NEMEHTA ,, T "	Tun PRCYETHOÚ CXEMU	H1 pa	H2 m	e,	le 2 M	BENUYUHA BETEP Y TC/M:N.	BEC NA		R#	RB	RC RC	N TC
11/12	61	KC 59	12	<u>E</u>	6.1	1.6	0.44	0.36	TC/M.N.	<u>TC</u> 5.1	7.6	<u>7C</u>	1.4	10	12.7
100	62		12	E	6./	1.6	0.34	0.26	1	0.3	7.6	1.4	1.4		7.9
2	63		12	Ī	6./	1.6	0.34	0.26		0.3	7.6	1.4	1.4		7.9
	64		12	Ī	6./	1.6	0.39	0.3/	1	3.6	7.6	1.4	1.4		11.2
	65	, L. L. L.	12	\overline{y}	6./	1.6	0.39	0.3/]	3.6	7.6	1.4	1.4		11.2
\sqcap	66		12	$ar{\it V}$	6./	1.6	0.39	0.3/		3.6	7.6	1.4	1.4		11.2
3	67	}	1e	Ī	6./	1.6	0.39	0.31]	3.6	7.6	1.4	1.4		11.2
3	68		12	Ī.	6.1	1.6	0.44	0.36		5./	7.6	1.4	1.4		12.7
	69		12	\vec{x}	6./	1.6	0.44	0.36	0.132	5.1	7.6	1.4	1.4		127
MER	70	I	20	III.	6./	1.6	0.61	0.3	1	3.0	9.0	0.3	1.5	1.8	12.0
8	7/	1	20	III	6./	1.6	0.61	0.3]	3.0	9.0	0.3	1.5	1.8	12.0
140	72		20	<u>II</u> IF	6./	1.6	0.6/	0.3	7	6.1	9.0	0.3	1.5	1.8	15.1
1300	73		20	III IV	6./	1.6	0.61	0.3	1	6./	9.0	1.5 0.3	1.5	1.8	15./
\$	74	ì	10	III IV	6./	1.6	0.6/	0.3]	3.0	9.0	1.5 0.3	1.5	1.8	12.0
	75	1	20	III IV	6./	1.6	0.61	0.3]	6./	9.0	0.3	1.5	1.8	15./
र्थ	76		20	III IP	6./	1.6	0.6/	0.3	1	6./	9.0	1.5	1.5	1.8	15./
1977 DPOBEDHA SPUEBA CLAYS	77		20	III	6./	1.6	0.6/	0.3	7	9.4	9.0	0.3	1.8	2.2	18.4
N.	78	1	20	TV TV	6./	1.6	0.6/	0.3	1	9.4	9.0	1.8	1.8	2.2	18.9
ATR BELLIYOKA TIRE	1.0	1_ <i>1-1-1-1</i>	1 -W	1	9. /	1 22	1 0.01	1 0.0	Tk	TAGI HA	THUA PA CONOHHO OHOIX PE	PCYETH616 I H BE	C HATP	430K	CEP49 1.431-20 8610192 AHD 0 42

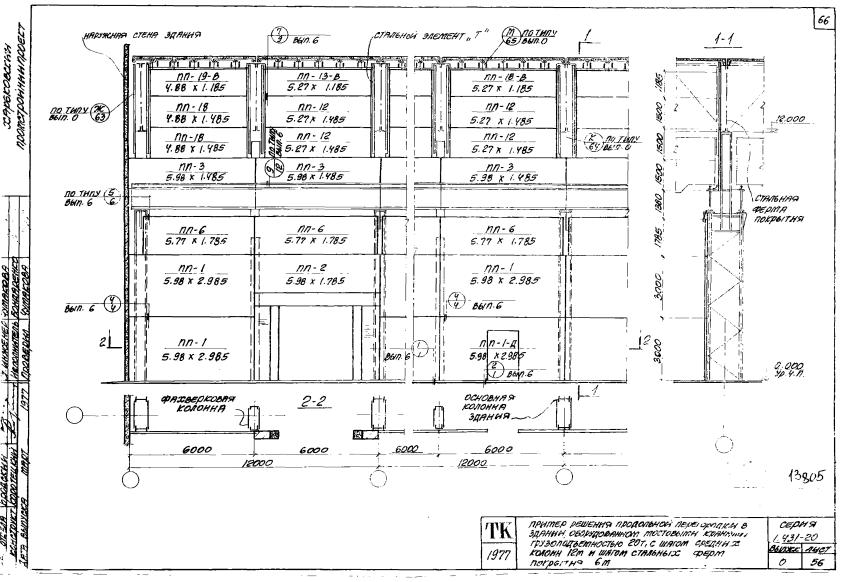

		TAE	БЛИЦА РАСЧ	ЧЕТНЫХ НА	17PY30K	HA KE	олонны	H 8E	личинь.	i onopi	HAISC PE	PRUHH	(OKOHY)	auu=)		53
aer.	N	MAPKA	MAPKA CTANGHOTO	Тип РАСЧЕТНОЙ	\		1		ВЕЛИЧИНЯ	нагрудок н	на колониу	ВЕЛИЧИ	461 DROPH	BIX PEAN	१५ मधं]
LAPERDBOKUM DOMOTOOMHUUT	ייןיא	KONOHHEI	JIEMEHTH "T"	COCEMGI TE	M	Hz M	e _i m	e z M	BETEP TO M. N	BEC N.	N2 TC	RA TC	RB TC	Re Te	N TC	
Ž.	79	KC 77	10	T T	6.1	1.6	0.61	0.3		9.4	9.0	1.8	1.8	2.2	18.4	7
100	80	KC 78	10	I	9./	'	0.35	L]	17:/	···	0.3	1.8			+
mo	8/	KC 79	10	I	9.1	'	0.35]	20.0		0.3	1.8	2.2	17./	+
Ö	82	KC 80	10	I	9.1		0.35		1	20.0	=	0.3		2.2	20.0	+
	83	KC 81	18,19.26+33	Ī	L	<u>'</u>	0.15		1	cu. U	 		1.8	2.2	20.0	\dashv
	84	rc 82	18,19,26÷33	3 V	6.1		0.15		1	4.8		0.7	0.7	 = -	 	+
3	85	KC 83	18,19,26÷33	3 <u>I</u> I	6.1		0.18		1	5.5		0.7	0.7	 -	4.8	+
p	86	KC 84	18,19,26+33	1 1	6.1		0.18		1	5.5	 	0.8	0.8	 -	5.5	+
	87	KC 85	18,19,26÷33	<u>I</u>	6.1		0.18		0.132		 = -	0.8	0.8	 	5.5	+
166	88		18, 19.26 ÷ 33		6.1		0.2		0.152	5.5	 -	0.8	0.8	 -	5.5	4
7018	89	KC 87	18,19,26:33	1	6./		0.2		4	8.4		1.0	1.0	 -	8.4	-
077	90	ICC BB	18.19.26÷33		6./		0.2		†	8.4	 	1.0	1.0	 ==	8.4	1
3	91	KC 89	18,19,26÷33		6./		0.2	-	}	8.4	 -	1.0	1.0		8.4	1
4	92		1,2,3	Ī	3.6		0.2		- I	8.4	├╼	1.0	1.0	<u> </u>	8.4	4
12	93		1,2,3,4,7,		6./				 	2.8	├	0.5	0.5	<u> </u>	2.8	1
6	94		4.5, 6, 7,	1			0.2		1	4.1	 -=	0.8	0.8		4.1	1
			8,17	I I	6./	 	0.3	 	4	15.8	 	1.4	1.4	ļ	15.8	
MAD	95		6,7,8,17	I	9./	 '	0.35]	18.0		1.7	1.7	<u> </u>	18.0	
	96	KC 94	7.8	I I	9.1		0.35	<u>'</u>		20.0		1.7	1.7		20.0	1
12	K	СОЛОНН61	NO THNY I	I PACCYA	ITPH61 E	з предпо	NOXEEHHA	y								_,
200	0	TCYTCTBHA	7 HATPY3K	KH OT BE	ECA NA	PHENEN	i, npuno-									
P BUNYER MADE	3M	CEHHOU K	E MEMEHT	AM					TH	TABIL	HUA PAC	46746120	HATPYS	OK HA	1.431-2	ז ממ
TOTA BULNERA									1977	7 KOAO)HH61 H . KUHH (0.	BENH 44 CAURUS	(H61 ONE	7PH612C	BUTTEK A	146
									1,0	PONT	CHAIN (U	KOHYITSTE	HE)		0 4	43

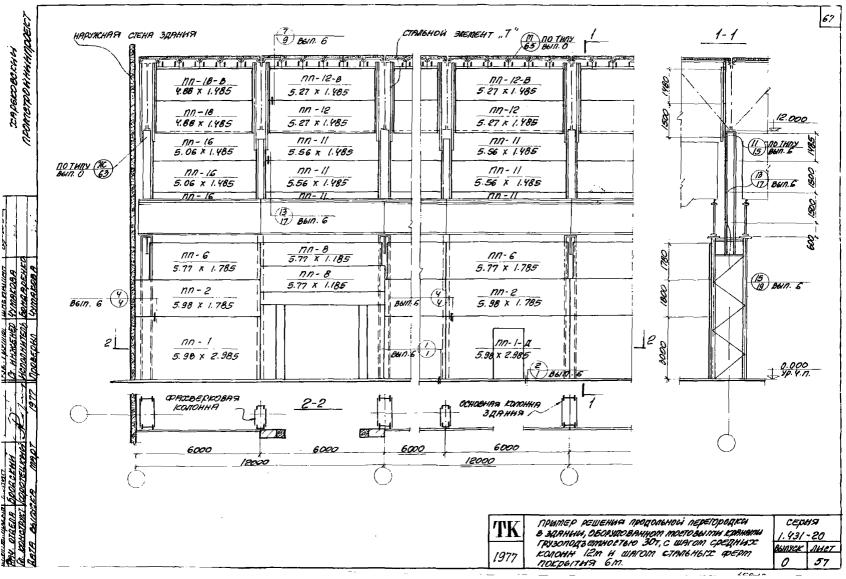


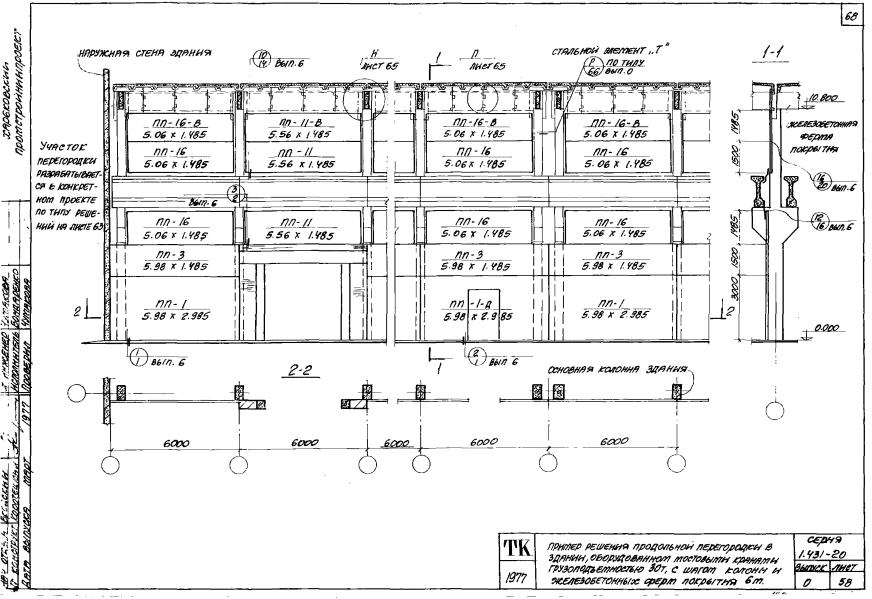

159-12-01

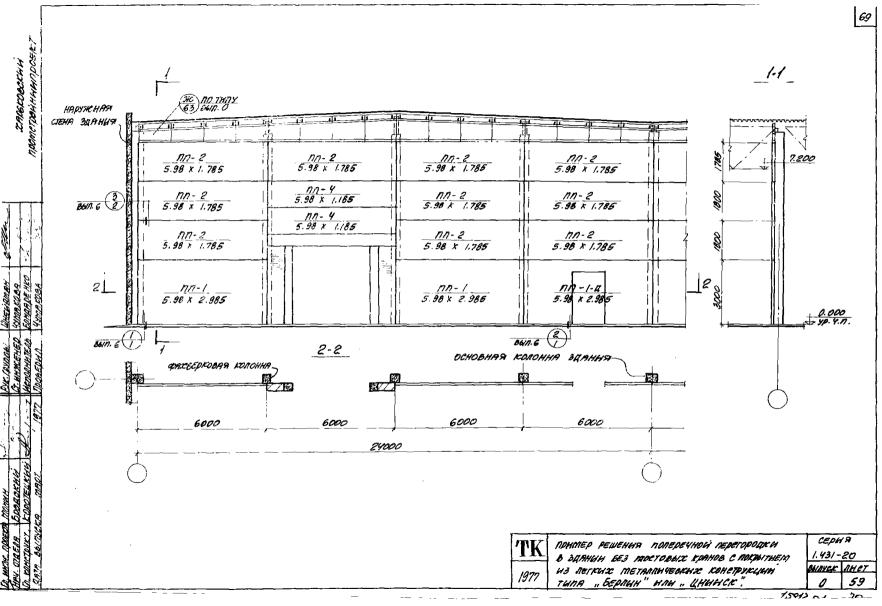


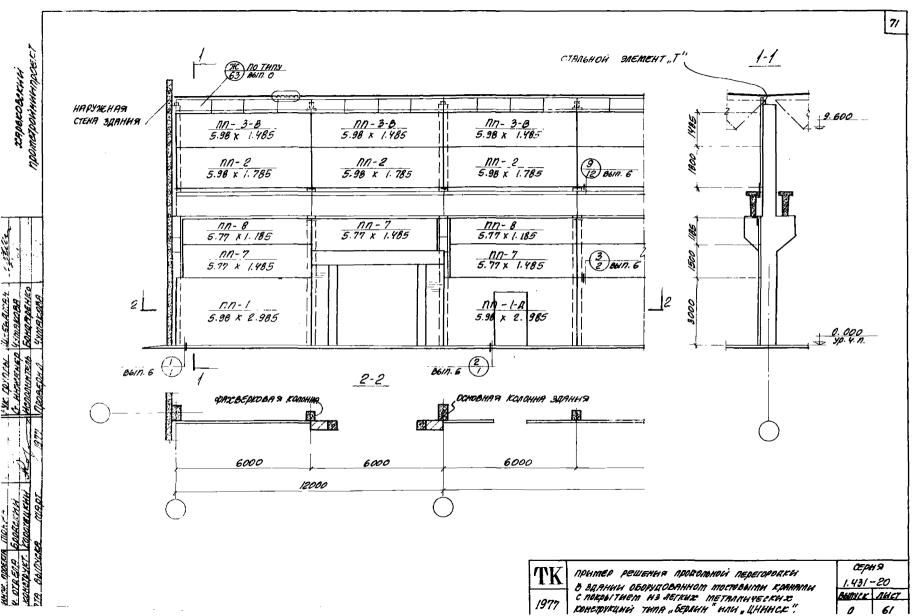


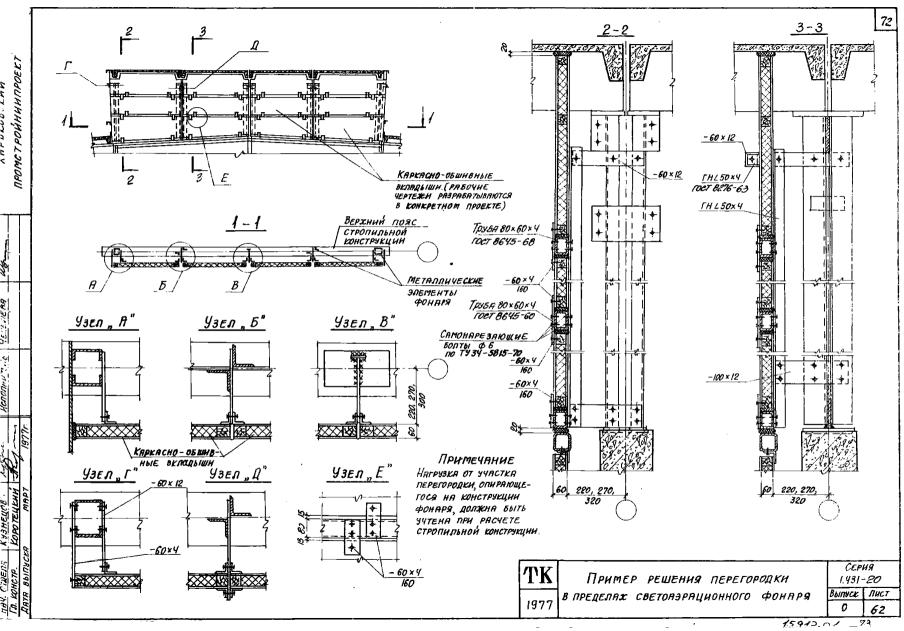


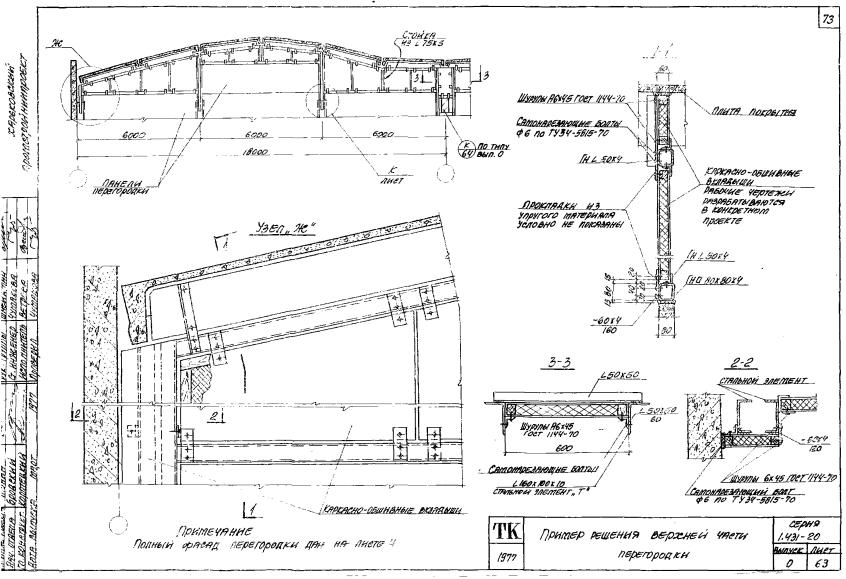


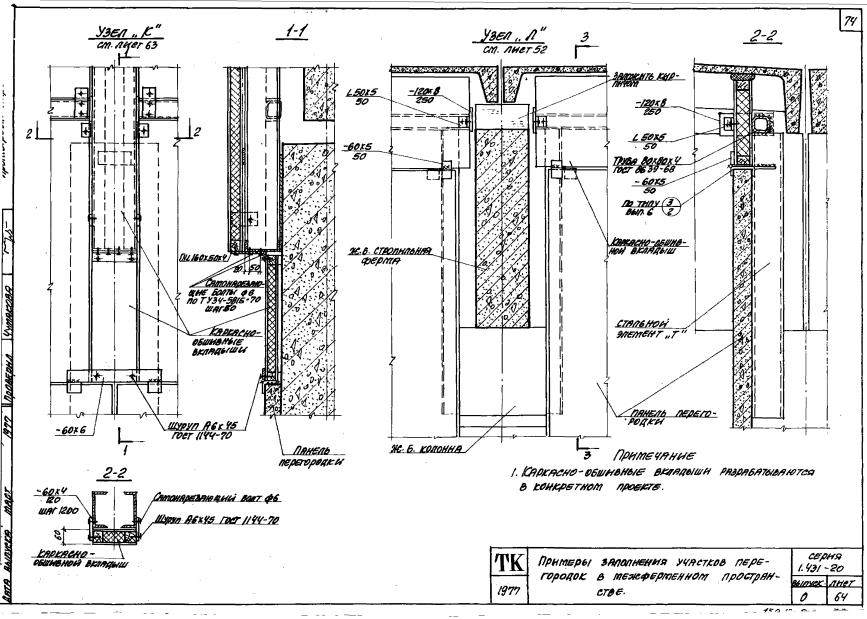


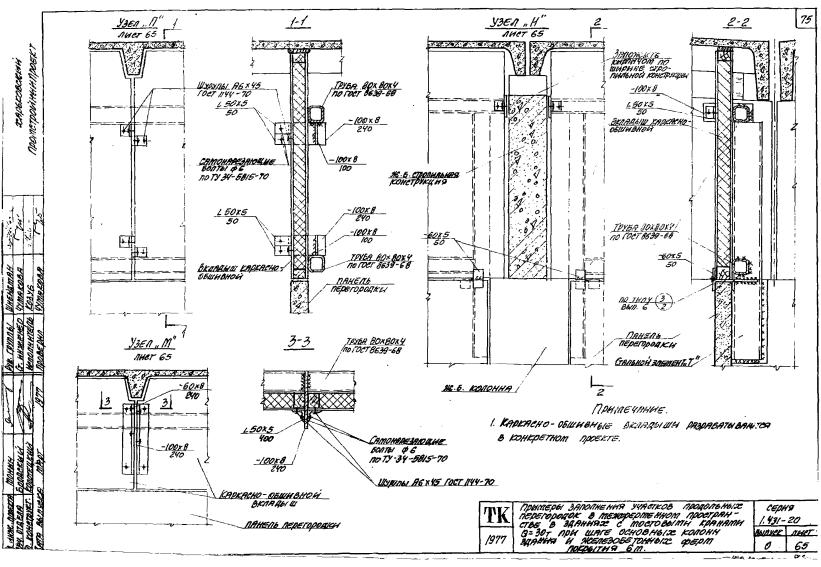












DETAND MAHA .. C (cm. MUCT 46) PRIMED PEWEHHA DEDECEMENTA DEDGOMBHOW H MONEDERHOW NEPETOPOROK MOHMEYAHHA. DONONHATER 6 HAS 300 1 NOW HAMMYUM REDECEYEHHA NOORONSKOM H NONE-ADMICBEDICOBAS Wenesobetohhar H. B. KOROKKA PEYHOW NEPETOPOGOK HEOBICOGUMO YCTAHABAHBATS KOMOHHA DODONHHITE NOHYLO AD POCE EDICOBYLO KONOHHY QUA BRIONCHTO KHANHYOM EDERMEHAYA MAHEMEN MONEDEYHON MEDETODOGICH. MADICA DONONHUTENGHOW DAXBERKOBOW KUNDH-HOI NOUHUMAETCA TAKAR SICE, KAK MADIKA PAHEAN MONEDEYHOVI NE DETOPORICH CARBETKOBOH KORONHOI NONEDENHOH NEDE-PODDERN MON COOTBETELBHOWNE PAGNONTE BRAHHA H THITE CTOOPHAGENOR KOHETPYKUHU. 3 NO THINY 2 BOIN 6 OGAI BROOKHTO & WOM DRHENEH APHONORA ADPOINTMENTALLY QUARREDIZOROU DAS EPERACHUS KHONUYHOU KARDEW KUNDHINGI ONDERENGETCH & KOKEDETHOW TONEY-6000 6000 TE B SABHCUMOCTU OT PREMIEDOS OSHORMON DAHENO DOGGODSHOW BYKBEHHAA OCH MEDETODOGKH CONDHHOL KANKACA BRAHAS. 2. KREPARHUE KRAKACHO- OBWINGHOLD BEARTHINGA DETAMB MARKA "P" (cm. Mer 44) & SOME ADDROAGNOTO TEMPEDATSPHOTO WAS NOMMED YETDOWCIBA NEDETOROGICH B OCYMECTBURETER TO THIS ECEPTIENES BOHE MADADAIGHORD TEMMERATYPHORD WER PRHESEL REPEROPOSON K KOSOMHAM. NOKABAHHOMY & BUNYOKE & AMHHOH CEPHH. MEETA PACHONOMERHA YOROB KDENKEHHA XCEAE 3 OBET OHKIPS KARKACHO-OBWHOHOIX BKAARDIWEG ONDE-KONOHHA <u> 1994, 19640 - 0 19449</u> DEARHOTCH & KOHKPETHOM NODEKTE B HOW BEARABIE BABBEHMOCTH OT NOHHATON KONCTONE-4,864 BKIRADIWEW. DAHEAD 10 190 10 THINY (37 nonepeyhori nepergragees 10 10 6000 1000 6000 TK CEPHS: DETAME MARKA ...C" 1.431-20 DETRAL MARKE P" PHINYCE AHET 1977