ТИПОВОЙ ПРОЕКТ 407-3-647.94

OTRPHTAЯ ЭЛЕКТРИЧЕСКАЯ ПОДСТАНЦИЯ IIO/35/IO кВ ПО СХЕМЕ IIO-4H С ТРАНСФОРМАТОРАМИ ДО I6 МВ.А

АЛЬБОМ І ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Подпись и дата Взам, инв. №

подл.

Ц00268-01

АЛЬБОМ I

ПЕРЕЧЕНЬ АЛЬБОМОВ

Альбом I. II3. Пояснительная записка

Альбом П. ЭП. Электротехнические чертежи

Альбом Ш. ЭП.СО. Спецификация оборудования

Альбом ІУ.КС. Строительные конструкции

КСИ. Строительные изделия

КС.ВМ. Ведомость потребности в материалах

Альбом У. Сметы

Примененные типовые проектные решения 407-3-0634.92 "Закрытые распределительные устройства 10(6) кВ, совмещенные с ОПУ без аккумуляторной батареи, в сборном железобетоне" альбомы 1...7.

Поставщик АО институт Севзапэнергосетьпроект

Разработан АО институт Севзапэнергосетьпроект Утвержден и введен в действие департаментом электроэнергетики Минтопэнерго России протоколом

от 31.10.94 г.

Е.И.Баранов

Т.В.Калугина

Главный инженер

Главный инженер проекта

Lany

Инв. У подл. Подпись

Bam, NID.

Dara

Ħ

Стр.

407-3-647.94

СОДЕРЖАНИЕ АЛЬБОМА І

пояснительная записка

I.	Исходные данные	4
2.	Электротехническая часть	5
2.I.	Присоединение подстанций к энергосистеме	5
2.2.	Главная схема электрических соединений и вы-	5
2.3.	Расчет токов короткого замыкания	6
2.4.	Выбор оборудования	7
2.5.	Выбор проводов, шин и кабелей	7
2.6.	Основные конструктивные решения	8
2.7.	Оперативный ток	IO
2.8.	Собственные нужды	II
2.9.	Заземляющие реакторы	II
2.10.	Молниезащита и заземление	II
2.11.	Электрическое освещение	12
2.12.	Релейная защита, автоматика, управление	12
2.13.	Мероприятия по организации охраны ПС	12
3.	Строительная часть	13
3.I.	Генеральный план, горизонтальная планировка и благоустройство	13
3.2.	Строительные решения	14
3.3.	Маслоприемники, маслоотводы и маслосоорники	16
4.	Водопровод и канализация	16
4.I.	Водопровод	16
4.2.	Канализация	16

40°	7-3-	647	94
4111		•()4+ /	- 34

		Стр.
5.	Обеспечение взрывной, взрывопожарной и пожарной безопасности	17
6.	Охрана окружающей среды	17
7.	Указания по применению	18
7.I.	Электротехнических чертежей	18
7.2.	Строительных чертежей	18

ата Взам,инь. №

Инв. У подл. Подпись и дата

3

B3am KHB, No

Подпись и дата

I. ИСХОДНЫЕ ДАННЫЕ

Типовой проект "Открытая электрическая подстанция IIO/35/IO кВ по схеме IIO-4H с трансформаторами до I6 МВ.А" разрасотан АО "Институт Севзапэнергосетьпроект" на основании перечня проектных расот Минтопэнерго Российской Федерации, вынолняемых за счет средств госображета в I994 г.

Необходимость в разработке данного проекта вызвана отсутствием достаточного количества серийных КТПБ заводского изготовления, а также стремлением сократить время на проектирование их из-за отсутствия унификации компоновочных решений по подстанции в целом.

Целью работы является разработка рабочих чертежей для подстанций с трехобмоточными трансформаторами IIO/35/IO кВ типа ТДТН мощностью до I6 МВ.А.

Однотрансформаторная ПС проектом не разрабативается. При необходимости ввода в эксплуатацию трансформаторов очередями производится привязка 2-х трансформаторной ПС с выделением в первую очередь одного, любого, в зависимости от местных условий, трансформатора.

В альбом включени только вновь разработанние чертежи. Примененные из других проектов чертежи электротехнической и строительной части в проекте не приводятся и заказываются в соответствии с перечнями, приведенными в каждом из альбомов проекта.

В типовом проекте разработаны схемы принципиальные электрические подстанции, конструктивно-монтажные, сметы, спецификация оборудования и ведомость потребности в материалах.

Компоновочние, строительные и монтажные решения выполнены для трансформаторов ТДТН-10000/110-УІ с учетом замены в перспективе на ТДТН-16000/110-УІ.

	-Î6000/II	[О-УІ.				2 202		
Нач. от	п.Роменск	พหั <i>ฟ</i> ี	08.94	407-	-3-647.94	ПЗ		
	р. Хействе	p Cla	08.94	Открытая электрич	еская	Стадия	Лист	Листов
LMII	Калугина	tany	08,94	подстанция 110/3	0/IO KB	PII	I	
Нач.гр	. Шленова	BUREY	08.94	по схеме IIO-4H с сформаторами до 16	16 MB.A	<i></i>		ЕТЬПРОЕКТ* етербург
 L		-		400268	-01 5	Формат	A4	

BOOM NED NO

Herra

Подпись

подл.

Монтажные и планово-предупредительный ремонт трансформаторов предусматривается с использованием автокранов.

Эксплуатация ПС предусматривается без постоянного дежурного персонала с передачей сигналов о неисправности на диспетчерский пункт.

Для обеспечения безопасности обслуживающего и ремонтного персонала на ПС предусматривается устройство внутренних ограждений.

Разделы организации строительства и эксплуатации, безрельсовой транспортировки тяжеловесного оборудования от мест разгрузки и другие общие вопросы в настоящем проекте не рассмотрены и являются элементами индивидуального проектирования конкретных подстанций.

При выполнении проектов конкретных ПС по схеме IIO-4H следует, в первую очередь, ориентироваться на применение комплектной ПС заводской поставки (КТПБ), а при невозможности этого использовать настоящий типовой проект.

2. ЭЛЕКТРОТЕХНИЧЕСКАЯ ЧАСТЬ

2.1. Присоединение подстанций к энергосистеме

Рассматриваемые ПС предусматривается присоединять к сетям энергосистем двумя ответвлениями от линий электропередачи с односторонним питанием, а также тупиковыми ВЛ.

2.2. Главные схемы электрических соединений и выбор трансформаторов

Типовой проект разработан для подстанций с 2-х обмоточными трансформаторами для схем: на напряжении IIO кВ — схема IIO-4H-два блока с выключателями и неавтоматической перемычкой со стороны линий.

На напряжении 35 кВ - схема 35-9 - одна рабочая, секционированная выключателм, система шин.

407-3-647.94 II3

Лист 2 На напряжении IO кВ принята схема IO(6)-I одна секционированная выключателем система шин.

Проектом предусмотрены ЗРУ напряжением 10 кВ.

Число ячеек отходящих линий определено количеством ячеек, предусмотренных типовыми проектами ЗРУ совмещенных с ОПУ и подлежит уточнению по исходным данным Заказчика при конкретном проектировании.

На подстанциях могут быть установлены трансформаторы мощностью IO MB.A с заменой в перспективе на следующий по мощности.

Для компенсации емкостных токов в сетях 10 кВ проектом предусматривается установка заземляющих реакторов типа РЗДСОМ— 380/IOУI. Количество и мощность реакторов уточняется при конкретном проектировании.

2.3. Расчет токов короткого замыкания

Расчет токов короткого замыкания произведен в целях проверки основного оборудования IIO,35 и IO кВ, выбранного по токам нагруз-ки, и выявления необходимости использования токоограничивающих реакторов на вводах IO кВ.

Ток КЗ системы IIO кВ при расчете принят равным 25 кА. Расчеты выполнены для схемы с раздельной работой трансформаторов на стороне IO кВ и параллельной работой трансформаторов на стороне 35 кВ.

На шинах 10 кВ ТКЗ складывается из составляющих от системы 110 кВ и от подпитки возможных электродвигателей, условно принятой равной 3 кА. Расчет показал, что составляющая Т.К.З. системы не превышает 16,8 кА суммарный ток не превышает 20 кА и, следовательно, реакторы на вводах трансформаторов не требуются.

Расчетные значения токов короткого замыкания указаны на схеме принципиальной электрической, альбом 2, лист ЭП-2.

нв. № подл. Подпись и дата

Baam, MHB.

407-3-647.94 II3

Jucr 3

BSAM, MHR, No

2.4. Выбор оборудования

Предусмотрено использование оборудования с изоляцией категории А (нормальное исполнение), изготовляемое отечественными заводами для районов с нормальной воздушной средой.

Компоновка подстанции позволяет, в случае необходимости, применить оборудование с усиленной изоляцией с соответствующей корректировкой строительных и электромонтажных чертежей по действующим типовым проектам.

Выбор оборудования произведен по номинальным напряжением и по нагрузкам с учетом допустимых (и возможных) перегрузок с проверкой по токам короткого замыкания.

В ОРУ IIO кВ принята установка ВМТ-IIOБ-25/I250УХЛІ и разъединителей РДЗ-IIO/I000УХЛІ с приводом ПР-2БУХЛІ.

В ОРУ-35 кВ принята установка ВМУЭ-25Б-25/I250УXЛІ и разъединителей РАЗ-35/I000УXЛІ с приводом ПР-2Б.

На стороне IO кВ приняты выключатели ВКЭ-МI-IO, поставляемые промышленностью в комплекте со шкафами внутренней установки серии К-IO4M.

2.5. Выбор проводов, шин и кабелей

Ошиновка всех элементов РУ IIO, 35, IO кВ выбрана по нагреву с проверкой по токам короткого замыкания.

Ошиновка ОРУ IIO,35 кВ выполнена проводом АС-I2O/I9 и уточняется при привязке проекта по сечению провода ВЛ IIO, 35 кВ.

Ошиновка сборных шин 35 кВ и ошиновка вводов РУ IO кВ выполнены проводом AC-240/32.

В соответствии с расчетами в зависимости от мощности установленных на ПС трансформаторов, карактеристики прилегающей сети 10 кВ и возможных уставок защит по времени рекомендуются следующие ориентировочные сечения жил отходящих фидерных кабелей 10 кВ: (при /" = 20 кА);

407-3-647.94 II3

Ages 4 при выдержках времени на вводных выключателях до I,0 с - минимальное сечение кабелей рекомендуется 3х240 мм².

2.6. Основные конструктивные решения

Взаимное расположение сооружений ПС определилось на основании анализа проектных решений по ПС, разработанным АО "Института Севзапенергосетьпроект" с 1989 по 1993 гг. (паспорта проектов).

Компоновка характеризуется наличием общего автоподъезда к трансформаторам с односторонним въездом на ΠC , чем достигается экономия занятой территории по сравнению с ΠC ; имеющими въезды с двух сторон.

ОРУ IIO кВ принято без учета возможности расширения.

Все узли и элементи: ОРУ-IIO, 35 кВ, ЗРУ совмещенное с ОПУ, установка трансформаторов СН, заземляющих реакторов - приняты по типовым проектам.

OPY IIO KB

ОРУ IIО кВ принято без возможности расширения в соответствии с типовыми материалами для проектирования 407-03-539.90 "Открытые распределительные устройства IIО кВ на унифицированных конструкциях".

Все оборудование IIO кВ устанавливается на железобетонных унифицированных стойках. Установочные чертежи выключателей трансформаторов тока используются без изменения по типовым материалам для проектирования 407-03-539.90, установочные чертежи разъединителей IIO кВ и гирлянд изоляторов приводятся в данном проекте.

Прокладка кабелей по ОРУ IIO к ${
m B}$ принята в железобетонных лотках и частично в земле.

ОРУ 35 кВ

ОРУ 35 кВ принято по схеме 35-9, с возможностью расширения, в соответствии с типовыми материалами для проектирования 407-03-567.90 "Открытые распределительные устройства 35 кВ на унифицированных конструкциях".

407-3-647.94 II3

Лист 5 Оборудование 35 кВ устанавливается на железобетонных стойках. Установочные чертежи выключателей, трансформаторов тока и напряжения используются без изменения по типовым материалам для проектирования 407-03-567.90.

Установочные чертежи трехполюсных разъединителей 35 кВ и гирлянд изоляторов приводятся в данном проекте. Прокладка кабелей по ОРУ 35 кВ принята в железобетонных лотках и частично в земле.

Установка траноформаторов IIO/35/IO кВ

Проектом предусмотрена установка трансформаторов вдоль фронта внутриплощадочной автомобильной дороги с твердым покрытием с устройством перехода гибкой ошиновкой над проездом.

Рядом с трансформаторами расположены площадки, обеспечивающие использование автокранов для монтажа и проводимых во время эксплуатации работ по планово-предупредительным ремонтам трансформаторов.

Подъездная автомобильная дорога выполняется с тупиковым въездом на ${\rm IIC}_{ullet}$

В данном проекте разработаны установочные чертежи трансформаторов IIO кВ с учетом автокранового монтажа и технической информации завода-изготовителя (ТЭЗ) (альбом 2 лист ЭП-14.15).

.РУ ІО кВ

На подстанции РУ IO кВ выполнено: с шкафами внутренней установки типа К-IO4M.

В проекте рассматривается использование ЗРУ совмещенное с ОПУ по типовым проектным решениям 407-3-0634.92 "Закрытые распределительные устройства IIO(6) кВ, совмещенные с ОПУ без аккумуляторной батареи, в сборном железобетоне.

Для вывода кабельных линий предусмотрен их организационный вывод из кабельных каналов ЗРУ.

ОПУ

ОПУ предназначено для размещения в нем панелей управления, защити и автоматики, панелей собственных нужд переменного тока, выпрямительных устройств, щитков освещения, отопления и подогрева,

407-3-647.94 II3

Лист 6

Baam, RHB, No

дата

подл

В проекте рассматривается использование ОПУ совмещенное со ЗРУ по типовым проектным решениям 407-3-0634.92.

В ОПУ для работы персонала предусмотрена рабочая комната.

Для размещения аккумуляторов питания устройств связи предусматривается специальное помещение, оборудованное витяжным устройством.

2.7. Оперативный ток

К цепям оперативного тока ПС относятся:

- а) цепи соленоидов включения виключателей 10 кВ;
- б) цепи соленоидов выключателей 35 кВ;
- в) цепи питания защиты, автоматики, управления, сигнализации в распределительных устройствах всех напряжений.

В проекте принят выпрямленный оперативный ток:

- для включения выключателей 35,10 кВ типа ВКЭ-ІОМ - для управления, в том числе выключателями IIO кВ, сигнализации, автоматизации и защиты трансформаторов, линий и остальных элементов подстанции.

В качестве источников питания оперативных цепей выпрямленного тока используется трансформаторы напряжения IIO кВ совместно с выпрямительными устройствами типа УКП для включения выключателей ВКЭ-IO.

Питание двигателей заводки пружин, выключателей BMT-IIOБ осуществляется от щита переменного тока подстанции.

Питание цепей оперативной олокировки разъединителей осуществляется от шин собственных нужд подстанции через выпрямительный нестабилизированный олок.

Включение выключателей IO кВ типа ВКЭ-IOH следует осуществлять с помощью VKII-2 (индуктивного накопителя), входящего в комплект устройства VKII.

407-3-647.94 H3

Juca 7 В типовом проекте принята установка 2-х трансформаторов собственных нужд типа ТМ-1610 мощность которых определена по действующей методике с учетом нормируемых коэффициентов спроса.

2.9. Заземляющие реакторы

Проектом предусмотрена возможность присоединения заземляющих реакторов на каждой из секций шин ТО кВ. Количество, тип и мощность реакторов определяется в конкретном проекте.

Каждый заземляющий реактор IO кВ присоединяется к шинам через специальный трансформатор. В типовом проекте в качестве образца приняты наиболее вероятные для подобных ПС заземляющие реакторы типа РЗДСОМ-380/IOУI с трансформатором типа ТМ-250/IO.

Все присоединения трансформаторов к РУ 10 кВ выполняются кабельными.

2.10. Молниезащита и заземление

Молниезащита выполняется в соответствии с рекомендациями "Руководящих указаний по защите подстанций 3-500 кВ от прямых ударов молнии и грозовых волн, набегающих с линий электропередачи" и с главой IУ-2 IIУЭ-86.

Молниезащита ПС осуществляется отдельностоящими молниеотводами высотой 27 м.

Молние защита пролета между порталами ОРУ и концевыми опорами ВЛ IIO, 35 кВ выполняется с помощью грозозащитных тросов, для анкеровки которых на линейных порталах ОРУ IIO, 35 кВ предусмотрены тросостойки.

В типовом проекте приведен пример выполнения заземления ПС по нормам на допустимое напряжение прикосновения.

Juct

В проекте конкретной подстанции конструкция заземляющего устройства должна уточняться в соответствии с характеристиками грунта и величиной тока однофазного короткого замыкания.

2.II. Электрическое освещение

Освещение открытой части подстанции предусматривается с использованием светильников типа ИО-02-1500-02 УІ установленных на прожекторных площадках молниеотводов на высоте 19 м. При этом обеспечивается нормированная освещенность рабочих мест и поверхностей.

Внетреннее освещение ОПУ, ЗРУ ІО кВ выполняется светильниками с использованием ламп накаливания и люминесцентных ламп.

2.12. Релейная защита, автоматика, управление

Ввиду многообразия схем релейной защиты, автоматики и управления, их разработка не включена в объем рабочих чертежей ПС. При привязке проекта следует пользоваться соответствующими типовыми проектами института "Энергосетьпроект".

2.13. Мероприятия по организации охраны ПС

Охранные мероприятия на подстанции выполнены в соответствии с нормами технологического проектирования подстанций переменного тока напряжением 35-750 кВ, раздел I5, выпущенного институтом Днепросетьпроект в I993 г.

Наружная ограда ПС выполнена из ж/б конструкций высотой $2,4\,\mathrm{m}$, по верху ограды установлен козырек из $3-\mathrm{x}$ нитей колючей проволоки. Ворота и калитка выполнены металлическими.

Окна ОПУ оборудуются решетками и датчиками контроля разрушения стекла, а входные наружные двери ОПУ и ЗРУ выполняются металлическими с оборудованием дверей охранной блокировкой.

Установка и монтаж датчиков охранной сигнализации ДМК-П2, и прибора охранной сигнализации Марс-I, в комплект которого входят сигнализаторы разрушения стекла М-IД выполняются в

одинсь и цата

IND. No mora, No.

407-3-647.94 II3

Инв. № подл. П

соответствии с типовыми решениями по охранной сигнализации помещений подстанций (13736тм) разработанными институтом энергосетьпроект в 1990 г.

Для передачи сигнала с устройства "Марс-I" на диспетчерский пункт электросетей используется устройство телемеханики, тип которого уточняется при конкретном проектировании.

з. СТРОИТЕЛЬНАЯ ЧАСТЬ

3.1. Генеральный план, горизонтальная планировка и благоустройство

В настоящем проекте дан пример решения чертежей генплана для ПС.

Для подстанции принят пример площадки с уклоном естественного рельефа до 15 %.

Участок строительства ПС свободен от застройки.

При решении вертикальной планировки, учитывая возможность сброса поверхностных вод на окружающую ПС территорию, водоотвод принят открытым способом по спланированной поверхности, с уклоном, близким к естественному.

Основные земляные работы, связанные с планировкой площадки ПС, состоят в снятии растительного слоя и отвозки его в карьер и выполнению планировки с подвозкой недостающего грунта.

Вся свободная от сооружений и дорог территория IIC засевается многолетними травами с внесением местного растительного грунта.

Доставка грузов на площадку ПС производится по подъездной и внутриплощадочной автомобильной дороге.

Внутриплощадочная автомобильная дорога, обеспечивающая подъезд к силовым трансформаторам и зданию ОПУ принята шириной 4,5 м, с односкатным поперечным профилем.

У маслоприемников силовых трансформаторов предусмотрены площадки для кранового ремонта трансформаторов. Проезд автомашины по ОРУ IIO, 35 кВ, подъезд к ЗРУ-IO кВ, маслосборнику осуществляется по внутриплощадочной автомобильной дороге шириной 3,5 м с

407-3-647.94 II3

Jucr IO Подъездная автомобильная дорога принята шириной 4,5 м с обочинами по I.75 м.

Разворот трейлера на территории ІІС не предусматривается.

По условиям примыкания к подъездной автодороге в конкретном проекте может быть выполнена организация заезда на площадку ПС с противоположной стороны.

3.2. Строительные решения

Строительная часть проекта ПС IIO/35/IO кВ разработана на основании ранее разработанных типовых решений и узлов.

Строительные конструкции подстанции разработаны для следующих условий применения:

- расчетная минимальная температура воздуха до минус 40 $^{\rm O}{\rm C}$ включительно;
- максимальная нормативная толщина гололедного покрытия проводов ошиновки C=20 мм, что соответствует ІУ району по гололеду при повторяемости І раз в ІО лет;
- нормативный скоростной напор ветра по Ш району при повторяемости I раз в IO лет для конструкций ОРУ 9 =0,5 кПа, для прочих конструкций при повторяемости I раз в 5 лет

q = 0.38 kHa;

- грунты в основаниях непучинистые, имеют следующие нормативные характеристики:

$$\varphi^{\text{H}}=28^{\circ}$$
, $C^{\text{H}}=2$ kHa, $E=14.7$ MHa m $\rho=1.8$ T/m³;

- грунтовые воды отсутствуют;
- сейсмичность района строительства не выше 6 баллов по шкале ГОСТ 6249-52.

Применение проекта не предусматривается в районах вечной мерэлоты, а также на площадках, подверженных оползням и карстам.

Конструкции ОРУ выполняются из соорных железобетонных элементов:

Отдельностоящие прожекторные мачты приняты по серии 3.407.9-172 из конических железобетонных центрифугированных стоек СК.

Установка стоек ВС и СК в грунте выполняется в сверленых котлованах с засыпкой пазух крупнозернистым песком или заполнением бетоном. Опоры под оборудование и гибкие связи выполняются из стоек УСО, устанавливаемых в сверленые котлованы.

Конструкции для крепления электротехнического оборудования металлические.

Опоры под оборудование приняты по проектам 3.407.9-174, 407-03-539.90, 407-03-642.94, гибкие связи по проекту 407-03-625.91.

 Φ ундаменты под трансформаторы приняты по серии 3.407. I-I48. I из сборных железобетонных плит $\Pi\Phi$, уложенных на щебеночном балласте толщиной 25 см.

Уровень головки рельса принят 0,794 м, что позволяет производить накатку и выкатку трансформатора без разборки и бордюра маслоприемника, выполняемого из сборных железобетонных плит типа ПН по серии 3.407.1-157 вып.1.

Кабельные лотки и каналы - сборные железобетонные по серии 4.407-268.

Здания закрытого распределительного устройства (ЗРУ), 10 кВ совмещенное с общеподстанционным пунктом управления (ОПУ), приняты по проекту 407-3-0634.92. Размеры здания в плане 6х48 м.

Проектом предусмотрена наружная ограда из железобетонных панелей высотой 2,4 м и внутренняя - сетчатая высотой I,6 м по серии 3.017-3.

Взам, инв. №

одинсь в дате

нв. № подл.

407-3-647.94 II3

I2

3.3. Маслоприемники, маслоотводы и маслосборники

Для предотвращения растекания масла и распространения пожара при повреждениях силовых трансформаторов проектом предусмотрено устройство заглубленных маслоприемников под трансформаторами, рассчитанными на одновременный прием 100 % масла, содержащегося в корпусе трансформатора мощностью до 10 МВ.А;

- устройство подземных маслоотводов Ø 200 мм и устройство маслосборника, предназначенного для приема аварийного сброса масла трансформатора и атмосферной воды выполняется при конкретном проектировании.

4. ВОДОПРОВОД, КАНАЛИЗАЦИЯ

4. І. Водопровод

Разработанные настоящим проектом ПС IIO/35/IO кВ обслуживаются, как правило, без постоянного дежурного персонала, в связи с чем устройство водопровода не предусматривается.

При расположении ПС вблизи существующих или проектируемых систем водоснабжения и канализации (до 500 м) при привязке проекта следует предусмотреть ввод водопровода и канализации с обеспечением необходимых разрывов между инж.сетями и сооружениями.

4.2. Канализация

При отсутствии ввода водопровода на ПС при конкретном проектировании предусматривается дворовая уборная.

Подпись и дата Взам, инв. №

інв, № подл.

407-3-647.94 II3

Macr I3

5. ОБЕСПЕЧЕНИЕ ВЗРЫВНОЙ, ВЗРЫВОПОЖАРНОЙ И ПОЖАРНОЙ БЕЗОПАСНОСТИ

Проект выполнен с соблюдением требований, изложенных в дейстсующих "Указаниях по проектированию противопожарных мероприятий, систем пожаротушения и обнаружения пожара на энергетических объектах".

Подстанции IIO кВ, разработанные в настоящем проекте, относятся согласно п. IO.3I "Указаний" к Ш группе, по которой системы стационарного пожаротушения (противопожарный водопровод и водоемы) не проектируются. Для таких ПС предусматривается переносной противопожарный инвентарь, приобретаемый за счет средств, выделяемых на эксплуатацию.

Специальные мероприятия по взрывной и взрывопожарной безопасности проектом не предусматриваются и обеспечиваются эксплуатирующими организациями.

6. ОХРАНА ОКРУЖАЮЩЕЙ СРЕДЫ

При привязке типового проекта следует отражать в документах мероприятия по охране окружающей среды, в том числе следующие:

- постоянний дежурный персонал на ПС IIO/35/IO кВ как правило не находится, поэтому проектом предусматривается выносная уборная и привозная вода для обеспечения минимальных бытовых нужд работающего персонала.

При этих условиях сточные воды не образуются и их отводы обеспечивать не требуется.

Для предотвращения растекания масла при аварии трансформатора предусматривается маслоприемник, рассчитанный на полный объем масла одного трансформатора.

При привязке в проекте должны быть отражены вопросы защиты окружающей среды.

407-3-647.94 II3

Tacr T4

7. УКАЗАНИЯ ПО ПРИМЕНЕНИЮ

7.1. Электротехнических чертежей

По объему использования все материалы ,приведенные в работе, могут быть разделены на 3 группы:

- а) чертежи, предназначенные для применения в конкретных проектах без каких-либо изменений и дополнений. К этой группе относятся в основном чертежи установки оборудования, электроконструкции, а также чертежи планов, разрезов, освещения и др. при совпадении количества и направления линий, а также сечения ошиновки высокого напряжения;
- б) чертежи, требующие уточнения либо дополнения некоторых пареметров или типа оборудования. К этой группе относятся чертежи планов разрезов, схем главных и собственных нужд, заземления, кабельные журналы;
- в) чертежи, используемые в качестве образцов при разработке соответствующих чертежей. К этой группе относятся чертежи заземления подстанции, а также чертежи, перечисленные в пп.а, б при несовпадении оборудования или материалов, заложенных в проекте.

7.2. Строительных чертежей

В случае соответствия принятых в типовом проекте исходных данных конкретным условиям привязка типового проекта заключается в заполнении бликов и в исключении данных , не относящихся к конкретным условиям.

При несоответствии грунтовых условий при привязке типового проекта рекомендуется выполнить поверочные расчеты закреплений стоек порталов и опор гибких связей, стоек опор для оборудования фундаментов под трансформаторы по действующим методикам.

Лыст 15

660268-01 19

Взам, инв. №

При необходимости при привязке типового проекта опоры под оборудование могут быть выполнены из свай типа УСВ или стоек УСО, устанавливаемых в фундаментах стаканного типа УБ-І. В этом случае необходимо скорректировать установочные чертежи и сводные спецификации сборных железобетонных изделий и внести изменения в соответствующие чертежи.

Выбор вариантов опор для оборудования, закреплений стоек порталов, фундаментов и анкеров для установки трансформаторов рекомендуется производить на основании существующих типовых решений с учетом возможностей строительных организаций сетевых трестов.

Взамянв.№

Подпись в двл

Икв. № подл.

407-3-647.94 II3

Inc.