СТАНДАРТЫ ОТРАСЛИ

ПОДВЕСКИ СТАНЦИОННЫХ И ТУРБИННЫХ ТРУБОПРОВОДОВ ТЕПЛОВЫХ И АТОМНЫХ СТАНЦИЙ

OCT 24.125.100-01 - OCT 24.125.107-01 OCT 24.125.109-01 - OCT 24.125.128-01 OCT 24.125.130-01

Издание официальное

УТВЕРЖДАЮ

Заместитель руководителя Департамента промышленной и инновационной политики в машиностроении Министерства промышленности, науки и технологий Российской Федерации

Е. Я. Нисанов

Письмо № 10-1984 от 31.10.01

Лист утверждения сборника стандартов отрасли

Подвески станционных и турбинных трубопроводов тепловых и атомных станций

OCT 24.125.100-01 - OCT 24.125.107-01 OCT 24.125.109-01 - OCT 24.125.128-01 OCT 24.125.130-01

СОГЛАСОВАНО Зам. генерального директора СПбАЭП

А. В. МОЛЧАНОВ

СОГЛАСОВАНО Исполнительный директор ТЭП

А. С. ЗЕМЦОВ

Письмо № 031-117/56 от 28.01.2002 г.

Генеральный директор ОАО «НПО ЦКТИ»

Ю. К. ПЕТРЕНЯ

Технический директор ОАО «Белэнергомаш»

М. И. ЕВДОЩЕНКО

[©] Открытое акционерное общество «Научно-производственное объединение по исследованию и проектированию энергетического оборудования им. И. И. Ползунова» (ОАО «НПО ЦКТИ»), 2002 г.

ОТКРЫТОЕ АКЦИОНЕРНОЕ ОБЩЕСТВО «НАУЧНО-ПРОИЗВОДСТВЕННОЕ ОБЪЕДИНЕНИЕ ПО ИССЛЕДОВАНИЮ И ПРОЕКТИРОВАНИЮ ЭНЕРГЕТИЧЕСКОГО ОБОРУДОВАНИЯ им И. И ПОЛЗУНОВА»

(ОАО «НПО ЦКТИ»)

191167, Санкт-Петербург, ул Атаманская, д. 3/6 Тел. (812) 277-23-79, факс (812) 277-43-00 Телетайл 821490 ЦИННИЯ, ОКПО 05762252, ИНН 7825660956

e-mail: general@ckti.nw.ru

Руководителю предприятия

1 5 (EH 2004	_ Nº 24/4925	по списку	рассылки	٦
Ha №	or			
- -	7			

В настоящее время при проектировании опор и подвесок трубопроводов ТЭС и АЭС используются отраслевые стандарты выпуска 1980 с Изменениями 1,2,3 и стандарты 1993г выпуска, переизданные в 2001г. Опыт эксплуатации опор и подвесок по указанным стандартам подтвердил их высокую эксплуатационную надежность. Повреждения элементов опор встречаются крайне редко - после наработки первоначально установленного ресурса и связаны, как правило, с неточным определением нагрузок на опоры при проектировании, с перегрузкой опор и подвесок вследствии нарушений при монтажно-наладочных работах , а также при эксплуатации

В последние годы в связи с введением ГТТН РФ обязательной процедуры наладки ОПС при проведении экспертизы промышленной безопасности выявлены случаи повышенной деформации наиболее напряженных элементов опор и подвесок

(в частности хомутов на вертикальных и горизонтильных участках трубопроводов и ряда других элементов), что может в ряде случаев приводить к нарушениям работы ОПС, отклонениям трассы трубопровода от проектного положения Указанные случаи деформации наблюдались при нагрузках на опоры и подвески , не достигающих предельного значения, установленного отраслевыми стандартами.

В связи с изложенным НПО ЦКТИ обращает внимание проектных организаций, что величины предельно допускаемых нагрузок приведенные в отраслевых стандартах определены по условию разрушения (аварийная ситуация по терминологии Норм АЭС) и включают не только собственный вес трубопровода плюс вес воды и изоляции, но и все остальные виды нагрузок -от сейсмических воздействий, от сил трения, от реактивного воздействия струи пара при повреждениях трубопровода, от неточностей при монтаже и эксплуатации и тд.

С учетом изложенного, для обеспечения работы элементов ОПС в зоне упругого деформирования для низкотемпературных трубопроводов и ограничения деформаций ползучести ОПС высокотемпературных трубопроводов нагрузка в рабочем состоянии должча быть ниже предельно-допускаемой по ОСТ До выхода новых стандартов, рекомендуем при выборе рабочей нагрузки на опорные элементы (в частности на хомуты), обеспечивать запас не менее n >3,5 по отношению к предельной нагрузке по ОСТ.

Если полученная с указанным запасом прочности нагрузка недостаточна необходимо либо пересмотреть расположение опор (снизить нагрузку), либо провести усиление элементов ОПС В э том случае следует провести уточненные расчеты напряженно-деформированного состояния элементов ОПС с применением численных методов и использованием аттестованных програмных средств При проведении расчетов следует оценивать не только уровень напряжений, но и величину перемещений, включая углы поворота

Заместитель генерального директора С ОАО "НПО ЦКТИ"

А.В.Судаков

Содержание

OCT 24.125.100-01	Подвески трубопроводов ТЭС и АЭС. Типы	3
OCT 24.125.101-01	Подвески трубопроводов ТЭС и АЭС. Узлы крепления. Типы, конструкция и размеры	33
OCT 24.125.102-01	Подвески трубопроводов ТЭС и АЭС. Вилки. Конструкция и размеры	65
OCT 24.125.103-01	Подвески трубопроводов ТЭС и АЭС. Серьги. Конструкция и размеры	75
OCT 24.125.104-01	Подвески трубопроводов ТЭС и АЭС. Проушины. Конструкция и размеры	81
OCT 24.125.105-01	Подвески трубопроводов ТЭС и АЭС. Талрепы. Конструкция и размеры	87
OCT 24.125.106-01	Подвески трубопроводов ТЭС и АЭС. Муфты соединительные. Конструкция и размеры	95
OCT 24.125.107-01	Подвески трубопроводов ТЭС и АЭС. Тяги резьбовые. Конструкция и размеры	101
OCT 24.125.109-01	Подвески трубопроводов ТЭС и АЭС. Пружины винтовые цилиндрические. Конструкция и размеры	109
OCT 24.125.110-01	Подвески трубопроводов ТЭС и АЭС. Траверса. Конструкция и размеры	117
OCT 24.125.111-01	Подвески трубопроводов ТЭС и АЭС. Блоки пружинные подвесные. Конструкция и размеры	123
OCT 24.125.112-01	Подвески трубопроводов ТЭС и АЭС. Блоки пружинные опорные. Конструкция и размеры	133
OCT 24.125.113-01	Подвески трубопроводов ТЭС и АЭС. Блоки хомутовые для горизонтальных трубопроводов. Конструкция и размеры	143
OCT 24.125.114-01	Подвески трубопроводов ТЭС и АЭС. Полухомуты для горизонтальных трубопроводов. Конструкция и размеры	155
OCT 24.125.115-01	Подвески трубопроводов ТЭС и АЭС. Прокладки. Конструкция и размеры	163
OCT 24.125.116-01	Подвески трубопроводов ТЭС и АЭС. Блоки хомутовые с траверсой. Конструкция и размеры	171

OCT 24.125.117-01	Подвески трубопроводов ТЭС и АЭС. Хомуты сварные. Конструкция и размеры	179
OCT 24.125.118-01	Подвески трубопроводов ТЭС и АЭС. Подвески хомутовые на опорной балке с проушинами. Конструкция и размеры	185
OCT 24.125.119-01	Подвески трубопроводов ТЭС и АЭС. Корпуса на опорной балке с проушинами. Конструкция и размеры	199
OCT 24.125.120-01	Подвески трубопроводов ТЭС и АЭС. Полухомуты для хомутовых опор. Конструкция и размеры	209
OCT 24.125.121-01	Подвески трубопроводов ТЭС и АЭС. Балки опорные с проушинами. Конструкция и размеры	217
OCT 24.125.122-01	Подвески трубопроводов ТЭС и АЭС. Подвески пружинные хомутовые на опорной балке. Конструкция и размеры	225
OCT 24.125.123-01	Подвески трубопроводов ТЭС и АЭС. Корпуса на опорной балке для пружин. Конструкция и размеры	251
OCT 24.125.124-01	Подвески трубопроводов ТЭС и АЭС. Балки опорные для пружин. Конструкция и размеры	259
OCT 24.125.125-01	Подвески трубопроводов ТЭС и АЭС. Подвески приварные на опорной балке с проушинами. Конструкция и размеры	267
OCT 24.125.126-01	Подвески трубопроводов ТЭС и АЭС. Подвески пружинные приварные на опорной балке. Конструкция и размеры	273
OCT 24.125.127-01	Подвески трубопроводов ТЭС и АЭС. Блоки хомутовые для вертикальных трубопроводов. Конструкция и размеры	281
OCT 24.125.128-01	Подвески трубопроводов ТЭС и АЭС. Полухомуты для вертикальных трубопроводов. Конструкция и размеры	295
OCT 24.125.130-01	Подвески трубопроводов ТЭС и АЭС. Упоры. Конструкция и размеры	305

IV 2

СТАНДАРТ ОТРАСЛИ

ПОДВЕСКИ ТРУБОПРОВОДОВ ТЭС И АЭС. ТАЛРЕПЫ

Конструкция и размеры

Предисловие

1 РАЗРАБОТАН открытым акционерным обществом «Научно-производственное объединение по исследованию и проектированию энергетического оборудования им. И. И. Ползунова» (ОАО «НПО ЦКТИ») и открытым акционерным обществом «Белгородский завод энергетического машиностроения» (ОАО «Белэнергомаш»)

ИСПОЛНИТЕЛИ: от ОАО «Белэнергомаш» ЗАВГОРОДНИЙ Ю. В., СЕРГЕЕВ О. А., РОГОВ В. А.; от ОАО «НПО ЦКТИ» ПЕТРЕНЯ Ю. К., д-р физ.-мат. наук; СУДАКОВ А. В., д-р техн. наук; ДАНЮШЕВСКИЙ И. А., канд. техн. наук; ИВАНОВ Б. Н., канд. техн. наук; ТАБАКМАН М. Л.; ГЕОРГИЕВСКИЙ Н. В.

2 ПРИНЯТ И ВВЕДЕН В ДЕЙСТВИЕ Департаментом промышленной и инновационной политики в машиностроении Министерства промышленности, науки и технологий Российской Федерации письмом № 10-1984 от 31.10.2001 г.

3 ВВЕДЕН ВПЕРВЫЕ

II 88

СТАНДАРТ ОТРАСЛИ

ПОДВЕСКИ ТРУБОПРОВОДОВ ТЭС И АЭС

ТАЛРЕПЫ

Конструкция и размеры

Дата введения 2002-01-01

1 Область применения

Настоящий стандарт распространяется на талрепы для подвесок трубопроводов ТЭС и АЭС и устанавливает их конструкцию и размеры.

2 Нормативные ссылки

В настоящем стандарте использованы ссылки на следующие стандарты:

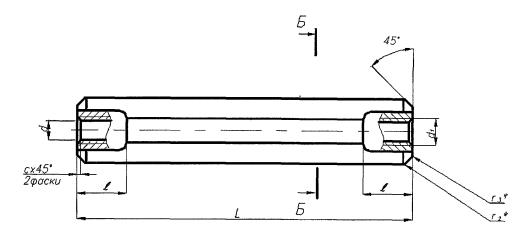
ГОСТ 5264—80 Ручная дуговая сварка. Соединения сварные. Основные типы, конструктивные элементы и размеры

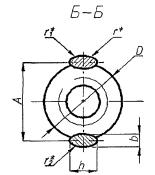
ГОСТ 5520–79 Сталь листовая углеродистая низколегированная и легированная для котлов и сосудов, работающих под давлением. Технические условия

ОСТ 108.030.113-87 Поковки из углеродистой легированной и высоколегированной стали для котлов, сосудов и стационарных трубопроводов. Общие технические условия

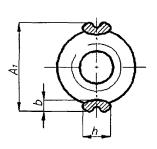
ОСТ 24.125.170-01 Детали и сборочные единицы опор, подвесок, стяжек для линзовых компенсаторов и приводов дистанционного управления арматурой трубопроводов ТЭС и АЭС. Общие технические условия

ТУ 14-1-3987-85 Прокат сортовой стали марок 20 и 12Х1МФ. Технические условия

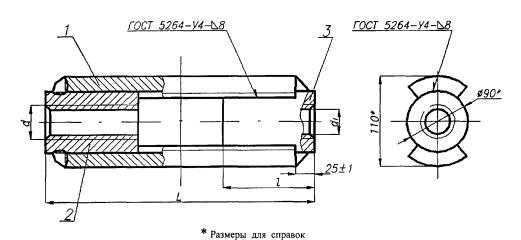

3 Конструкция и размеры


- 3.1 Конструкция, размеры, допускаемые нагрузки и материал деталей должны соответствовать указанным на рисунках 1, 2 и в таблицах 1–3.
 - 3.2 Маркировка и остальные технические требования по ОСТ 24.125.170.
 - 3.3 Пример условного обозначения талрепа исполнения 05:

ТАЛРЕП 05 ОСТ 24.125.105


3.4 Пример маркировки: 05 ОСТ 24.125.105

Товарный знак



Б-Б вариант

* Размеры для справок.

Рисунок 1

1 – струна; 2 – гайка; 3 – гайка

Рисунок 2

Таблица 1

Размеры в миллиметрах

	Исполнение	Допус- каемая нагрузка, кН	Рисунок	<i>d</i> (правая резьба)	d ₁ (левая резьба)	A ±2	A ₁ ±2	D±1	L +2	l±3	p*	r ₁ *	r ₂ *	r ₃ *	c	b±1	h ±1	Масса, кг
	01	8,8		M12	M12LH	24	32	22	150	18	12	3,7	5	2		_ 8	12	0,26
	02	14,7		M16	M16LH										1,6		-	
91	03	23,5	1	M20	M20LH	37	50	32	220	30	18	5,5	6	3	2.0	12	18	0,80
	04	33,3		M24	M24LH	49	65	42	260	40	23	6,9	7		2,0	15	23	1,60
	05	53,9		M30	M30LH	70	92	62	300	50	35	0.7	9	4	2,5	22	35	4.20
	06	78,4		M36	M36LH	70	92	02	300	30	33	9,7	9	4	3,0	22	33	4,20
		* Размены	лия с	правок												-		

Размеры для справок.

Размеры в миллиметрах

Исполнение	Рисунок	Допускаемая нагрузка, кН	<i>d</i> (правая резьба)	d₁(леваярезьба)	L ±2	l±1	Масса наплавленного металла, кг	Масса, кг
07		107,9	M42	M42LH	360			9,92
08	2	147,1	M48	M48LH	410	80	0,32	10,02

🞖 Таблица 3 – Спецификация сварных талрепов

Размеры в миллиметрах

Испол- нение		Струна, поз. 1, 2 шт.					Гайка, поз. 2, 1 шт.		Гайка, поз. <i>3</i> , 1 шт.			
	Рису-			Материал	Macc	са, кг	Диа-		Macca,	Диаметр		
	нок	Размеры	s*	Марка стали	1 шт.	общая	метр резьбы <i>d</i>	Материал	Kr	резьбы d ₁	Материал	Масса, кг
07		310×71	10	Сталь 20К	1,7	3,4	M42	Сталь 20	3,10	M42LH	Сталь 20	3,10
08	2	360×71		ГОСТ 5520	2,0	4,0	M48	TY 14-1-3987 OCT 108.030.113	2,85	M48LH	TY 14-1-3987 OCT 108.030.113	2,85
* P	азмеры ,	для справок	:.									

УДК 621.88:621.643

OKC 23.040

E26

ОКП 31 1312

Ключевые слова: подвески, трубопроводы, талрепы, конструкция, размеры, допускаемая нагрузка, материалы.

93 5