серня 4.900-9

УЗЛЫ И ДЕТАЛИ ТРУБОПРОВОДОВ НЗ ПЛАСТИНССОВЫХ ТРУБ ДЛЯ СИСТЕМ ВОДОСНАБЖЕНИЯ И КАНАЛИЗАЦИИ

№ЫПУСН 0 - 1 материалы для проектирования

серия 4.900-9

УЗЛЫ И ДЕТАЛИ ТРУБОПРОВОДОВ

ИЗ ПЛАСТМАССОВЫХ ТРУБ ДЛЯ

СИСТЕМ ВОДОСНАБЖЕНИЯ И

КАНАЛИЗАЦИИ

ВЫПУСК 0 - 1 МАТЕРИАЛЫ ДЛЯ ПРОЕКТИРОВАНИЯ

РАЗРАБОТАН ИНСТИТЫТАМИ: СОЮЗВОДОК*Т*ЖАЛОРОЕКТ

Главный инженер инститыта Главный инженер прсекта Михаилов А.Н. Санникова В.А.

CAHTEXNPOEKT

АТЕТИОНИ ЧЭНЭЖНИ ЙИНВЕЛЛ ПЛЭОНО ЧЭНЭЖНИ ЙИНВЕЛЛ

10hum

. Шиллер НО.И. Саргин НО.Н Этверждены Главстройоросктом Госстроя СССР протокол от 15.01.86. А Ч Введены в действие 6/0 сонозодоканалнии проект приказ и 56 от 19.02.86.

Содер жание

	Стр		Cmp.
1. Общая часть	5	2.1.3. Угальник с крепежным фланцем	29
2. Пластмассовые трубы	5	2.1.4. Переход	30
з.Соединительные детали	7	2.1.5. Тройник	31
4 Тилы соединений	8	2.1.6. Тройник переходной.	32
5. Проход пласпмассовых труб через	-	2.1.7. Муфта	33
	8	2.1.8. Втутка для дюритавого	-
ограждающие конструкции сооружений Б.Наружная прикладка трубопрободов	g	сое динения.	34
чали по	,	2.1.9. Угольник	34
пластма ссовых труб в эданиях и сооружениях	. 11	2.2. Детали из ПНД по ТУ6 -19 -213 -83	<i>5</i> 4
ппостумассия пруд У зааноня и соорутеннях 8.Узлы и детази внутреннего вадопровода	. "	2.2.1. Repexed	35
ע גמאמא ע שניאן אין אין אין אין אין אין אין אין אין	12	2.2.2. Втулка под фланец	35
a Konon a coda a	,-	2.2.3. У2ОЛЬНИК 90°	36
		2.2.4. Угольник 45°	36
Приложение I. Гластмассовые трубы		2.2.5. Тройник	37
1.1. Түубы напорные из полиэтилена		2.2.5. 19001101	01
INCT 18599-83.	.22	2.3. Детали из ПНД по ТУ6 -19 -218-83	
1.2. Тубы напорные из полиэтилена		2.3.1. Отвод сварной 90°	38
ชากงพบน สิบชพยะการชื่ 746-19-214-83	24	2.3.2. Отбод сбарной 60°	39
1.3. Туубы полипропиленовые напорные		2.3.3. Ombod cbaphou 45°	-
T! 38. 102100 - 76	.24	2.3.4 Отвод сварной 30°	40 41
1.4. Тубы напорные из непласти—		2.3.5. Троиник неравнопроходной сварной	42
фицированного поливинилхпорида		2.3.6. Тройник, равно проходной	74
T/6 -19 -231-83.	25	сварной (уси ленный)	43
Приложение 2. Стединительные детали		(geometimas)	,,,
2.f. Дипали из ПВД по 0076-05 -367-74			
2.1.1 BMY.JKO DO PIJUHEU	28	(13M) TUCT Nº BOXY M. 100 0. 20 mg 4. 900-9-B.0-1	
2.1.2. Етулка для штуцерного	20	Разраб Свердпоба Св. — Узлы и изделия трубопробо-Лит Лист	Листов
овединения.	29		
	3	Н.Компр. Мирончик одит U канализации. Материал СОНО\$ВОДОКА УМБ. Харина одит от 16 аля проектиробания.	JHA NNPOEK
		KONUPORALI AULEHKO. DUS 21224 3 PODMOT	- 42

<u>ไหด์. พ^ลกอฮิก (กิอฮิก ม ฮิฮmơ | 85ธพ. เหติ์ ฟ (เหล</u>็.เพื่อัชิก (กิอฮิก. น ชิอmฮ

	Cmp.	r e	mp.
2.3.7. Тройшк сварной	44		p. 59
2.3.8. Тройнук сварной (усиленный)	45	Приложение 3. Узлы из пластмассовых труб.	,
2.3.9. Тройник сварной 60°	46	3.1. Типы соединений пластомоссовых	
2.3.10. Отвід гнутый 90°	46		60
2.4. Детти из NBX no Ty6-19-221-83		3.2. Проход пластмассовых пруб Д >>160 мм.	
2.4.1. Отвід с раструбом под резиновое		через ограждающие жонструкции	
КОЛЬЦО.	47	при помощи набивных сальников	62
2.4.2. Отвід с раструбом для клеевого		3.3. Проход — пластмассовых труб Д =160мм.	
СОЕЙІНЕНИЯ.	48	через ограждающие конструкции при	
2.5. Детсли из ПВХ по ТУ 6-19 -222- 83		помощи нажимных сальников.	63
2.5.1 Втужа под фланец	49	3.4. Детали заделки пластмассовых труб	
2.5.2. Переход	50	в кирпичных или Бетомных стенах	
2.5.3. ΤρούΙυκ	51	водопроводных колодцев.	64
2.5.4. My pno	<i>52</i>	3.5.Детали заделки пластмассовых	
2.5.5. Y20Th HUK	<i>53</i>	труб в стенах водопроводных	
2.6. Demciju us nax no Ty6-19 -223-83			85
2.6.1	54	3.6. Детали заделки пластыассовых труб	
2.6.2. Муфпа надвижная	54	в потковой части канализационных	
2.6.3. TPOÚHK 110/63	55		66
2.6.4. Tpoù IUK	5'5	3.7. Детоли заделки пластыассовых труб	
2.7. Чугуные соединительные детали		б рабочей части сборных ж.б. пере-	
по Дії 16451, поставляемые в ком-			67
ПЛЕКПЕ С ТРУБИМИ ПВХ ПО ТУБ -19 -231 - 83 .		з.в. Детоли заделки пластыассовых труб	
		в лоткобой части сборных ж.б.	
2.7.1. Тройнік трехраструбный равніпроходной.	. <i>56</i>		68
		3.9. Горизонтальная прокладжа пласт-	
2.7.2. Патрубок-флинец — глидкий конец	<i>57</i>	массовых труб Дн 25 и Дн 32.	69
2.7.3. Патрібок - фланец - раструб	57		
2.7.4. Тройник с дбумя раструбами и фланцем.	58		

USM ЛИСТ НЕ ВОКЦИИ. ПОВЗ. ЛЕТО 4.900-9-В. []-1 КОПИРОВОВ: ДОЦЕНКО. ДИЯ—21224. 4

Формат АЗ

Auct 4.900-9-B-0-1 KONUDOBOA: DOUCHKO DUS-21224 5

.б. қ² тал. (подп. и дато | взам. инб.ж⁹ (инб. н⁹аубл.) падп. и дата.

Настоящий выпуск является всломогательным мотериолом при проектировании наружных и внутренних систем водоснобжения и конолизации из пластмоссовых труб.

Выпуск розроботон институтоми "Союзводокано лпроект" v "Сантехпроект" c учетом действующих но 1985 г. ГОСТ об и ТУ на пласттассовые трубы и соединительные детали.

В выпуске приведены рекомендации по применению в системох водоснобжения и нанализации пластмоссовых пруб и соединительных детолей по сокрошенной номенклотуре.

При проектировании систем из пластмассовых труб необходимо рукаводствоваться следующими документами:

- 1) СНи П 2.04.01-85 "Внутренний водопровод и канализоция,
- 2) СНи П 204.02-84, кодосно Бжение. Норужные сети сооружения";
- 3) СНиЛ 2.04.03-85 Канализация. Наружные сети и сооружения";
- 4) "Инструкцией по проектированию и монтожу сетей вадосновжения и конолизации из плосттоскавыж трув," СН 472-80;
- 5) "Инструкцией по проектированию технологических трубоправодой из пластычассовых труб", СН 550-82;
- б). Пособием к инструкции СН 550-82 по проектировонина технологических трубопроводов из плостмассовых пруб. М. Строииздат, 184;

- 1), Рекомендоциями по проектировонию и монтажу наружных водопроводных и конолизоционных сеттей из поливинилжлоридных раструдных труд,"
 НЛО "Пластик», ЦНИИЗП инженерного оборудования, Москва, 1984г;
- в) Катологом "Трубы и соединительные детоли из термоплостов," НПО "Плостик", г. Черкоссы, 1985г;
- 9) Komanorom "Xumuveckon cmoünocmb mpyb us mepmonnocmob" HND "Nacmun", r. Черкассы, 1985г;
- 10) , Τοδρυμομο для ευδροβρυνες κοιο ρας νεπο πρυδοπροδοδοβ κομορυσομου ο βοδος κοθοκεμος ο ποπυρπυπεκοβείτε πρυβ δορεωοιο δυομετρο, Ήμυ Μος-CIPOÚ, r. Mackbo, 1981r;
- 11) "Укозаниями для гидровлического росчета трубопроводов водоснабжения и канолизачии из поливинилжлоридных труб торки ПВХ - 100," НМ - 61-84, Управление Моспраект - 1 Главалу г. Москвы,
- HUUMocempoi, r. Mocebo, 1984;
 12) Cepuei 4.900-9. "Узлы и изделия трубоправодов из плостмоссовых труб для систем водосновжения и конолизоции."
- Выпуск 1. Крепления пластмоссовых трубопроводов;
- 13) Серией 4. 901-1, Упоры на наружных трубо-проводах водопровода и намализации.

дп. и дота Взам инви Инв. и бубл Подп. и дата

ၮၣၦႄဎႄၑ႞ 2. NAOCMIOCCORNE

При проектировании наружных сетей водосновжения и канализоци, а также внутреннего водопровода применяются плоспомоссовые трубы;

U3 NOJUJMUJEHO.

а) низкого довления ПНД (сторое нозвание ПВЛ)

DH 10 + 1200 MM AO FORT 18599 - 83, DH 315 + 1200 MM no T 46 - 19 - 214 - 23

б) высокого довления ПВД (сторое нозвание ПНЛ) DH = 10 + 160 MM TO FOCT 18599-83;

из поливиния жлорида ПВХ (сторое название виниплост) DH . 16 + 315 MM NO TY6-19-231-83;

U3 полипропилент ПП Дн 25 + 3/5 мм по ТУ 38. 102.100-76.

Сортомент вышлуказанных труб приведен в при. nomenuu 1.

Для Внутреннец конолизации применяются трубы плостмоссовые конолизоцианные из ПВД, ПНД. ПВХ и ΛΛ Dy 32+ 100 no 10ct 22689 3-77, copmamenm mpy5 npu. веден в приложении 4.11.

При выборе труб необхадимо дополнительно зопрошивать заведы - изгатовители а наличии выпуско иж в данное время.

Пластмассовые трубы в зависимости от максималь. ния и канализации сокращенной наменклатуры, ного довления ковочей среды при t. 20° с подрозде-JAHOMER HO MUNU:

1- neekuu; P=0,5 Mna (25 kfc/cm²);

[Л-среднелегкий; P=0,4MNo (4Krc/cm2);

[- cpeдний; P=Q6MN9 (6 кгс/см2);

T- mascensio; P: 1Mna (10xrc/cm2);

DT- ocoδοma жель»; P= 1,6 MNO (16 κrc/cm²) _ 2 ng τργδΠΒΧ

Выбор мотериоло и типо труб следует производить с учетом условии роботы трубопроводов, температуры и огрессивности тронспартируемой жидкости по котологу, жимическоя стойность труб из термопластов", НПО "Плостик," 1985-

Χυμυνεςκος επούκος πο πλος πμος εδών προδ κ розличным реогентом, применяемым в водосновжении и канализации, приведена в СН 478-80, раздел 1.

При транспортировке жидкостей с токсичными свойствами, к которым материал труб жимически стоек, и нетоксичных сред, к которым материал труб условно стоек, допуститое рабочее дав. ление следует определять с учетом поправочных панижающих коэффициентов по СН478-80 п. 1.7.

Для хозяйственна-питьевого водосновжения должны применяться трубы с моркировкой "Питьевоя," имеющие разрешение Минздрава СССР.

Гидровлический расчет напорных и безнапорных труб выпалняется в соответствии с разделом 2 СН 478-80 и "Табличоми" HUL! Мосемроя.

Выбор пластмоссовых труб следует производить с учетом рекомендуемой для систем водоснобжеприведенной в тоблице 6.

	_				
Usm	JUCT	н докум.	nogn.	Dara	١
					l

4.900 - 9 - B. D-1

3. Саединительные детоли.

Соединительные детоли (втулки под фланцы, уголь. ники, тройники, муфлы, отводы и т.д) в зависимости ат видо полимерного материала и размеров изготовливаются методоми: литьем под довлением, прессованием, кантоктной и экструзионной сваркой, гнутьем.

В приложении 2 "Съединительные детоли" приведены детоли зводского изготовления по тежническим условиям, розроботонным НЛО " A sacmur."

Соединительные детали выпускоются chedyrowux muiob:

Т-для сборки с прубоми типов т, с, сл;

C — для сборки с прубоми типов С, Сл;

CA-das cooper c mpy some munob CA; A.

Л - для сборки струбами типов Л;

0-для применения в безнапорных системох.

При изготовлении сворных соединительных детолей на мантожных площодках ани должны былолняться из труб на один тип быше типа труб, к которым они присоединяются, а для труб типа Т-из метолла.

При выборе соединительных детолей необходима дополнительно запрашивать заводы-- изготовители в наличии выпуска иж в донное время.

При отсутствии соединительных деталеи заводского изготовления по приведенным выше техническим условиям можно

применять детали, выпускаемые слециализировонными организациями:

CKT5 , 3 Hepronpommonumep "no TY34-48 3777-31-79 (Москва, 119530, проектируемых проезд 3636, д. 4); Киевским филиолом, вниимонтожствустроя" по OCT 36-56-8) (Kueß, 252040, Trasayon yn. d. 118);

Donbheomexhuyeckou skaneduvuec (513) ynpobnehua, reamunbod" Munzapoba CCCP, cepua PM (Москва, 113114, Даниловская ноб. д. 40).

Номенклотура детолей, выпускоемых вышечказонными оргонизациями, приведена в табличе 1. Размеры этих детолей атличаются ат размеров детолен зоводского изготовления. Производство укозон ных детолей огроничено, поэтому возможность их постовки необходимо согласовывать с изготовителем.

В случое отсутствия плосттоссовых соедини. тельных детолей следует пользоваться металлическими Для рострубных труб ПВХ имеются чугунные coedunumeshnue demasu, sakynoemne 6 PPF, no DIN 16451 (cm. npunomenue 27)

выбор соединительных деталей следует производить с учетом рекомендуемой для систем водосновжения и конолизоции сокрощенной наменклатуры, приведенной в тоблице в.

4.900 - 9 - 6.0 - 1 Копировол: В. Филиппова 21224

Применяются разъемные и неразъемные типы соединении пластмассовых труб Милы соединений и рекомендации ла их применению приведены в приложении 3.1. ДЛЯ быпалнения нерозъемных соедине нии необходима применять трубы и соединительные детали из однородного полимерного материала.

Применение труб и соединительных детолей из разнородных мотериалов для выполнения нерозъемных соединений не долугкоется.

Кроме типовых соединений, указанных в приложении 31, для самотечных трубопроводов внутренней конолизации диомет ром 50 ÷ 110мм всяможны следующие соединения: соединение изделии из ПНД и ПВД с помощью εσύκυ ε ρεзυμοδού προκποθκού;

соединение изделий из ПНД и ПВД с помощью муфты с вклодной электроспиролью.

В донном вылуске приведен вориант сое. динения изделис из ПНЭ с помощью резикового уплатнительного кольца, как ноиболее технологичный

> 5. Προχοί προεπμοισοδοία πρυδ через ограждающие конструкции сосружений.

Детали проходя плостмоссовых труб через стены емкострых сооружений и калодуев.

предназначенных для строительство в условияж сужиж, мокрыж и просодочных грунтов приведены в приложения 3.2÷3.8.

Прожод пластмассовых труб через ограждающие конструкции емностных сооруже нии следует былолнять при помощи сольников (нобивных и нажимных) или латрубков.

Набивные сольники по серии 5.900-2 применяются только для труб с норужным ди-Ометром 160мм и более. Для труб диометром до 160мм набивные сальники применять не рекомендуется, т.к. при неровномерной нобивке трубы деформируются.

Для труб диаметром менее 160 мм применяют-СЯ Нажимные сольники по серии 5.900-3.

Жесткая зоделко труб в стены емкостных сооружений осуществляется стольными ребристыми потрубками, к которым пластмассовые трубы присоединяются при помощи втулак под фланцы.

Расстояния от стен до фланцев следует принимоть для труб диаметром до 400мм включительно-300мм, от 500мм и выше-500мм.

Прожод пластмоссовых труб Л < 160мм через стены колодцев необходимо осуществлять через стальную трубу-футляр, чтобы избежать смятие труб бетоном зоделки.

4 900 - 9 - B. O-1 21224 9

б. Норужноя проклодка трубопроводов.
Проклодку плантноссовых трубопроводов следует предустотривать, кок провило, подзенную: в траншеях, коллектарах, таннелях, каналах отдельно или совместно с другими инженерными коммуникациями.

При соответствующем технико-экономическом обосновании и теплотехническом расчете длускается надземная прокладка пластмассовых труб в насылях и на опорах, при этом трубы должны быть защищены от воздействия прямых солнечных лучей.

При подземной прокладке пластмассовых труб в обычных и особых природных и климатических условиях (сейсмические районы, просадачные грунты, подработываемые территорчи, вечномерэлыг грунты) должны соблюдоться требования по транспортировке, розгрузке,
хронению, монтажу и сворке труб, приведенные в разделож 6, 8, 10 и 11 СН 478-80. При
этом, при темпгратуре наружного воздуханиже минус 10°С рекомендуется применять трубы из ПВД и ПНД.

Моксимальнук глубину заложения напар. ныж сетей из труб типов СиТ следу. ет принимать не более 3,5 м до вержа труб.

Моксимальную глубину заложения, тил основания и требования к грунту засылки при проклодке безнопорных канолизацианных сетей из плостмассовых труб диаметром до 630мм следует принимать по таблице 2, а для труб диаметром свыше 630мм - по таблице 3.

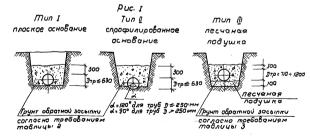
При необходимости укладки труб на большей глубине или труб другого типа следует произбодить их расчет на прочнасть.

Минимальная глубина заложения напарных сетей из пластмоссовых труб должна быть на 0,5м больше расчетной глубины проникновения в грунт нулевой температуры, но не менее 1м до верха трубы при интенсивнам движении транспорта и не менее 0,7м при незночительном движении транспорта.

Минимальная глубина заложения мажетбыть уменьшена до 0,5м при соответствующих теплотехнических расчетах и расчетах на прочность.

Минимальную глубину заложения безнолорных канолизационных трубопроводов допускается принимать: для труб диаметром до 500мм на 0,3м для труб большего диаметра

Πρυ κοκοπρηυροβομου Вадопроводов И Напорной канализации ο ροιπρίδсаединг ниями резиновых HUMU HO поворотов, ответ-KONBUOX MECMOX влений пупиковых участков должпредуема прива ться yempoù em bo члорав. Упоры на HODYXCHЫX HONODтрубограводах водопровода и Hblxконализации разрабатаны в серии 4 901-7


Земляные роботы следует производить в сфтветствии с требаваниями глав СНиЛ по производству робот по земляным саоружениям и норужным семям и сооружениям и водоснавжения, канализации и теплоснавжения

С целью уменьшения давления грунта на трубы стенки траншей следует выполнять с минимальным загожением откоса, а траншей — минимальной ширины. Трунт в осневании лод трубой должен быть тирательно выравнен и не должен соделжоть киргич, камень и щебень.

Плостмасстые трубы диажетров до 630 мм уклодываются но естественное плоское (см. рис. I тип I) или спрофилированное ст. рис. I тип \mathbb{Z}) основание. Трубы диаметром свы-

ше 630 мм укладываются на песчаную подушку толщиной не менее 10 см (см. рис. I тип II) При ноличии скального или гравелистого грунта дно траншеи для всеж диаметров трув следует выравнивать песком

NOU OGO MHQU BOCHINE PARCHMOCOBHIX трубопроводов следует предустатривать подδύβκυ ραзνχ υ 30ωυπηρώ οπού μαθ верхом триб толщиной 30 см. из мягкого местного грунта, не содержощего твердых включений (щебень, камни, кирпич и т.д.) При этом применение ручных и мехонических трамбовок непосредственно над трубопроводом не допускоется. При устройстве защитного слоя места саединений трубопроводов следует оставлять не засыпанными. В зимнее время устройство защитного слоя должно производиться незомерз-WYM PANHMOM.

4, 900 - 9 - B. O-1

21224 11

9

ince u daro B3 an unan Une 4 node nodence

В приложении 3.12 показаны сжемы истановки арматуры в колодуах.

Для уменьшения гобаритов колодчев, а также из-за сложности производство работ по сварке пластмассовых труб в колодиах, рекамендуется применять металлические фасонные детоми.

Арматуру, установленную в колодцож, следует крепления дан в приложении 3.13.

Соединения плустмоссовых труб с трубоми из других материалав выпалняются на свабодных металлических фланцах.

Рланцевые соединения следует, как правило, роспологоть в колодиах. Допускается розмещение фланцевых соединении непосредственно в грунте с «беспечением мер по защите их от коррозии (например, путем заливки соединения битумні-резиновой холодной мостикой)

Схемы узлов из труб ЛВХ предстовлены в приложении 3.14.

7. Проклодка технологических трубопроводов из пластнассовых труб в зданиях и сооружениях.

Прокладка плестмаесовых труб взданиях и сооружениях должна производиться с исполь. зованием Саединительных деталей и узлов, представленных в приложениях 2 и 3.

В помещениях с категорией производства Я, б и в пластмонсавые трубы следует защищать от возгорания путем прокладки

их в нишах, шахтох, бороздох и т.п.

Расстояния между опорами при горизантальнай проклодке пласттоссовых труб следует принитать по таблице 4.

Разъемные раструбные саединения рекомендуется располагать на опораж, при невозможности такого расположения расстояния между опорами, приведенные в тоблице 4, следует уменьшить на 30%.

Трубопроводы диаметром до 110мм включительно рекомендуется проклодывать на сплошном основании, делая разрывы в местах установки разъемных соединений. При необходимости допускоется прокладка трубопроводов диаметром да 110мм на опорах.

Допустимый прогиб основания - 1/250 росстояния между опорами.

Горизонтальные участки трубопроводов следует крепить к сплашному основанию хомутами через каждые 2м.

Расстояния между опорами вертикально прокладываемого трубопроводо следует принимать по таблице 5.

в приложениях $3.9 \div 3.11$ представлены схемы конструкций креплений пластмоссовых трубо-проводов но сплошном основании и отдельных опорах.

Ярматуро и металлические фасонные чости, находящиеся на плостмоссовом трубопроводе должны иметь сомостоятельные крепления, предотрациющие передачу весо на трубопровод.

4. 900 - 9 - B. 0-1 1911 Met Noon yn, Noon Jaro 21224 12

Крепление орнатуры, расположенной но пластмассовам трубогроводе доно в приложении 3.13

В приложения 3.15 приведены сжемы оббязκα χυμυνες καχ μαςος οδ παροδ Χ. ΗΣυ Β, μουδοлее часто истярозуемых в реогентных $xo39 \dot{v}cmbox.$

При использовании стальных закладных, крепежных и фоссиных детолей необходимо предустатривать их антикоррозионную защиту. Тип защить назначается в конкретнам npoekme.

Крепление трубопроводов к канструкциям принимать по серии 4.900-9, выпуск 1, крепления пластмоссовых трубопроводов."

В. Узлы и детали внутреннего водопроводо и канализации.

Трубы пластчассовые канализоционные и фасонные чусти к ним по Гост 22689.0-17; 22689. 20-77 проведены в приложении 4.

При разрабстке узлов внутренних систем водопроводо и конализации применя. ются диаметры трубопроводов: но порных от 20 до 225mm сомотечных от 50 до 110 mm Робочее довление для напорных систем-

IMNa (10 Krc/cm2), JAA COMOMEYHIX CUCTEM-

-0.1 MNa (1 Krc/cm2)

Темперотуро окружоющей среды не должно превышать 50°C, тронепортируемой жидкости--не выше 60°с, стоков - не выше 40°с.

Рекомендуемую сокращенную номенклатиру пластмоссовых труб и соединитель. ных детолей для внутреннего водопроводо следует принимоть по тобличе в, для внутренней канализации no moônuue 7.

В данном выписке разрабоманы узлы для подключения следующих тиποδ εαμυποριώς πρυδοροβ:

чмывальника керамического прямоугольного; поддоно душевого чугунного эмалирован-HOTO MENKOTO:

унитаза керомического тарельчатога; чоши чугунной эмалированной; писсуара керамического ностеннаго; ∂ywa.

4.900-9-6.0-1

Депали, выпускаемые специализированными организациями.

Ταδλυμα	1
ΙΟΟΝΙΟΚΟ	7

N	Наименобание	Материал	Наружный диаметр соединяемых
<i>11/1</i> 1		L	тру Б, мм.
	673 ynpable	HUA , T	еоминбод", серия РМ-2
	Переход	118 A	40 x 20; 63 x 40; 110 x 63
2	Отбод сварнойУ	"	110, 160
	Y 2011 HUK	. #	20; 25; 32; 40; 63; 75;110
	BMY AKO AOD PADREL	"	40; 63; 110; 160
5	Haknadka ne-		
	реходна я.	"	63×32; 63×40; 110×40; 110×63
	Заглушка	"	63; 110
	крестовина	"	63 x32; 63 x40
8	TPOUHUK	4	63×40; 110 × 63; 110×40
9	Myomd	"	20; 32; 40; 63; 75;110
10	Τρούнυκ	"	20; 25; 32; 40; 63; 75; 110; 160
H	PACHEL COODOT-		
	ный под втупку	ПВХ	63; 110; 160
12	Koneho	"	20; 25; 32; 40; 51; 63; 76; 83;
			98; 102; 114; 140;160
/3	Переход	"	25×20; 32×25; 40×32; 63×51;
			76 × 63; 83 × 76; 96 × 83; 102 × 96;
			114 × 102; 140 × 114; 166 × 140
14	Τρούнυκ	"	32 x 32; 40 x 40; 63 x 40; 63 x 63;
			83×40; 83×60; 83×83; 114 × 63;
			114 ×114; 140 × 63; 140 × 114; 140 × 140;;
			163×63; 163×83; 166×114; 166×166.
/5	Крестовина	4	32×32; 40×40; 63×40; 63×63; 83×40);
			83x63; 83x 83; 114x 63; 114 x 114; 140 x 114;;
			140×140;166×63; 166×83;166×114;166×166
16	XOMYM	4	50;75; 90; 110; 140; 160.
/7	Хомут литой	"	20; 32; 40; 63; 110
	Фланец		20; 25; 32; 40; 50; 63; 75; 90; 110;
	<i>cช็ ดชิ ดชิ หงเป</i>	'y	140; 160; 215; 280; 315.

./	I II maria Para esta	Maria	Ταδλυμα 1
N No		1	Наружный диаметр соединяемых труб, мм.
	BHUU MOHMOKON	гцстрой	, 0'07 36 - 56 -8!
Ī	Отвод гнутый	118,4	25;32; 40; 50; 63; 75; 90; 110; 125;
	90*		140;160.
2	Тройник	"	32; 40; 50; 63; 75; 90; 110; 140;
			160; 225; 315
3	Крестобина	"	32; 40; 50; 63; 75; 90; 110; 140;
			160; 225;3/5
4	Отвод сбарной 90°		63; 75; 90; 110; 140; 160; 225; 280; 315
		SHEPEON	POMNOJUMEP"
	TY34 ~	489111 -	-31 - 79
1	Тройник равно-	ПВД	63; 110; 160
	проходный.	NHA	225 ; 315 ; 400
2	Отвод односег-	ПВД	63; 110; 160
	ментный 90°	ПНД	225; 315;400
3	ambod bes	ПВД	63; 110; 160
	сегмента 45°	ПНД	225; 315; 400
4	Ombod Без	ПВД	63; 110; 160
	CESWEHWA 60°	ЛНД	225 ; 3/5 ; 400
5	<i>กาซ็อสิ ธิ</i> ย3	ПВД	63; 110; 160
	сеемента 90°	ЛНД	225;315;400
6	Тройник не равно-	ПВД	110/63; 160/63
	проходный.	ПНД	3/5/225; 400/225; 400/3/5
7	Втулко под	ПВД	63; 110; 160
	ФЛОНЕЦ.	ЛНД	225; 315; 400

_					
			 -	4 900-9-B D-1	Tuci
ЦЗМ.	AUCT	Nº BOKYM.			12
				Annauma A.	

труб Дн<630 мм для безнапорных жанализационных сетей Мабания 2

		•				IIIQONUYA &
Материал	Нсружный	Mun	Максимал	иенаь ѕилепна	Заложения н	Мип основания и
труб	диаметр, мм		в пескаж У=1.67/м³	в саѕипнкаж п в саѕипнкаж п	8 = 2,0T/H ³	требования к грунт обратной засыпки.
ПВХ	160	Ċſ	До 8	Дa 8	Да:8	Mun основания I. Пребования к грунту обра:
	100	С	До:8	До 8	До 8	ной засыпки не предзявляют
ПВХ		CI	До 8	До 8	До 8	
IIDA	180	C	Да 8	До 8	До 8	— Може
ПВХ	000	C.S.	Д ₀ 8	До 8	До́ 1,5	Мип основания I В глинах трубы укладыват
	200	C	До 8	До 8	До 8	В глинах трубы Укладыват при Условии повышенного Уплотнения грунта (Купп» 0,9
ПВХ		ςή	Да: 8'	До 8	До: 1,5	m
1107	225	. С	Да 8'	До 8	Дь 8	− Може
пвх	050	CS	До 8	ДаВ	До 1,5	
110X	250	С	До 8	До 8	До 8	
Пвх	315	CJ	До 8	Д 8	Ao 1,5	Тип основания I.Требования к груг Фбратной засылки не предзевляю
ПВД	160	CJ	До:8'	Да 8	До 8	Мо же
ПнД	160	C.I	До: 8'	Да 8	_	Мип пснования I Укладывать при условия
		C	Да 8'	<i>Д</i> a 8	До 8	нормального уплотнени грунта (Кум. ≫ 0.85)
ПнД	180	Cs	До 8	Да 2 ,5		
	160	C	До 8'	Д ₀ 8	До 8	По же
ПНД	200	CJ	Дь` 81	До 2.5	_	
		. C 11	До 8	До 8	До 8	
ПНД	225	CI	До 8	До 3,5		
	"""	C	До 8	Да 8	La⁻8	"

Лист от докум. Подп. Доти
4.900-9-8.0-1

Копировал Гольденбаун 21224 15 формот А.

OR UHE H. WHE NO SYEN NOON. U DOW

A BBOKUHBN. UHBN

г. Подп. и дата

A aconda Inan .. Amm

Ma mepua 1	1 аружный		Максималь	ная глубина з	Продолжен Валожения, м	
труб	MM, qmambut	Tun	8 πεσκισχ 8 = 1.6 π M ³	В суглинках и з супесях, х =1.7Т/м		Тип основания и требования к грунту обратной эссылки.
Пнд	250	CJI	đ <i>m 8</i>	đo 4		Тип оснобания I Б Суглинках супесях у глинах укладывать при услобич нормального уплотнения грунта(Купп. ≥ 0.85)
	200	C	đa 8	да 8	đo 5	при услобий нормального Уплотнения грунта(Кулл≫0.85
ПНД	280	СЛ	đ <i>a 8</i>	до 4.5	_	ו פוואה ממשמת מוודו
ттт	200	C	∂w 8	_	до 1.5	Всуглинках и супесях уклад. Вать при условии нормальног уплотнения грунта (Купл.» 0.85)
пнд	315	СЛ	đ <i>a 8</i>	đo 4.5	_	Тип оснобания І.В суглинказ су песях у глинах укладыват при условии нормального уплотнения грунта (купп. ≥ 0.85)
ппд	313	C	дю 8	до 8	до 8	при УСЛОВИЙ НОРМОЛЬНО20 Иплотнения грунта (Кипл. № 0.85)
Пнд	355	СЛ	địo 6	доб	đo 5.5	ути пеном грунти пути. 3 десках Јукладывать при условии нормаль го уплот нения Кум. > 0.89,8 суглины сипесях и гинах при условии повы угрунта кум. 2014 го. 1914 го. 2014
д	333	С	дю в	đo 8	до 8	720 ЦПЛОТ НЕНИЯ (КУПЛ. ≫ 0-8-9.0 СУЗЛИНЬ ІСЦПЕСЯХ И ЗПИНОХ-ПРИ УСЛОБИИ ПОБЬ ШЕННОЗО ИПЛОТНЕНИЯ ЯВРИНТО(КИПЛ.≫0.9.
Пнд	400	СЛ	δίο δ	дов	до 5	IIIID DENODANIIST
,,,,,	700	C	đω 8	до 8	đo 8	в глинах укладывать при условии нормального уплотнени грунта(Купл. ≈ 0.85).
ПНД	450	СЛ	đ lo 6	доб	до4	То же
ПНД	500	СЛ	đlo 6	дов	доз	
пнд	560	CJI	đlo 6	до6	до 2.2	
пнд	630	CII	∂la6	до б		
ПП	160	C	∄o 8	8оБ	до 8	тип основания Т.Б сиглинках и сипе икладывать при условии повышенног уплотнения грунта (Купл. ≥ 0.95)
nn	180	C	đlo 8	до8	до 8	То же
חח	200	C '	đlo8	до 8	до 8	
nπ	225	, C ₅ ,	đ1o 8	đo4	до 8	v
nn	250	С	đio 8	до 4	∂08	
חח	280	C	<i>ā</i> 108	до 8	до8	

Настоящая таблицэ составлена на основе приложения 9 СН478-80 и

дополнений и изменений по "Бюллетеню строительной техники "И! 1981е. Т

4.900-9-8.0-1 USN AUCT Nº BOKY M. MOBA. MOTO 1. St. Konuposon: A oye HKO. Def-

21224 16

Формат АЗ

"—"трубы применяль нельзя.

เหอ็.ฟะกอลิก (tean. น ฮัตเกซ | โรชเพ.นหล์ ก^ลิ ปูหธิ.ฟะ ฮิษุธิ) (เอลิก. บ ฮัตเกซ.

Максимальная глубина заложения в грунт пластмассовых труб $\Lambda_H > 630$ гм для сомотечных канализационных сетей

To6 nuyo 3

Мотериал	Нарзжный	Tun	Глубина за	гложения, м	Tue assure			
труб	диометр, мм		в пескох у до 2 т/ м 3	в глинистых грунтах f=21/m3	Тип основания и требования к грунту обратной зосыпки			
		Сл	6,8	4	Тип аснования <u>п</u> Укладывать при условии уплотнения грун			
D H 70	710	С	∂0 8	5, <i>2</i>	Вручную (Купл. > 0.82)			
ПНЭ	'/6	СЛ	∂o 8	ටං 8	Тип основония <u>її</u> Уклодывоть при условии межанического			
		C	∂0 &	∂o 8	YNDOMHEHUR FPYHMO(KYND. > 0,97)			
		CI	6,8	4	Tun ochobohus III			
		С	∂o 8	5,2	Унладывать при уславии уплатнения грунта вручную(Купл. > 0.92)			
$ \Pi H \mathfrak{I} $	800	СЛ	∂0 8	∂08	Tun achogamus III			
		C	<i>20</i> 8	<i>до 8</i>	Укладывоть при усповии межанического уплотнения грунта(Купп. > 0.97)			
		л	5, 2	2,3	Тил основания Ш			
	000	CJI	6.8	4	Укладывать при условии уплотнения грунта вручную (Купл.> 0,92)			
$\mathcal{L}H\mathcal{D}$	900	J	∂o 8	da 8	Тил основания Т			
	1	CA	208	. do 8	Укладывать при условии механического уплатнения грунто(Куп. 70.97)			
		Л	5,2	2,3	Тип основания 🔟			
0113	4000	C.n	6, 8	4	Укладывать при условии уплотнения грунто вручную (Itynx, >0,92)			
$\Pi H \mathfrak{D}$	1000	Л	80 8	∂0 8	Тип асновония 🔟			
		CA	∂0 8	∂0 8	Укладывать при условии межаническая уплатнения грунта (Купл. > 0.97)			
		Ŋ	5,2	2,3	Тип оснобония Ш			
U H D	1200	CA	6.8	4	Уклодывать при условии уплотнения грунта вручную (Купл. 70,92)			
$\mathcal{L}H\mathcal{D}$	1200	Л	do 81	∂08	Тип основония П			
		CJ	ට රි	. 208	Унлодывоть при условии механичес уплотнения грунто (Купл. > 0,97)			

Примечония: 1 Без специольном уплотнения грунтов допустима унладко труб из ПНД мило Сл. в пескаж средней круп-Насти на глубину до бм. и тил с-в сухих глинистых грунтах на глубину до. нм. 2. Настоящая таблица состалкена на основе приложения 24 изменения инструкции СН 478-80

4. 900 - 9 - 8.0 -1 Usin Swem N dony M. Modn.

Копировал: В. Филиппова

21224 17

Popmom A3

Расстаяния между апарами гаризантамьна прокладываетага трубаправада.

	Paceman	HUE MENTY	апорами	гаризант	OA6HO /	PORNOTA BUE	Bae mozo	трубапр	aBada, mm	U3 mam	ериала	OUNUGU.
_						THA, AA						
Дн		. <i>1</i> 1			CI			C			τ	
MM			Tem	пература	транспар	отиру емой	жидкос!	nu , °C				
	20	36	40	20	30	40	20	30	40	20	30	40
10										400	350	300
12										420	400	350
16										500	450	400
20										55C	500	450
25				1 7			600	550	500	650	550	500
35							650	600	550	750	650	600
40				700	700	60CT	800	700	600	850°	800	700
50				800	750	. 6501	1000	900	800	1000	900	800
63	850	800	700	900	800	מטר	1150	1050	900	1150	1050	900
75	900	800	750	1100	950	800'	1250	1150	1000	1300	1200	1000
90	1000	900	800	1200	1100	900'	1400	1250	1100	1500	1350	1200
110	1100	1000	900	1400	1200	11001	1500	1400	1200	1700	1500	1300
125	1300	1150	1000	1500	1300	1200	1600	1500	1300	18007	1700	1450
140	1400	1304	1100	1600	1400	1200	1750	1600	1400	1950°	1700	1550

Настаящая таблица соответствует таблице 7 СЛ478-80, . Вополненной Ванными СКТБ "Энергопромполимер"

E				F	4.900- 9- B.O-1	лист			
ИЗМ	SUCT	Nº BOKYM	noan.	Acro		16			
ко пирова д. Синицына 21224 18 Формат Я.									

Продолжение таблицы 4

Ди,	Paccm	ORHUR ME	эжду опо	рами го			οκлαдыв	аемого	трубопр	овода, мн,	из матер	uand
""		J	T		ርብ CD	·,		C				
MN.		- 1/	Менп	ература		портиру	emoù a	cuðkocmu,	° C	L	7	
ţ	20	30	40	20	30	40	20	30	40	20	30	40
160	1550	1407	1250	1700	1500	/350	1900	1750	<i>1500</i>	2150	1950	1700
180	1600	1500	1300	1850	1650	1400)	2000	1900	1600	2300	2100	1850
200	1700	16W	1400	2000	1800	/50 0 0	2200	2000	1750	2500	2250	2000
225	<i>1</i> 850	1700	1400	2100	1900	(700)	2350	2150	1900	2700	2450	2/50
250	2000	1807	1600	2300	2100	7800	2500	2200	2000	2900	2600	2300
290	5500	2010	1700	2500	2250	20010	2700	2500	2200	3100	2850	2500
315	2300	2100	1800	2700	2400	20010	2950	2700	2350			
355	2500	2310	2000	2900	2600	23010	3200	2900	2550			
400	2700	2510	2150	3100	2800	2500	3500	3/50	2700			
450	2950	2710	2400	3400	3100	27010	3800	3450	3000			
500	3100	2850	2500	3 650	3300	29010	4100	3700	3250			
560	3400	3110	2700	3900	3600	3100	4400	3950	3500			
630	3700	3410	2900	4200	3900	3400	4800	4300	3800			
710	4000	3710	3/50	4500	4200	37010	5/50	4650	4200			
800	4350	3.950	3400	4850	4550	4050	5 600	5050	4600			
900	4700	4310	3700	5200	4900	44510	6050	5 400	5050			
1000	5100	4678	405D	5550	5250	4800	6 350	5800	5450			
1200	5750	5/;0	4650	6200	5 900	555:0	7050	6550	6250			

		1 000 D 7 D 1	fluc
		4 91111-51 - 15.11-1	77
Изи Пист Л. докун.	Подп. Дата	1.000 - 0.0 1	17
		Manual F 3 - 5 2/20/ /2 the - 1	-

Ропировал Гольденбаун 21224—19 — Формат А

	Pacam	OAHUE	между	סחספט	MU EO	ризонт	dab HO	INPOKA	адыба ет	M020	трубопр	00000 ,	, MM, U3	материа	na.				
Дн, [1182	7						//	Π8X					
MM.		Л			СЛ			C			<u>T'</u>			7'					
""		20	40	емперо 20	30 I		20 20	YEMOU 30	#Udki		<i>oc</i>	40		- 20 1	40				
/	20	30	40	20	30	40	20	30	40	20	30		20	30	40				
10										250	200	200	<u> </u>						
12					1					300	250	250							
16							300	300	300	350	300	300	.550	450	400				
20							400	350	300	400	350	350	.550	500	450				
25				400	350	300	400	400	350	450	450	400	.650	550	500				
32	400	400	400	450	400	350	500	450	400	550	500	450	850	750	100				
40	500	450	400	550	500	450	600	550	500	650	600	550	1000	950	1000				
50	550	500	500	650	600	500	700	600	550	750	700	600	1200	1100	1000				
63	500	600	550	750	700	600	800	700	650	850	800	700	1350	1250	1100				
75	700	650	600	800	750	700	900	800	750	1000	900	800	1600	1500	1300				
90	800	700	700	900	850	800	1000	950	850	1100	1000	900	1800	1650	1500				
110	900	900	800	1000	1000	900	1150	1100	950	1250	1150	1000	2000	1800	1600				
125	1000	950	850	1100	1100	950	1200	1200	1000	1350	1250	1100	2100	2000	1750				
140	1100	1000	900	1200	1150	1000							2250	2000	1850				
160	1200	1100	1000	1300	1250	1100							2450	2250	2000				
225													3000	2750	245				

<u>изм Лист № докум. Пода. Мато</u>

4. 900-9-8. 0-1

Капираба 1 Доценко. Диб21224 20

Лист 18

UH5.A.P.nodi. | N.o.Bnucs u data| Baam.un5.A.2 UH6. A.E dyby, Iodn. u dama

Расстоятия между ппорами вертикально прокладываемого трубопроводо.

	Pacimasi	HUE MEAKTY INOPA	MU BEPMUKIGAGHO MM, U3 IMAMEPU	។					
An.	ПНД,	ΠΒΧ, ΠΠ		ПВД					
MM.		Температура	транспартируем	ой жидкосп	nU, °C	°C			
	20	30	40	20	30	40			
32	1200	1000	800	1000	900	8.50			
40	1500	1200	1000	1300	1100	1000			
50	1800	1500	1200	1800	1400	1200			
63	2400	2000	1800	2100	מטרו	1400			
75	29 00	2500	2200	2500	2000	1800			
90	32 <i>00</i>	2900	2600	3100	2600	2300			
110	3940	3500	3300	3600	2900	2500			
125	4500	3800	3600	3900	3200	3000			
140	4900	4200	4000	4100	3500	3200			
160	5500	5000	4800	4600	4000	3800			
225	6800	5900	5300						
315	9200	8200	7200						
400	13000	10600	9200						

настоящај тавлица соответствует таблице ? СН478-80.

4.900-9-6.0-1

Рекомендчемуя номенклатура пластмассавых труб и саединительных деталей для применечия в системах вадасновых и канализации

Tabsuya (6
-----------	---

Наименавагие	Диаметр. мм	Tun
TP3841 HANDIH U3 N8A NO COCT 18599-83 U COEDHUMEN6HUE DEMANU U3 N8A NO OCTS-05-367-74	16, 29, 25, 32, 50	С, Т
TP9861 HANAP1618 US NHA NA FACT 18595-83 U COBDUNUMEN6HER DEMANU US NHA NA TY6-19-213-83 U TY6-19-216-83	63, 110, 160, 225, 315, 400, 500, 710, 800, 900, 1000, 1200	л,с,т

Наименавание	Avamemp.	TUN
1,946ы напорные из 1,8X 110 14 6 - 19 - 231 - 83 - 5e3 pacmp4608 - C pacmp46amu	25, 32,50,63 63, 110, 160, 225, 315	τ C, τ
Caedu нительные demanu из Л8X па ТУ6 - 19 -221 - 83, ТУ6-19 -222-83, ТУ6-119 -223-83	25, 32, 50 63, 110, 160, 225, 315	7
TP98bi канализацианные и соединительные детали из ПНД и ПВХ ПО ГОСТ 22689.0-77	50, 110	

MBUET Nº BONSM NOBIL HATA 4 900 - 9 - B. 0 -1

NORLIDOB DE CHILLIANIA 21224 22 900MOR

ормат Яз

A Nº noda Mada 11

Сартамент труб напорных

из ПНД

Наруж	Mu			n CSI	Mu	n C	Mu	n T
нешь' нн непр' даа	Толщина ствикцин	Macca Inoz.Mkr	Толцина стежи, мы	Масса Іпог.н.кі	Толщина стенкцин	Macca Inor.H. Kr	Толщина стенки,нн	
10							2.0	0.05
15		_		-	_	_	2. O	0.06
16					-		2.0	0,09
20		-	_		-		2.0	0,12
25	_			_	2.0	0,15	2.3	0,17
35	_		_		2.0	0,20	3.0	0, 28
40			20	0, 25	2.3	0,29	3, 7	0,43
50			<i>٤0</i>	0, 31	2,9	0.44	4.6	0.67
63	2.0	0,40	25	0,50	3.6	0,69	5,8	1.06
75	2.0	0,48	29	0.68	4.3	0,98	6, 9	1. 49
90	2, 2	0,64	₹5	0,98	5./	1,39	8, 2	2.13
110	2,7	0,95	13	1.47	6,3	2.09	10.0	3,16
125	3.1	1,24	49	1.89	7/	2.69	11,4	4,10
140	3,5	1.55	.4	2,33	8.0	3.35	12.8	5,14
/60	3, 9	1.96	62	3.06	9.1	4,37	14.6	6,70
180	4.4	2,50	! .o	3.85	10,2	5.50	16.4	8.46

Наруж		n Sl	Mun		Mu		Mu	n 7
महत्मृष्ट्र, मम मध्ये व्रथन-	Толщина Ствнки _й н	Масса Іпог,н, кг	Толицина стенки _{лн}	Macca Inoə.n, Kr	Толицина Ст е нки, н	Масси Іпот.н. кг	Толијина стенкији	Массы Іпог.н. кг
200	4.9	3, 26	7.7	4.71	#1,4	6,81	18,2	10,4
225	5,5	3.88	8,7	4,98	12.8	8,59	20, 5	/3. 2
250	6,1	4.19	9.7	7,40	14.2	10.6	22.8	16,3
280	6, 9	6, 01	10,8	9,22	15, 9	13.3	25,5	20,4
315	7. 7	7.04	12,2	11,7	17.9	16,8	28.7	25,1
355	8, 7	9.59	13.7	14.8	20.1	21,3	32.3	32.8
400	9.8	12.1	15,4	18.7	22.7	27.0	36.4	41, 8
450	//.0	15.3	17.4	23.8	25.5	34.1	41.0	52.6
500	12.2	18.8	19.3	29.1	28.3	42.1	45.5	64.8
560	13.7	23, 7	21.6	36.7	31,7	52,7		_
630	15,4	3 O. O	24.3	46.5	35,7	66.8		_
7/0	17.4	38.1	27.4	59.0	40.2	84.7		
80a	19.6	48.3	30.8	74.6	45,3	108.0		
900	22.0	61.0	34.7	94.6				_
1000	24.4	75, 2	38.5	1/7.0				
1200	<i>29</i> , 3	108.0	46, 2	168.0			-	

Пример условного абозначения

Трубы из полиэтигено низкого давления, наружным дианетрон 63мм, среднелегкого типа, для систем хозяйственно-питьевого назначения:

Mpyba ПНД 63 cn "питьевоя" ГОСТ 18599-83.

	4.900 - 9 - B.	. 0 - 1				
Ush Puer N. BOKYN. Padn. Ace	а Прубы напорные	Лит. Масса Масштав				
Paspas Tyceba 77 Ran	US NONUAMUNEHA	1111 - 1 - 1				
7. Контр. Санникова	FOCT 18599 - 83					
		Sucm 1 Sucmos 2				
Н.контр. Мирончик Лими Утв. Харина шим В	ПНД ГОСТ #6338-77	6338-77 СОЮЗВОДОКАНАТПРОЕК				

Копировая Гольденваун21224 23 Формат АЗ

Сартамент труб напарных из ПВД

Наруж-	TUN	Л	Tun	C JA	TUN	C	דעח	<i>T</i>
אנוט אעם-	TOJUSUHO	Macca	Талилина	Macca	ТОЛЦИНО СТЕНКИ,ММ	Macca Inor.m.K2	TOJULUHO CTEHKU, MM	Macca Inor.m.kz
10		_	_	_	_		2.0	0.051
12	_	_		_			2.0	0.063
16	_				2.0	0.089	2.7	0.112
20	_	_	_		2.2	0,125	3.4	0.176
25	_	_	2.0	0.146	2.7	17.189	4,2	0.271
32	2.0	0.190	2.4	0,226	3.5	0,311	5.4	0,441
40	2.0	0.241	3.0	0,364	4.3	0.477	6.7	0.682
50	2.4	4.364	3.7	0,534	5.4	0,745	8.4	1.07
63	3.0	0,564	4.7	0.850	6.8	1,17	10.5	1.68
75	3.6	0.805	5.6	1.20	8.1	1.67	12.5	2,38
90	4.3	1.15	6.7	1.72	9.7	2,38	15.0	3.42
110	5.3	1.73	8.2	2.54	11.8	3.54	18.4	5.11
125	6.0	2.20	9.3	3.31	13,4	4.56	20,9	6.71
140	6,7	2.76	10.4	4.14				
160	7.7	3.61	11.9	5,39	_	_	-	_

ПРИМЕР УСЛЕВНОЕО ОБОЗНОЧЕНИЯ

ППРУВЫ ИЗ ПОЛИЭТИРНО ВЫСОКОЕО ВОВЛЕНИЯ, НОРУЖНЫМ
ВИОМЕТРОМ 110 мм, ТЯЖЕЛОЕО ТИПО, ВЛЯ ТРУБ НЕ
ИСПОЛЬЗУЕМЫХ ВЛЯ ХОЯРИСТВЕННО-ПИТЬЕВОЕО НОЗНОЧЕНИЯ:
ТРУВО ПВД 110 Т "ТЫХНИЧЕСКОЯ" ГОСТ 18599-83

F				4.900 - 9 - 8.0 -	-1_	SAME TO 1	*** · · · · · · · · · · · · · · · · · ·
				70.51	Aum.	масса	Масш та б
Разрав. Провер.	Гусева. Свердпова		Дата	794861 HAMODH618 U3 NONUƏMUNEKQ FDCT 18599-83			
T, KOH TP.	Саннинова	Carl-		781 70000 00	sucm é	Ruch	108
H.KONTP. Ymb.	<u>Мирончик</u> Харина	tuin	867	ПВД ГОСТ 16339-77	CO1038	ОДОК АНА	NOPOEKI

Копировал.Синицына

21224 24

Формат Аз

odn Nodnuce u Joima 830m.un8.Nº UH8.Nº dygn, Nodr. u.e

Приложение 1.2

_								
Норуж	741		Tun	CA	Tun	C	TUN	7
HUIC BUD	Толщино	Macco Inos.m. Kr	Толуино стелкими		Толизино С18нки,тм		Толщино стенки,мк	Macco Inor.m, kr.
315			_				28.7	26, 2
400			_		-		36.4	42.2
500			-		28,3	42.7	45,5	65.7
630	_	_	_	_	35.7	67.6	_	
710			£7, Y	59.7	40.2	85.9	_	_
800	_		30, 8	75,5	45.3	108		_
900	22,0	6/. 6	34.7	95,7			_	
1000	24.4	76.1	38, 5	118.0	_			
1200	29.3	109.0	45.2	170,0	_		_	

Пример условного обозначения трубы норужным диаметром 110 чм, среднего типо (С), преднозноченной для жэзяйственно-питьевого водоснобжения:

Трубо ЛНД 710С "Литьевая" ТУ-6-19-214-83

-								
, domo					4. 900 - 9 - 6. []- [
nodni Nodn. s	NOOB	ы докум. Гусево Свердлово Сонниново	爱		ТРІВЫ НОПОРНЫЕ ИЗ ПО- ЛИЭТИЛЕНО БОЛЬШИХ ДИО- МЕПРОВ ТУВ-19-214-83		Macco —	-
CHB.A.	Н. КОНТ. Ут. в.	мирончик Харина	Tur.	2 86	ГНА морки 273-73 796-05-1870-79		1 <u>70</u> 634331	

Приложение 1.3.

Hopyac	Tun	C
M60 dua. M87 <i>p.</i> mm	Толгуино Стенкимм	Macco Inor. M. Kr
20	2,0	0,12
25	2,0	0.16
32	2,0	0,25
40	2,3	O. 3
40	4.5	0.5
50	2.8	0,45
63	36	0.72
75	4.3	1.02
110	6. 2	207
160	9.1	4.45
180	10.5	5.8

Пример условного обозночения трубы, изготовленной из полипропилена, диаметрам 63 мм, среднего muna:

Tpy80 NN 63C TY 38.102100-76

ам.инвы Цнв.и дубы Подп. и до то

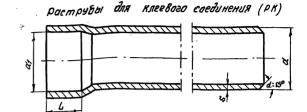
	ŀ					·			
						4.900 - 9 - 6.	D-1		
ĺ					-	Трубы полипропилено-	Sum	Mocco	Moe tu m,
				100n.	Jaro	вые нопорные		-	-
			Свердлово			7 4 38. 102100 - 76		Auci	
ı	L		Сонниково		-		Syem		
	44	OHTP.	Миранчик	aur			LUU361	120KAHA7	IIPULKI
	27	70.	XOPUNO	Jums	L	4 4 6	00	CO #C #	. A ?

21224 25 Konupoban. B. PUNUMOBO

Па настаящим тъническим уславиям выпускаются трубы, Отвечающие допикаемату напряжению для расчета толщины стенки 10МПа (100 кгс/см²) - ПВХ - 100

TPUBLI NBX-100 doinkhu bunychamber a chedynwux munab ui coombemembyowux un padob, ykasahhux b mabauye 1.

Tabau 40 1

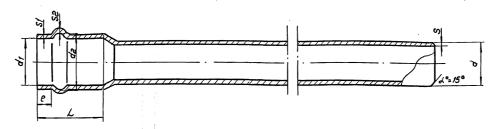

Tun mpub	PAJ	Рабочее давление воды прич 20°C, МПа (кгс/см²)
Сл - среднелегкий	25	a.4 (4)
С - средний	16	0.6 (6)
T - mageeneit	10	1.0 (10)
0Т - асоботяжелый	6	1.6 (16)

Трявы доложны выпускаться следующих видов:
С раструбати под клеевое соединение (рк), (см. тобл. 2);;
С раструбати для шединения С помощью резиновых
Уплотнительных колец (р), (см. тобл. 3);
вез раструбав, (сл. тобл. 4)

Трубы должны гаставляться прятыти атрезками Длиний 5.5 м

Пример условняе обозначения трубы с распубат из непластифицерованного ЛВХ для клеевого соединения диопетрам 32 мм тяжелого типа, не имеющей разришения для жозяйственно-питьевого водоснавжения

ТРУБО ПВХ РК 327 "Технической ТУ 6 -19 -231-83


Сортамент труб С Раструбами для клеевого соединения Таблица 2

			Tunbi			C		7		OT
ď	di	,	PAB61	25		16		0	. 6	
MM	MM	MM	S mm	MACCA 1 M TRYBULKE	S mm	Macca I M TP:YD61,NT	S mm	MACCA I M TRYBU.KI	S MM	Macco I M TPYDbi, H
20	20.3	32		_	_				1.5	0.1
25	25.3	32	_	_	· —		1.5	4,2	1.9	0,2
32	32.3	32	_	-	_	-	1.8	0,3	2.4	4.3
40	40.3	40	_	_	1.8	<i>D.</i> 3	1.9	0.3	3.0	0.5
50	50.3	50	_	_	1.8	D,4	2.4	0.5	3,7	0,8
63	63.3	63	_	_	1.9	2,6	3.0	0,8	4.7	1.3
75	75,3	70	1.8	4.6	2.2	1.8	3.6	1.2	5,6	1.8
90	90,3	79	1.8	0,8	2.7	1.1	4.3	1.7	6.7	2,6
110	110,3	991	2.2	1.2	3.2	1.6	5,3	2.6	8,2	3,9
125	125,4	100	2,5	1.5	3.7	2.1	6.0	3.3	9.3	5.0
140	140,4	109	2.8	1.8	4.1	₽.6	6,7	4.2	10.4	6.3
160	160.4	121	3,2	2,4	4.7	3.4	7,7	5.5	11.9	8.2

E				4.900 - 9 - B . D -	 		
-	-			TP9861 HanopH618 U3	Лут.	Macca	Масштаб
Pa. Np	3Pa&. 0B &P.	Nº AOKSM [SCEBQ CBEPANOBQ COHHUNOBQ	Noon.	HennacmuquuyupoBaHHo20 NonuBUHUNXNO;PUDA TY 6 - 19 - 231 - 83		_	-
14.4	OHIP.	Санникова	04-	13 6-13-231 - 03	Juem	1 Juc	m063
H.A Ym	CONTP. 18.	Мирончик Харина	Tur	NBX FOCT 14332-78	СОЮЗВ	АНАХОДО	UUBDEKI

Копировал.Синицына 21224 26 Формат Яз

Раструбы для соединения с помощью резиновых уплотнительных колец (Р)

Сартамент трук с раструбами для соединения с помощью резиновых уплотнительных колец

Tabnuya 3

d		S1 не менее для труб типо		d2	Se He M	енее тило	L	е	Теоретическая масс трубы, кг	
MM	414	C, MM	T, MM	MM	T, MM T, MM		MM	MM	C	7
63	636	-	3, 4	80		2,8	99. 5	/3	 	4.7
75	75,6	<u></u>	4.0	93, 9		3, 3	102,5	14	1 —	6.7
90	90,7	_	4.8	110,7		40	110,5	15	 	9.7
110	10,8	3, 5	5.9	132, 5	33,0	5,0	116,0	17	9.1	14.4
160	61.0	5.1	8,5	186,0	4.5	7.4	134.0	22	1.9,0	30,3
225	226.4	7.1	12,0	254.5	65. 4	10,6	154.0	27	37,4	59.8
280	281.6	8.9	14.9	314.7	8,0	13.4	172.0	32		92.0
315	3/6.8	9.9	16.7	351. 3	8.1	15.2	184.0	35	57,5 73,0	116.0

Пример условного обозначения трубы с раструбам из непластифицированного ПВХ для совединения с помощью резиновых уплотнительных колещ, диаметром 160мм среднего типа, разрешенной для хозяйственно-пипьевого водоснабжения

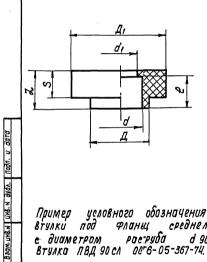
Трубо ПВХ Р 160 С "Питьевоя" ТУ 6 - 19 - 231 - 83.

				4. 900 - 9 - 6.0 -	1			
					Jυ	n.	Mocco	мосшт.
Разраб. Провер.	/усева Свердлова		∄0mQ	неплостифицированного паливинил жл орида 1746-19-231-83			_	-
I. KOHTA	Сонниково	en-		750 15 251 66	Dυ	mí	Juca	ma£
	Мирончик Хорима	Jun	2 86	NBX FOCT 14332-78	COIC	3B0	ZIOKAHAZI	NPOEKT

21224 27

Сартамент труб без раструбов.

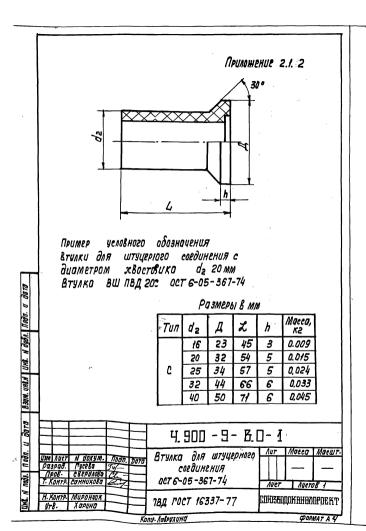
Ταδπυμο 4.

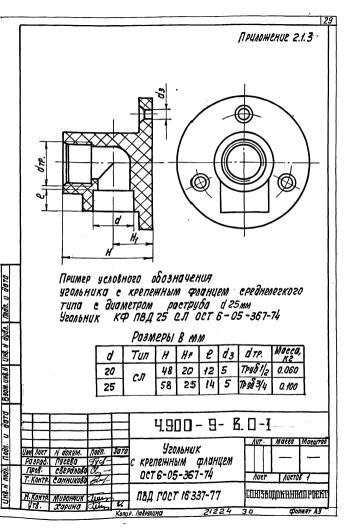

Средний ,	TUNB. C			C		<u></u>	OT.		
наружный		?5		16		0	2	5.44 .444	
диаметр, мм.	Толщио стенки, ММ.	Теар. масса (м трубы, кг	<i>Толщино стенки</i> , ММ .	Teop. Mocco (M Mpy 5 ol, Kr	Толщино стенки, мм.	Teop. Maccasm mpy 6 bl, Kr.	Толщина стенки, ММ.	теор. масса т трубы, кг.	
10							1.0	0.04	
12							1.0	0.05	
16	_						#.2	0.09	
20	_						1.5	0.1	
25					1.5	0.2	4.9	0.2	
32					1.8	0.3	2.4	0.3	
40		:	1.8	10.3	1.9	0.3	3.0	0.5	
50			1.8	Ø.4	2.4	0.5	37.7	0.8	
63			1.9	W.6	3.0	0.8	4.7	1.3	
75	1.8	0.5	2.2	ம.8	3.6	1.2	5.6	1.8	
90	1.8	0.8	2.7	શન	4.3	1.7	6.7	2.6	
110	2.2	1.2	3.2	st-6	5.3	2.6	8.2	3.9	
125	2.5	1.5	3.7	i2.1	6.0	3.3	9.3	5.0	
140	2.8	1.8	4.1	2.6	6.7	4.2	10.4	6.3	
160	3.2	2.4	4.7	3.4	7.7	5.5	11.9	8.2	
180	3.6	3.0	5.3	4.4	8.5	6.9	13.4	10.4	
200	4.0	3.7	5.9	:5.4	9.6	8.5	14.9	12.8	
225	4.5	4.7	5.5	16.8	10.8	10.8	16.7	16.1	
250	4.9	5,6	7.3	<i>18.3</i>	11.9	13.2	18.6	19.9	
280	5.5	7./	8.2	110.4	13.4	16.6	20.8	24.9	
315	5.2	9.0	9.2	113.2	15.0	20.9	23.4	31.5	

Пример условного обозначения трубы из непластифицьобанного ПВХ без раструба диаметром НО мм среднелегого типа, разрешенной для хозяйст-венно-питьевого водоснабжения. Трубо ПВХ 110 сл "Питьевая" ТУ 6-19-231-83.

		_	4.900-9- <i>B</i> .0	-1		
Цэн Лист на доку н. Л. Разраб. Гусева — Пробер. Сверблова (Т.КОНТР. СИНИКОВА Д	4-	Дото	Трубы напарные из непластифицированного поливинил х по рида ТУ6 -19 -231 -83.	n	Масса — 3 Лис	Масшта в ——
уто, харина	linen	14	ПВХ ГОСТ 14332-78 Гоценко. Анд- 21224 28	COHO38		MTEO EKT

INБ. "Хе подл.) подпись и дата Взам, инб. "К. Циб. "Уздубл.) подп. V Вата

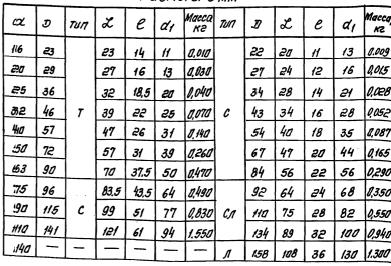

PASMERNI B MM



	1 Control of the																
	d	D	Τυπ	z	е	d,	D,	S	Maeca, K2	Tun	D	æ	e	ď	D1	s	Maeea, K2
	25	36		21.5	18.5	20	58	15	0,030		34	19	#4	21	50	6	0,013
	32	4,6	ŀ	25	22	25	68	<i>1</i> 5	0,050		43	21	#6	28	60	7	0,020
-]	.40	57	7	29	26	31	79	15	0,070	c	54	23	:18	35	78	8	0,027
	50	72		34	31	39	89	15	0, 100		67	25	20	44	88	10	0,040
.]	63	90		40,5	37,5	50	104	15	0, 160		84	27	22	56	102	12	0,052
	75	96		46,5	43,5	64	120	15	0,180		92	30	24	68	110	10	0,073
	90	115	c	54	51	77	138	18	0,240	CA	110	34	28	82	128	12	0,140
	110	141		64	61	94	158	18	0,390	l	134	38	32	100	150	14	0, 200
	140	-	_		_	_				1	158	43	36	130	165	16	0,320

Пример условного обозначения Втулки под Фланщ среднелегкого типа с диаметром раструба d 90 мм: Втулка ПВД 90 сл 00°6-05-367-74.

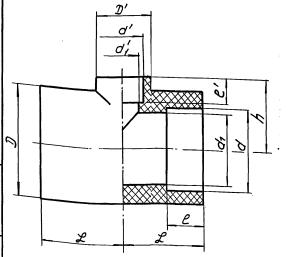
\vdash				4900 - 9	3 - B.O	-1		
				2		Лит.	Маеса	Масшт.
Изм Лист Разраб.			Dara	Втулка пад 9		l	_	
пров.	CBepanosa	05-	\Box	00T 6-05-367-	74 .			
Т. Контр.	санникава	ant-				Auer	λυστο	8 1
H. KOHTP.	Мирончик	tuns	\vdash	ΠΒΔ	7-77	00/0380	DOKAHA	OU BOEKT
y⊤B.	Харина	lin	Se Konue An		21224	29		MOT A 3


								Разм	еры	<u>8 mr</u>	1 ·	
de x d	D	Tun	Ег	e	dı	Macca, K2	Tun	D	lе	e	dı	Macca,
20×16	23		16	14	#	0,006		52	15	H	/3	0.004
25 × 16	23		18,5	14	H	0,008		22	14	11	/3	0,006
25×201	29		18,5	16	13	0,010		27	14	12	16	0,007
32×25	36		22	18,5	20	0,020		34	16	14	21	0,014
40×25	36		26	18,5	20	0,030		34	/8	14	21	0,019
40×32	46		26	22	25	0,040]	43	18	16	28	0,024
50×32?	46	7	31	22	25	0,050	C	43	20	16	28	0,036
50×40)	57		31	36	3/	0,070		54	20	18	35	0,041
63 × 32?	46		37,5	22	25	0,090		4.3	22	16	28	_
63×401	57		37,5	26	31	0,100		54	22	18	35	0.068
63×50	72		37,5	31	39	0,140		67	22	20	44	0,075
75×50	72		43.5	31	39	0,170		67	24	20	44	0,080
75×63	90		43,5	37,5	50	0,260	Ī	84	24	22	56	0,088
90×50	72		51	31	39	0,220		67	28	20	44	
90×63	90		51	37.5	50	0,280		84	28	22	56	0,129
90×75	96	C	51	43,5	64	0,270	CJ	92	28	24	68	0,120
110 × 500	72]	61	31	43	0,390		67	32	20	44	_
110×6:3	90	1	61	37,5	50	0,470	1 1	84	32	22	56	
110×910	115		61	51	77	0,470	† †	1110	32	28	82	0,195
140 ×1110	141			_			s	134	36	32	108	0,320

	 -)	
	-	· .	<u> </u>	-
		- a	<u>''</u>	1
1				XXX
اله				
P2				
	-	a	2	-

Пример условного обозначения перехода среднего типа с диаметром хвостовика de 50мм и диаметром раструба d 40 мм: Переход ПВД 50×40С ОСТ 6-05-367-74.

					4.900-9-B.0-1							
Раз _е Пров	аб 8р.	Гусева Свердлова		Aama	Nepexod OCT6-05-367-74	Sum.	Macca	Масштов —				
	ITρ.	Сонникова Мирончик Харина (Tean	94		<i>Ducm</i> COIO3BI		remo e 1				


Копировал Гольденбаун 21224 31 Формат АЗ

|--|

Пример Уславного **обозначения** тройника тяжелого типа с диаметром раструба d 40 мм: тройник ПВД 407 act 6-05-367-74

				4.900- 9-6.0-	1			
					Sun	n.	macca	тасилав
USM STUCIT	№ дакум	Modn.	Aama	ΤΡούμυΚ	$\Gamma\Gamma$	Π		
Разраб	Гусева	948-			11	1	'	-
	Свердлова			DCT 6- 05-367-74				
T. KOHMP.	Санникова	Level-		307 17	AUG	m	AUCH	08 1
	М <u>ирончик</u> Харина С	Kun	86	NBA FOCT 16337 - 74	COR	038	ПДОКАНА	VULLOEK I
		KONUK	080	.Cumaguno 21224 3	32		Рормат	A3

Розмеры в мм

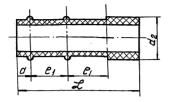
d*ď	Tun	Ð	2)'	K	е	d1	h.	L1.	d_i'	Macca Kr	d.d'	Tyn	D	2)′	یر	е	dı	h	e,	d_i^1	Maca Kr
20×16		27	22	24	12	16	23	11	13	0,013	50+40		67	54	47	20	44	45	18	35	0.142
25×16		34	22	28	14	2/	25	.11	13	0,023	63×16		84	22	<i>.</i> 56	22	56	45	11	13	0,25
25×20		34	27	28	14	21	26	12	16	0,023	63×20		84	27	56	22	56	46	12	16	0,25.
32×16		43	22	:34	16	28	28	11	13	0,043	63×25	С	84	34	56	22	56	48	14	21	0,25
32×20		43	27	<i>34</i>	16	28	29	11	16	0,044	63×32		84	43	56	22	56	50	15	28	0,26
32×25		43	34	:34	16	28	3/	14	2/	0,045	63×40		84	54	56	22	56	52	18	35	0,26
40×16		54	22	40	18	35	33	11	16	0,079	63×50		84	67	56	22	56	61	27	44	929
40×20	C	54	27	40	18	35	34	12	16	0,080	75×63		92	84	64	24	68	62	22	56	0,31
40×25		54	34	40	18	35	36	14	2/	0082	90×63		110	-	75	28	82	69	22	56	0,43
40×32	l	54	43	40	18	35	38	16	28	0,087	90×75		110	92	75	28	82	71	24	68	0,43
50×16	}	67	22	47	20	44	38	11	1		110×63	00	134	84	89	38	100	71	20	56	0,79
50×20	1	67	27	.47	20	44	39	12			110×75	1	134	92	89	38	100	89	38	68	0,82
50×25		67	34	47	20	44	41		21	1	110×90	1	134	+	-		100		38		0,87
50×32		67	43	47	20	44	43	16	28		140×110	_	158	T	-	_			_	100	_

Пример условного обозначения троиника пережадного среднего типа с диаметром раструбо d'16мм: троиник ПВД 40×16С ОСТ 6-05-367-74

		4. 900 - 9 - 6.0]-1	-	
Usm Nucm N donym. Nod		Тройник	Jum.	Macca	Macwm.
Paspob Pycebo Full Pobep Chepdrolo Che		переходной		_	-
Т. контр. Санниково	2	DCT 6-05-367-74	Sucm	TUC	mab 1
Н. КОНТР. МИРОНЧИН ГИЛ Утв. ХОРИНО ГЛ	y K	NBA FOCT 16.337-77	C 01038	ОДОКАНА	NNPOEKT

21224 33

ПРИЛОЖЕНИЕ 2.1.7


Размеры в мм

d	D	דעוז	L	e	d_1	Macca K2	TUN	D	L	e	d_1	Macca K2
16	23		31	14	11	0.006		22	25	11	13	0.005
20	29		35	16	13	0.010		27	27	12	16	0.007
25	36		40	18.5	20	0.020		34	31	14	21	0.012
3 ≥	46	7	47	22	25	0,040	c	43	35	16	₽8	0,020
410	57		55	26	31	0.070		54	39	18	35	0.035
50	72		65	31	39	0.130		67	44	20	44	0.065
63	90		78	37.5	50	0,230		84	48	22	56	0,105
75	96		90	43.5	64	0,230		g ₂	53	24	68	0.110
90	115	c	105	51	77	0.390	1	110	61	28	82	0.190
1.10	141		125	61	94	0,700		134	70	32	100	0,300
140	_	-		_	_	_	ſ	158	78	36	130	0.330

NOUMED YCJOBIOZO OBOZHAYCHUR MYCOMBI MARRETORO MUNG C duamempom prempyba d 20 mm: Mymmd 18 A 20: OCT 6-05-367-74.

	4.900 - 9 - B.D	- 1	-	· ·
		sum.	Macca	Масштаб
Изм лист Nº докум Лодп. Дат	Mypma	$\Pi\Pi$		
Разрав. Гусева. УУ.Я	1 ''''	111	-	-
MADBER. CBEPANOBO Ch	DCT 6-05-367-74			
Т. КОНТР. Санникова вы-	1	SINC M	Suci	ma6 1
H. KOHTP. MUPOHYUK JULY 4mB. Xapuna July 86	ПВД ГОСТ 16337-77	COM38	ДДСКАНА	NOPOEKT

Spunomenue 2.1.8

Пример 10Ловного обозначения втулки для дюштового соедунения средне-Легкого типа сдиаметром хвостовика d2 20мм: Втулка 1ПД ПВД 20 СЛ 00Т6-05-367-74.

Размеры в мм.

Τυπ	d ₂	Z	е,	a	Macca, K2
	16	72	24	7	0.011
CI	20	73	24	7	0.015
	25	75	24	7	0.024
	32	77	24	8	0.037
	40	79	24	8	0.045
	50	82	24	8	0.058

Papmam A4

E		_				4. 900- 9- 6. 0 -1							
V.	M.)	nucm odb.	№ докум. Гусеба	nodn.	Дата	ВПУЛКО ДЛЯ ВЮРИТО- Вго соединения	Num	Масса	MOCWTOB				
1///	006) .	СБералова Санникова	1/Z -		7CT 6-05-367-74	Aucm	Aucm	105 1				
4	m	147p. 8.	Миранчик Харина (Jum	\$6	NI I FOCT 16337- 77	CO)+038	OZOKAHAI	MPDE K T				

Припожение

2.1.9

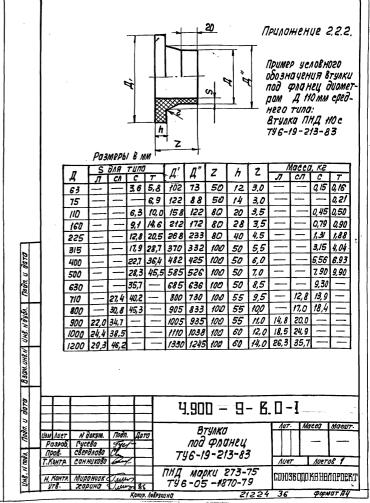
Пример условного обозначения угольника среднего типа с диаметром раструба а 25 мм: Угольник ПВД 25 с ОСТ 6—05-367-74 Размеры в мм.

	ď	I	Tun	Z	е	d_{i}	Macca K2	Tun	I	Z	e	ø,	Macca, K2
	15	23	r	23	14	//	0.010	С	22	20	//	/3	0.007
20	20	29		27	16	13	0.020		27	24	12	16	0.012
u dama	25	36		32	18.5	20	0.030		34	28	14	21	0.022
	32	46		39	22	25	0.060		43	34	16	28	0.040
83cm.un6, 1/2 dyby, 110dn.	40	57		47	26	31	0.120		54	40	18	35	0.075
70	50	72		57	31	39	0,230		67	47	20	44	0.140
100	63	90		70	37.5	50	0.430		84	56	22	56	0.240
11.0	75	96		83,5	43,5	54	0,440	C.JI	92	64	24	68	0,280
<u>v</u>	90	115	c	99	51	77	0.750		110	75	28	82	0.460
COMP	110	141		121	61	94	1.390		134	89	32	100	0.800
\os	140	_	1-	_	_	_	—	<i>J</i>	158	108	36	130	0.870

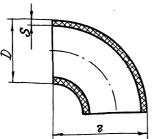
4. 900-9-B. 0-1

| See Fig. | 100 |

POBNEPHI B MM


1/2	I/a SOME TUM		SidAh	TUNG	Z	0	8	Mae	ed, Kr
A/A	c	T	C	7	4	HÊ MEHEE	HE MEHEE	C	7
75/63		6,9	_	5,8	39	19	9		0,055
110 [63	6, 3	10	3,6	5, 8	69	18	9	0,22	0,25
160/110	9,1	14.6	6,3	10	64	15	5	0, 40	0,56
225/160	12, 8	20,5	9,1	14,6	87	20	10	1,00	1,30
315/225	17,9	28,7	12, 8	20,5	100	20	10	1,60	2,30
400/315	22,7	36,4	17,9	28,7	104	20	10	2,50	3,60
500/315	28,3	45,5	17,9	28,7	190	20	10	6,40	8,30
500/400		45,5	22,7	36,4	117	20	10	4,80	6,10
630/400	35,7		22,7		224	20	10	12,1	
630/500	35,7		28,3		143	20	10	8,7	

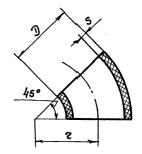
Взатинки инв. н. дубл. Подп. и дахо


—										
				4.900 - 9 - 60 - 1						
Изм. Avet N дакум. Разраб. Гусева		noon.	Dara	Пережод	NUT.	Macea	есо Маешт.			
ПРОВ: 7. КОНТР.	свердлова Санникова	05-		TY-6-19-213-83	Auer	AUET	08 1			
H. KOHTA YTB.		Turn		ПНД МОРКИ 273-75 ТУ-6-05-1870-79.	COLOKKO	доканал	DPOEKT			

Капир. Лврухина

COPPNATA4

Приложение 2.2.3

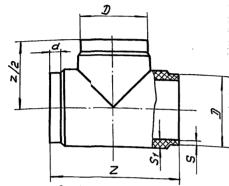

Пример условного обозначения угольника типа "Т" под углом 90° диаметром 75мн: Угольник 90° ПНД 75Т ТУ6-19-213-83

Размеры в мм

7)	5 800	mund	~	Mac	SO, KZ
ク	C	7.	2	C	7
63	3, 6	5,8	. 6.3	0,08	o, tt
75	_	6,9	75		0,19
10.	6,3	10,0	.110	0,43.	0,59
60	9,1	14.6	160	1,22	1,74
125	12.8	20,5	225	3,45	4.83

		
	4. 900- 9- B. C] -1
Изнулист № докум. Подп. До Разраб. Гусева Туу Пров. Свердлава Т.Контр. Санникова	_{тта} Угольник 90° 796 - 19 - 213 - 83	Sum. Macca Macumes — — — Sucm Sucmoss
Н.КОНТР. МИРОНЧИК ТИМА Утв. Харина Тура	ПІД МОРКИ 273- 75 T16 - 05 - 1870 - 79.	СОЮЗВОДОКАНАЛПРОЕКТ
	Кашровал Гольденбаун	Формат А4

Приложение 2.2.4

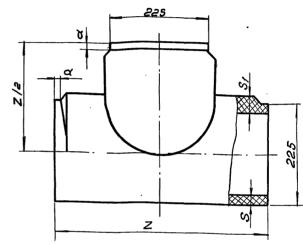

Пример условного обозначения чгольника типа "Т" под чглом 45° диаметрон 63 мн: Угольник 45° ПНД 63Т ТУ6-19-213-83

Размеры В ми

. I	S dan	Muna	. 2	Масса, кг		
	C	.7		С	7	
63	3,6	5, 8	63	0,05	0,07	
110	6,3	10,0	110	0,16	0,32	
160	9,1	14, 6	160	0,72	0,97	
225	12,8	20,5	225	1.98	2.68	

۴			
Инв. м. повл. Повл. и вата		4.900 - 9 - B. D -1	The second secon
vogn. u		SHIFTUCT N. BORYM. 1100R. Hard JEUSTONOK 45	Масса Масштаб
1000	П	11 pob. C8epanoba C4	
Ę		Uludin	Sucmoß 1
UHB.		Н.Контр. Мирончик Гуйт ПНД марки 273-75 СПНЗВ Утв. Харино Гуйк У 79 6-05-1870-79	одоканалпроект

Копировал Гольденбоун21224 37 Форнат А4



Пример условного обозночения тройнико типа "Т" к трубам диаметром 110мм; тройник ПНД110Т ТУ6-19-213-83

Размеры в мм

	ana muno		SHEMEHEE FIN MUNO		das muno		de Ge	Mocea, Kr	
2	C	7	C	7	С	7	менее	С	7
63	3,6	5,8	7.0	9,3	120	120	10	0,21	0,25
75		6,9	_	12,8		150	10		0,45
110	6.3	10,0	13, 3	16	225	225	10	1,16	1,40
160	91	14.6	6.6	20	325	320	14	3,16	3,89
225	12.8	20,5	25,3	33	478	478	14	7.80	10.30

TPOUHUR D 225 MM

Пример условного обозначения тройника типа "1". Мройник ПНД 2257 146-19-213-83

13 м Лист N докум. Лодп. Дото Разроб Гусево Тур- Пров. Свердлово С. Т. КОНТ. СОМИКОВО С. Н. КОНТ. МИРОМУИ ГИМ. Умв. Хоримо Шит 44 ТУ 6 - 05 - 1870 - 79 Пист Миромуи Гим. Туроги Пистов 1 ПИТ МОРКИ 273 - 75 ТУб - 05 - 1870 - 79					4. 900 - 9 - 6.0 - 1					
TY 6-19-213-83 TIKOHT COMMUNES OF THE MAPRIC 273-75 CONTABINATION TO MAPRIC 273-75 CONTABINATION TO THE MAPRIC 273-75 CO	//2.				T	1	Um	MOEEO	Macwm.	
PROBLE COMMUNICATION TO MAPRO 273-75 CONTRADARMANDEST	Daras	N dokym.	Nodn.	<i>До то</i>	IPOUHUK	1	П	1 _	_	
T. KOHT. COMMUNES Ry NUCMOS 1 H. KOHT MUDONYUN LUM NHD MAPKU 273-75 CONTARIANANAPPEKT	/γρο δ .	Свердлово	19-	<u> </u>	TY 6-19-213-83	1	П	1		
	T. KOHT.	Сонниково	84			7	Ven	, Auc.	mob 1	
Утв. Хорино Ши 26 ТУ6 - 05 - 1870-79	H. KOHT.	MUPONYUR	Tim		NHD Mapru 273-75	СОЮЗВОДОКАНАЛПРОЕКТ `				
	Ymb.	XOPUNO	wen	26	746-05-1870-79				יווטט יי	

RPUNDALEHUE 2.3.1

Pasmepa 8 MM

d	San	א שות	na	7	e	MACC O KZ NPU UC NON6308OH. MP848 MUNO			
a	CA	C	7	Z	د	CA	C	T	
315	_	17.9	28.7	778	472		22.8	35.0	
400	T —	22.7	36,4	900	515	_	41.9	64.4	
500	_	28,3	45,5	1100	618	_	79.9	123.3	
630		<i>85.</i> 7	_	1295	688		148	_	
710	27.4	40.2		1415	731	143	204		
800	30.8	45,3		1550	779	197		_	

Pasmerai 8 MM

α	TUN	รกคนบะกฉกь3 เกคชล์ เกมกต		7	e	Macca KZ NPU UCHONG3. MPYB MUNG	
	отводов	Л	СЛ			Л	CI
900		æ.0	34.7	1750	881	180	219
1000	0	24.4	38.5	1900	936	241	374
1200		29.3	46,2	2200	1043	398	618

1	Z		
900		e	
	1	· .	
			N
5			

Noumer yendhara aashayehua ambada cbarhara 90° muna T us mryb duanempum 315 mm:
ambad cbarhau 90° nhff 315 T Ty6-19-218-83
Noumer yenabhara ibashayehua ambada cbarhara 90° muna a us mryb diamempam 1200 mm muna a:
ambad cbarhau 90° 14ff 12001-0 746-19-218-83

			4.900 - 9 - 6.0 -1						
Разраб. Провер.		<i>Aara</i>	Ambad cbap40ú 90° TY6-19-218-83	Sucm /	_	<i>Масштав</i> — пов 1			
<u> Н.Контр.</u> Утв.	 Tuis	. 86	ПНД ГОСТ 16338-77			דאיםמממ			

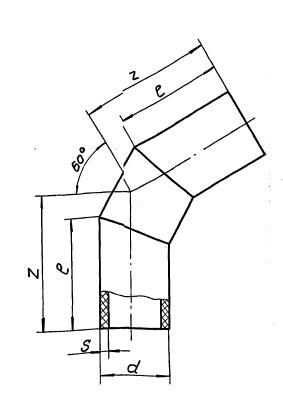
Копировал. Синицына

21224 39

POPMOT #3

O BOOM UHB.Nº UMB.Nº GSER, NOCH

Подпись и дата Взем. И


Приложение 2.3.2

Размеры в мм

d	San	a mui	ηα	Z	е	Macca Kr NOU UCNAND30BOMUU MOY6 MUNA			
	cn	C	7	J	١	CA	C	τ	
315	_	17,9	28.7	576	472	-	18.5	28,5	
400	_	22.7	36,4	646	515	_	33,5	51,5	
500	_	28.3	45,5	783	618		69,6	97.3	
630	_	35,7	_	896	688	_	114	-	
710	27,4	40,2	_	965	731	112	161	_	
800	30,8	45,3		1043	779	149	213		

Размеры в мм

	d	Tun	Япри испальз. труб типа		7	ρ	Macea, Kr npy venosbs. mpy& muna	
		огводов	Л	СЛ		J	Л	СЛ
	900	0	22,0	34.7	1179	881	136	212
ı	1000		24,4	38.5	1266	936	181	280
	1200		29,3	46,2	1439	1043	294	456

_									
E					4. 900 - 9 - B.	<u>-</u>	i	The second section of the second	
<u> </u>		1.3	0 1		Ombod chapmai 60°	ЛU	m	Macea	Мосштаб
U3M	Jucm	N dakym.	1100n.			1			
		ryceBa			14 6-19-218-83	1 1	1	_	-
		Свердлово			130-13-210-03	1 1			
Z. /	OHT P.	Сонникова	Cif-			10	cm	Juca	mah 1
H.K.	ОНТР. 17 в.	Мирончик Хорина	Turn	W	ПНД ГОСТ 16338-77				
			Kanu	obo	п. В. Филиппова 21224 4	0	90	OPMON	яз

ď	s di	19 TU	70	z	e	MOCEA, KP NPU UCHONBOOK. TOUR TUNA			
	СЛ	C	7			СЛ	c	r	
315	_	17,9	28,7	498	425	_	16,3	25,1	
400	I —	22,7	36,4	548	459	_	29,0	44,6	
500		28,3	45,5	665	549	_	54,4	83,9	
630		35,7	-	74/	600		96,4	_	
710	27,4	40, 2		792	632	91	131,0		
.800	30,8	45,3		847	669	123	177	_	

Pasmephi & mm

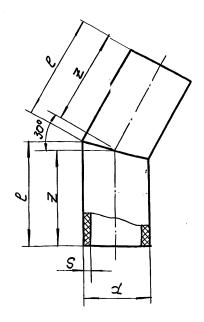
	Tun	S APULUE TPYD.		7	е	Marcea, Kr npu uenanaa. Trua Tuna		
ď	ar80008	Jī	C.T	-		Л	CAT.	
900		22,0	34,7	960	758	114	177	
1000	Q	24,4	38,5	1022	798	150	232	
1200	I	29,3	46,2	1146	877	240	373	

Пример условного обозначения атвода сварного 45° типа Т из труд дитметром 315мм: атвод сварной 45° пнд 315т тув-19-218-83.

абозначения отвода сварного 45° Пример уславного типа 0 из труб діаметрам 1200 типа Л; отвод сварной 45° пнД 1200 л-0 ТУб-19-218-83.

			E	4.900 - 9 - 8. 0 - 1						
			٠		AUT.	Масса	Маештаб			
	н дохум.	noon.	Дата	отвод сварной 45°	111	1	ł			
Paspad.	Lacsed.	941-		T46-19-2/8-83	111					
mpo8.	CBEPGNOBO	Ch,-		190-19-2/6-03	$\sqcup \sqcup$					
T. KOHTP.	Санникова	ent-			Auct	Λυετο	8 /			
H. KOHTP.	Миранчик	Suns		ПНД ГОСТ 16338-77	LUMS	MOREHE	ULPUERT			
¥78.	Жарина				ــــــــــــــــــــــــــــــــــــــ					
		Ki	nue. A	oBPVXUHU 21224	41	. 4	TOPMET A3			

Взам. инв. и див. и дибл. Подп. и дата


Приложение 2,3,4

Розмеры в мм

d	San	A MU	na	Z	P	Macco KE nov uchonosobom. mpy6 Tuno			
	CA	С	7	2	L	CA	C	7	
3/5	_	17,9	28,7	428	469		14.3	22.5	
400	_	22,7	36.4	461	514	_		22,0 38,2	
500	_	28,3	45,5	551	618			30,2 72,3	
630		35,7	_	603	688	_	80,2	12,3	
710	27.4	40,2	_	<i>63</i> 6	731	75	107		
800	30,8	45,3	_	672	829	100	155		

Размеры в мм

ď	Tun อุการ์ก-	Toyo muno		Z	P	Mac Npu uc mpy6	ca, Kr nonbs. Tuna
	дов	27	CN			J	СЛ
900		22,0	34.7	762	881	92,4	144
1000	0	24,4	<i>38,5</i>	802	936		187
1200		29,3	46,2	883	1043	190	295

Пример условного обозначения отводо сварного 30° типа Т из труб диометром 315 мм: отвод сварной 30° ПНД 315Т ТУ 6-19-218-83.

Пример условного бозночения отвода сварного 30° типо O из труб диэметром 1200 мм типа J. атвод сварной J0°7HJ12OOJ1-OTY6-19-218-83.

		4.900 - 9 - B.C]- {
Usm Juem N dokym. Na Daspas Tycelo J Nobeo Clepanoba Z T. KOHTO COHHUKOBO	5	Отвод сворной 30° ТУв-19-218'-83	Num Mocca Mocwa6 - Juan Juan Juano61
Н. контр. Мирончик Т Утв. Хорино	un a	ПНД ГОСТ 16 338-77	
πολο	USOBOA:	В. Филипова 21224 42	Формол АЗ

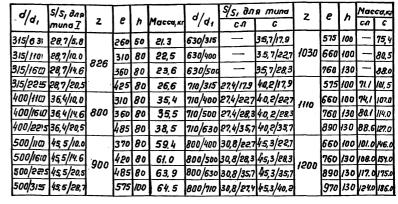
|UHB.y nodn | Modnuch v doto | Biam cyb. / UHB. No By Si. | No Bi

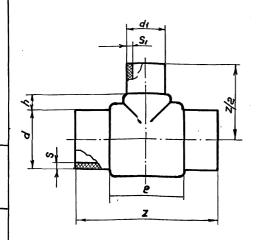
Приложение 2,3,5

8	3	-
	z	

Пример Условного обогначения тройника неравнопрождного сварного типа С из труб дианепрон 225 и 63 км; тройник неравнопрохоїной сварной ПНД 225/63 с ТУБ-19-18-83 Раззеры в мм

d/d1	TUN TPOÙ- HUKOB	Типы использ. труб	5/81	z	Macca, Kë
110/63			11.0/5,8	400	1,4
160/63	i	l	146/5.8	500	3,6
160/110		ł	146/10.0	500	4.0
225/63		1	27,5/5,8		8,5
225/110	1	1	21,5/10,0	624	9,1
225/160		l	21,5/14,6		10,0
315 63	1	7/7	23,7/5,8	826	22,0
315/110	Ì		21,7/10,0		22,8
315/160			21,7/14.6		24,0
3/5/225	C		23,7/20,5		26,4
400/110			35,4/10,0		34,9
400/160		l	36,4/14,6	800	36,1
400/225			35,4/20,5		38,3
500/110		ł	45,5/10,0		60,4
500/160			43,5/14.6	200	61,8
500/225			43,5/20,5		64.3
500 / 3/5	1	ì	43,5/28,7		69,5


нв. У подп. Подпись и дата Взан.инв. Л. Инв. У дубл. Под


$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	d/d1	mpoù-	исполез.	S/Sı	z		d/d,	mpaů-	испальз.	S/S1	z	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	630/315			35,7/17.4		72.2	1000/500		n/c	24,4/28,3		153,6
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	630/400		C/c	35.7/22.7	1030		1000/500	1	cn/c			220,6
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	630/500			35,7/28,3		88,7	1000/630	1	1/0	24.4/35,7		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	710 / 315			27,4/17.9		74.8	1000/630	1.	cs/c			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7/0/400			27.4/22.7	140	80,0	1000/710	1	u/cu	24.4/27.4		
\$\frac{800}{800} \frac{900}{800} \rightarrow \frac{30,8}{28,2} \rightarrow \frac{105.5}{1000} \frac{1000}{800} \rightarrow \frac{825}{30,8} \frac{82.7}{2800} \rightarrow \frac{103.5}{30,8} \frac{1000}{800} \rightarrow \frac{103.5}{30,8} \frac{1000}{800} \rightarrow \frac{103.5}{30,8} \frac{100}{800} \rightarrow \frac{103.5}{1000} \rightarrow \frac{1000}{900} \	710/500			27.4/28,3		87.6	1000 /710	1	CA/CA	38,5/22.4	1600	233.3
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	710/630	0	сл/с	274/35,7	1	100,0	1000/800	1	A/ca	24.4/30.8		178,0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	800/400]		30,8/22.7		105.5	1000/800	1	CU/CU			245.0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	800/500			30,8/28,3	Jonn	113,9	1000/900	1	s/s	24.4/22.0		193.1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	800/630	1		30,8/35,7	1,200	127.4	1000/900	1	cu/cu	38,5/34.7		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	800/710	1	CJ/CJ	30,8/27,4		123,1	/200/500	1 .	si/c			232.3
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	900/400		√1/c	22,0/22,7		111,4	/200/500] "	ca/c			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	900/400	1	CS/C	34,7/22,7]	162,6	1200/630]	si/c		l	253,3
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	900/500	1	√J/c	22,0/28,3]	122,1	1200 630		cs/c	46,2/35,7		363,1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	900/500	1	cs/c	34,7/28,3		173,2	1200/710	1	s/cs			246.6
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	900/630	7	Л/C	22,0/35,7]	139,4	1200/710	1	CA/CA			
900/710 ca/ca 34.7/27.4 185.0 1200/900 n/a 293/220 248,3 900/800 a/ca 220/30.8 1/4.9 1200/900 cn/cn 46.2/34.7 386,7 900/800 a/c 34.7/30.8 196.0 1200/1000 n/a 29.3/24.4 260.5 1000/400 n/c 24.4/22.7 1600 142.2 1200/1000 cn/cn 46.2/38.5 405.7	900/630	7	CA/C	34,7/35,7	(500	190,5	1200 /800	1	s/cs		4	
900/800	900/710	1	s/cs	220/27.4		133,9	/200/800]	CA/CA		1	
900/800	900/710	7	51/51				1200/900		1/1		1	
1000/400 1/c 24.4/22.7 1600 142.2 1200/1000 CA/CA 46.2/38.5 405.7	900/800	1	s/cs				1200/900		cn/cm		1	
1000	900/800]									1	
1000 400 CA 38,5 22,7 20.9,2							1200/1000	4	cn/cn	46,2/38,5	1	405,7
	1000/400	1	CSI/C	38,5/22,7		209,2	<u> </u>			<u> </u>	L	L

_								
E					4.900 - 19 - B. D	-1		
1					(M2	Sum.	Macca	Масштав
		Я дакун.	Nagn.	Aara	Пройник неравно-	Π		
Pas	ραδ.	Гусева	Tys-		проходной сварной		i —	-
Про	овер.	Гусева Сверд пава Сонникова	Cha		TY6 - 19 - 218 - 83		I	
7. K	OHMP.	Санникова	21-		700 70 270 00	Jucm	Auc	mo8 /
L-								
H. K	<u>онтр.</u>	Мирончик	mur		NHA FOCT 16338-77	COM38	DOCKAHA	NTPOEKT
y_n	'n <i>₿</i> .	Харина С	wie,	86	[
		21	224	43	Konungan Tom Southern		Channa	

Приложение 2.3.6

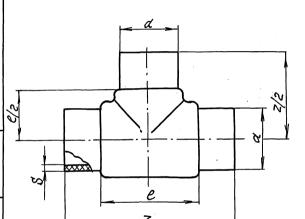
Размеры в мм

UHB. J. nodo Nognus น ฮฉภาต B3GN. นหย์ ม UNB.ม อิงลัก กอลิก น ฮิลกา

Пример условного обозначения тройника неравнопроходного сбарного типа С из труб дианетрон 710 мг и 315 мм. Мройник неравнопроходной сварной ПНД 110/315 СТУ6-19-218-283

				4. 90 0 - 9 - 6.0	1-1		
110 0				Тройник неравно-	Jum	Масса	Μας ω τα δ
USHVIUET	M. BOKYM.	//υ∂n.	A are	Whoower wehanen-			
Paspas.	Гусева	Tud.	F	Προ ποσκού εξα ρμού	1111		- 1
Провер.	Свердлова	12		(УСИЛ Виньи)	111		i
Т. КОНТР.	Санникова	ent-		746-19 - 218 - 83	Juem	Nuc	mol 1
					+		
H.ROHTP.	Миранчик	Juin		NHQ FOCT 16338-77	ממוחחם	กสกับสมส	AANPOEKT
УmВ.	Харина	Turn	80	mag 1001 10000- 77	lram30	որուսու	mur ubni

Копировал Гольденваун 21224 44 формат 1


S Z

Пример условного обазначения тройника сварного типа О из труб диаметром 630 мм типа С: Тройник сварной ПНД 630 С-0 ТУ6-19-218-83 Размеры вмн

газмеры Оми													
ď	Tun		ս սերը որ у ն	กครถชื่ ภาบกล		z	חפט ל	Macc Icnons mpyš	muna 30801 1	ıuu			
L "	трай-	5	CJ	C	7	2	s	C.J	C	7			
3/5				_	28,7	800	-		18,1	27, 8			
400	C			_	35,4	850		_	26,9	41.4			
500				_	45,5	1100	_		46.0	71.5			
630			_	35,7	-	/23 ₋₀	_	_	82.0	_			
710		_	27,4		_	1410		77,5	110, 0	_			
800			30,8	_	_	1500		105	193.0	_			
900]	22.0	34.7	_		150'0	109	169	_	_			
1000		24.4	38,5	-	_	16010	142	221	_				
1500		29,3	46,2	_	_	1800	226	350	_	_			

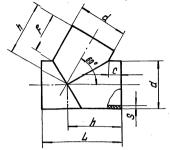
	4. 900 - 9 - B.O -	f "		THE STATE OF THE S
Usm Лист Ж. докун. Повп. Пата Разрав. Гусева Туб- Провер. Свервпова (Туб- Т. Контр. Санникова СТ	Тройник сварной ТУ 6 - 19 - 218 - 83	Slum.		Масштаб — сто в 1
Н. КОНТР. МИРОНЧИК ГИСТО Утв. Харина Гайр И	ПНД ГОСТ 16338- 77	союзв	ОДОКАНА	MOPOEKT
	Копировал Гальденбаун 21	224	45 Pop	uam A3

NAUNOXEHUE 2.3.8

Пример уславнаех абозначения трайника Сварного типа С из труб диатетрам 630 мм: Проиник Сварной ПНД 630С ТУ 6-19-218-83.

_		rusni	CPU	0 ///	<i>"</i>			
	a.l	50	IA M	una	z	е	Macc	a, KZ
	d	СЛ	C	7		6	C	7
Ī	<i>315</i>		_	29.7	800	515	_	31.8
	400		_	35,4	850	600	_	47,2
	500	_		45.5	1100	730		81.1
	630		35.7	_	1230	860	98.0	
	7111		40.2		1410	940	135.0	

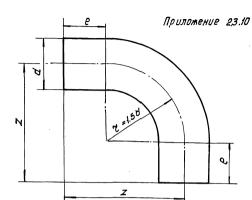
DOZMENHI R MM


				4.900 - 9 - B. 0 -1								
Разрав. Провер.	№ <u> Аокум</u> Гусева Свердлова Саннукова	944- Ch-	Aara	Трайник Сварной (Усиленный) 736-19-218-83	Sucm	_	масштав - no8 {					
	Мирончик Харина			NHA	СОЮЗВ	одох ана	MULDERL					

Копировал. Синивына

21224 46

формат Яз

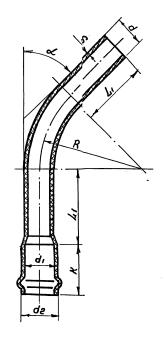

Пример условного обозначения тройника сварного 60° типа 0 из труб диспетром 1200 типа Л: Троиник сварной 60° ПНД 1200 Л-0 ТУ6-19-218-83.

POBMEDOI & MM.

d	TUT. T000-	SAPU U MPYB T	100003, 11000 1201	L	h	в	C	ngg cc	no neg.
710			27.4	1555	1010	805	395		127
800	1		30.8	1640	1080	849	387	_	169
900	0	22.0	34.7	1650	1025	765	245	131	203
1000		24.4	38.5	1750	1110	821	244	171	266
1200		29.3	46.2	1970	1315	969	276	280	433

м,инб-мя инв.м. дубл. подп. и дото

	_						2.0						
	E					4. 900- 9- B.O-1							
	Цзм.	ЛИСТ	Nº DOKUM	nod n.	Antn	Τριύ Ηυκ εδαρκού 60°	JI UM	Масса	Μσεωτσδ				
_	703	ρυυ,	ryceba Cbepanoba	284	70.0	TPIÚNUK CBAPHOÚ 60° TL6 -19 -218 -83		-	_				
	7. K	нтр.	CONHUKO50	Chr		130 -13 -216 -63	TUCTO	7/10/	7051				
	H. K	ритр.	Мирончик			NHT FOOT 16338 -77	COHISK		MPOEKT				
_	9//	0.	Xapuna	Konup	05dA	: AOJENKO. Dus		on Ali					


Пример условного обозначения отвода енутого 90° типа С из тру Б диаметром 63: Отбод енутого 90° Размеры Б мм. 114,630746-19-218-83

ROM.UHENRUHE.Nº QUENDOGO. U GOMO

ď	Sana mund		7	P	MO CO	26/63.
Ц	C	7	Z	۲	ngy yz Tou B C	7
63	3.6	5.8	145	50	0.17	0.26
110	5.3	10.0	265	100	0.95	1.45
160	9.1	14.6	390 .	150	2.95	4.50
225	12.8	20.5	538	200	7.90	12.2
315	17.9	28.7	778	305	20.8	31.9
400	22.7	36.4	900	300	41.5	63.8
500	28.3	45.5	1100	350	<i>78.7</i>	121.5

8		1													
ת קמשמ								4	. 90	0 - E	1 - 呂.		-1		*
UNG. Nº NOCIA, MOCIA.		flp.	000. 06.	CEE	OKYM. eb a odnoba ukoba		Дото	-,,,,,,,		iymsili 218 - E	90°	Auc		_	Масшта
UH6. N.			онтр.	МИР		Turn	24			1633			360	DOĶAHA	
	_					סקשווטת	oan:	Доценка	wy-	2122	(4 4	7	P.	opman)	A4

Приложение 241

Размеры в мм

c	1		d,	(d e	5	3	. K			Mac.	a, K2,
Ном.	Awn. Otika.	Нон.	Lon. otka.	Нон.	Пред. Откл	Нам.	Доп. Сткл	Н8 Менев	ι,	R	45°	90°
63	+0,2	63.6	+0,7	80, a	+ 0,8	30	+0,5	99,5	143	221	0,62	0,82
75	+07,3	75.6	+0,7	93, 9	+0,8	3, 6	+0,6	102,5	151	263	0,95	1.30
90	+0,3	90,7	+0,8	110,7	+0,8	4,3	+0,7	110,5	161	315	1,55	2,10
110	+0,3	<i>110,8</i>	+0,9	132,5	+0,9	5,3	+0,8	116,0	174	385	2.60	3.60
160	+0), 4	161.0	+1,1	186,0	+1.0	7,7	+1,0	134.5	208	560	6,95	10,0
225	+ 00, 5	226,4	+1,1	254.5	+1,2	10,8	+1,3	154.0	251	788	17.6	26.0
280	+00.6	281.6	+1,4	314.7	+1,4	13, 4	+1,6	172.0	28'8	980	32.o	48.5
3/5	+01,6	316.8	+1,5	351.3	+1,6	15.0	+1.7	184.0	3#1	1103	44.5	67.0

Отводы изготавливают на наксинальное рабочее давление воды 10 кгс/см при тенпературе 20°C и используют для сонединения труб титов С иТ по ТУб - 19 - 231-83

Пример условного обозначения отвода с углон изгиба 45° к прубан дианетром 110 мм на рабо-чее давление до 1,0 МПа (10 кгс/сн²): Ombod 450 NBX-P 110-10 TY6-19-221-83.

					4.900 - 9 - 8.0	- 1		···· M
					Ombad c pacm-	Ilum.	Масса	Масштаб
Usm	Nucm	м. докум.	No∂n.	Aura	dilibud c pucili-			
Pas	spa6		Fres-		рябом под рези-		l —	_
Πρ	a Bep	CBepanoba	Cli-		новое кольцо			
T.K	OHTP.	Санникова	21-		TY6 -19-221 - 83	Sucn	n Juc	meP 1
<i>,,</i>			1		ПВХ (Основной	Carasa	กสกหลิป	INNPOEKT
		Мирончик Жарина			КОМПОНЕНТ ГОСТ 14332 -78)	Luman	տասար	111111111111111111111111111111111111111
			224	48	Копировал Гальденбаун		Форн	ıam A3

Размеры в мм

	z/		d,			5	,	,		Moc	ca, Kr
Ном.	Доп.	Ном.	Bepx		Hom	Don. omka.	4	<i>L</i> ₁	R	45°	90°
63	+02	63			3,0	+0,5	63	14:3	221	0,62	0.82
75	+0,3	75	+0,3	+0,1	3,6	+0,6	70	151	263	0,95	1.30
90	+0,3	90			4.3	+0.7	79	161	315	1,55	2.10
110	+ 0.3	110	+0,4	+0,1	<i>5.</i> 3	+ Q 8	91	174	385	2.60	3,60
160	+0,4	160	+O.5	+0,2	7.7	+1,0	121	208	560	6.95	10,0

Отвыды изготавливают на макситальное рабочее dasmenue 10 k/c/cm² npu memnepamype 20°c u используют для соединения труб типов С и Т 10 TY 6-19-23/-83

Пример условняго обозначения отводо с угломи изгиба 45° к прубам диаметром 160мм на рабочее довягние до 1,0мПа (10кГс/см²). отвод 45° ПЕХ-РК 160-10 ТУ6-19-221-83

_	_							
E	-				4. 900 - 9 - B. C]-[
17	00B.	л докум. Гусева Свердлово Сонниково	CZ-	_	Отвод с рострубом для клеевого соединения ТУ 6-19-221-83		Массо	-
H.	контр. т в.	Мирончик Харина Копивов	line		ЛВХ (основной компо- нент ГОСТ 14332-78)	CO1038	OZOKAHA	NUFOEKT

Πρυμερ γειοδμόνο οδούμο νεμυς δηγηκυ ποθ φράμες με μεπροεπυφυμυροβάμμονο παρυδυμυροκό μα μα ραδόνεε δοβρεμιε 1,0 ΜΠα (10κ [c/cm²): βπηρίκο Πβχ 25-10 ΤΥ 6-19-222-83.

Размеры в мм

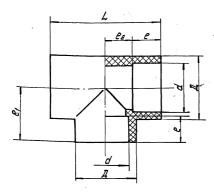
			0,00,				
d	Д	Д,	е	٤,	h	Rmox	Mocca, 2
16	22±0.15	29±0,5	14+0.5	3 ±0,5	6±0,5	,	8
20	27±0,15	34 ±0,5	16 +0,5	3±0,5	6 ±0,5	1	10
25	33±0,15	41±0.5	19 +0.5	3±0,5	7±0.5		17
32	41±0,2	50±1	22+0.5	3±0,5	7±0,5	1,5	26
40	50±92	61 ±1	26 +0,5	3±0.5	8 ± 0,5	2	41
50	61±0,2	73 ± 1	31+0,5	3 ± Q 5	8±0,5	2	62
63	76 ±0,3	90 ±1	38+1	3 ±0, 5	9±0,5	2,5	107
110	131±03	150±1	61+2	5±0,5	12±0,5	3	425
160	188±0,4	2/3±/	86 +3	5±0,5	16±0,5	4	1100

Втулки изгатавливают на моксимальное рабочее давление 1,0 МПа (10 кгс/ст²) при температуре 20° с.

	4. 900 - 9 - 6.0	- [
Изм. Лист и дакум. Подп. Разраб. Гусева Тус- Провер Свердлово СС. Т. КОНТР СОННИКОВО	_{Пота} Втулка лод Фланец ТУ6-19-222-83	Jum Mosea Mocum. Jucm Jucmob 1
Н. КОНТР. МИРОНЧИК ТИИТ УМВ. ХОРИНО ТИИТ	7/8X (основной компо И нент ГОСТ [4332-78	союзводоканалпроект

сопировал: В.Фиц.

21224 50

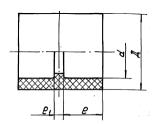

Пример уславнога абозначения перехада עז אפחאם: די אויים מבט ארום א מפעע איים אויים או puda duemempam 20x16 Ha pabayee dabnemue 1.0mnd (10 Hrc/cm²): Nepexod NBX 20 ×16-10 746-19-222-83

Pasmeral 8 mm

	-		2	_		Macca,
Д	d	e	<i>e1</i>	le	A_1 max	20,
20	16	16+1	14+0.5	21 ^{±1}	24.5	11
25	20	19+1	16+0,5	25±1	29.5	18
32	25	22+1	19+0,5	30 ± 1	35,5	32
40	32	26 + 1	22+45	36 ±1.5	43.5	55
<i>50</i>	40	31+1	26 +0,5	.44 ±1.5	52.5	85
63	50	38+1.5	31 + 4.5	54±1,5	64.0	148
110	50	61 +2	31+0,5	88 t2	64.0	610
160	110	86 ⁺³	61 +2	126 ±2	133.0	1670

Перехады изгатавливают на максимальное PABOURE AdBREHUE 1.0 MMO (10 HTC/CM2) APU MEMPEPAMYPE 20°C

				4.900- 9- 6.0	-1			
	10 7				J/z	m	Macca	Macwrah
Разраб. Провер.	<u> </u>	Tyy-	4970	Перекод 146 - 19 - 222 - 83	\prod		-	_
	Санникова					ucm	Aucn	208 1
Н. КОНТР Ум8.	Мирончик Харина	tius	86	ПВХ /ОСНОВНОЙ КОМПО- нент ГОСТ 14332-78)		юзв	ПДОКАНА	MULDERT


Пример уствного обозначения тройника из непластифицированного поливиних пориду диаметром 25 мм на рабочее дівление 1.0 МП а (10 кгс/см²): Тройник ЛёХ 25-10 ТУВ -19-222-83.

Размеры в мм.

d	е	ℓ_1	l ₂	4	Д,тах.	Macca,
16	14+0.5	23	9±1	46	24.5	22
20	16+0.5	27	//±1	54	29.5	35
25	19 +0.5	33	13.5 1.8	56	35,5	55
32	22+0.5	39	17 +1.6	78	43.5	100
40	26 +0.5	47	21 -1	94	52.5	160
50	31+0.5	58	26 -1.0	116	54.0	250
63	38+1	72	32.5 +3.2	144	79.5	470
110	61 +2	//7	56±9	234	133.0	1800
160	86+3	167	81 +8	334	193.0	4000

Троймики изготавливают на максимальное рабочее давление 1.0 м Ω (10 кгс/см 2) при температуре 20°С.

		4. 900- 9- B.	<u>D-j</u>	-	
Usm Juem Nº dokym. Dodin Paspab. Pyce Ba Fyr IPOBEP. CSEPANOBO CL- T. KOHTP. CAHHUKOBA	Дата	Τρούμυκ ΤΥ 6 -19 -222-83	Jum Jucm	Macca —	Масштав — по Б. 4
	86	7001 17002 109			NNPOEKT

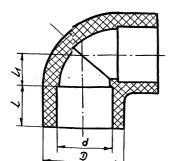
Пример угловного обозначения муфты из непласпифицированного поливинилхлорида диаметром 32мм на рабочее давление 1.0 МЛа (10кгс/cm²); Муфта ЛЗХ 32-10 ТУ6 -19-222-83.

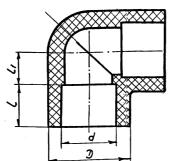
Размеры в мм.

			•	
ď	е	e_{i}	I, max	Macca,
16	14 +0.5	3±1	24.5	11
20	16 +0.5	3±1	29.5	17
25	19 +0.5	3 +1,2	35.5	27
32	22 +0.5	3+1.6	43.5	4.3
40	26 +0.5	3 +2	52.5	70
50	31 +0.5	3+2	64.0	110
63	38 +1	3 + 9	79.5	197
110	61 +2	6 +3	133.0	800
160	86 ⁺³	8-4	193.0	1890

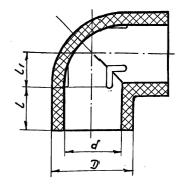
Муфты изготавливают на максимальное рабочее давление 1.0 мПа (10 кгс/см²) при температуре 20°С.

		4.900- 9- B	3.0	-1_		
USM AUCT Nº BOKUM, 110	2. 0			Num	Macca	Масштаб
Paspab Puceba 94	on. Haro			111		
Apobep. Chepdnobo 2	2	TY6 -19 - 222-83	3		_	-
T. KONTP. CUHHUKOBO	24-			Aucm	AUC	m051
		ПВХ (ОСНОВНОЙ КО НЕНТ ГОСТ 14332 -	MNO- 18)	COHSB	ODOK AHAJ	NPOEK T
Konu	1006an: A	MEHRADOS- 21229	53	4	opmam,	13


กอดีก. กอดีกมะ ๑ บ ตัว กาว | Bsam. มหคื.ภ\ มหคื.ภะ ซัมล์ก กอดีก. บ ตัว กาว .


Приложение 2.5.5

Угольник Б (с чпорными ребрами)


Уеольник A (с члорной полкой)

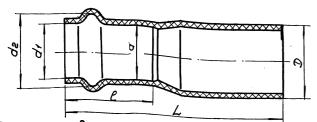
Основная Форма

Допустиная форма

d	е	ا ما ركا		Масса ориентир 2		
		не более	61	920льник А	Угольник Б	
16	14 +0,5	24,5	9 ±1	19	17	
20	16 + 0.5	29,5	1/ ±1	30	27	
25	19+0,5	35,5	13,5 -1	50	45	
32	22+0,5	43,5	17 +1,6		74	
40	26 +0,5	52,5	21 -1	142	128	
50	31 +0,5	64,0	26 -1	242	218	
63	38 +/	79,5	32,5 ^{+3,2}	440	400	
116	61 + 2	133	56-16	1500	1300	
161	86+3	193	81 +8	2900	2600	

Угольники изготавливают на максимальное рабочее давление 1,0 мЛа (10 кгс/см²) при тенпературе 20°C.

Пример условного обозначения угольника из непластифицированного поливинилжлорида к трубан диаметрон 63 мм на рабочее давление 1.0 МПа (10 кгс/см²): Угольник ПВХ 63-10 ТУ6-19-222-83.


				4.900 - 9 - 6.0 - 1			
Разраб. П рове р.	№ докум Гусева Свердлова Санникова	Noon.	Autu	Угольник ТУ6 -19-222- 83	flum.	Масса	Масшта б
Н.КОНТР.	Мирончик Харина	-	81	ПВХ (основной компо- нент ГОСТ 14332-78).			IAANPOEKT

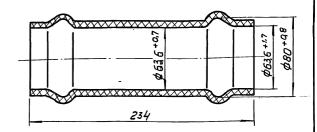
21224 54

Копировал Гольденбаун

Формат АЗ

Пример условного обозначения пережодо для труб диометрам 75мм и 63мм на моксимальное рабочее довление воды 1.0 МПо (10.0 кгс/см²): пережод ПВХ 75/63-DTY6-19-223-83

PUSMEDEL B MM

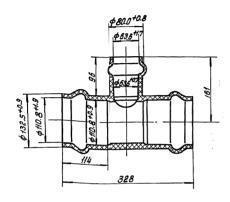

Номинол. диометр труд	I	q	ď,	da	e	۷	Macca,
75/63	75+0,3			36 ^{+1,7} 80,0 ⁺⁰⁸ 96		232	0,44
90/63	90+0,3	, t07	c2c*/7		243	0,55	
110/63	110+03	03)	ωρ		36	257	0,75
160/63	160 ^{+0,4}	}				291	1.7
160/110	160 ^{+0.9}	110,6+0,5	110,8+19	132,5 ^{+Q9}	114	314	2,25

			_					
					4.900-9-6.0-1			
_	Разра Пров	т и докум. 5. Гусева Свердлова 2. Санникова	Sus-		746-19-223-83	Num Macca Macwield Nucm Nucmoß 1		
	Н. кон: Утв.	р. Мирончик Харина	Tuy	86	ПВ!(основной компо- нет гост 14332-78)	COЮЗВОДОКАНАХПРОЕКТ		

Копирвол. В. Филиппова

Формат А4

Взам.инв.н Цив.н дубл. Падл. и дато



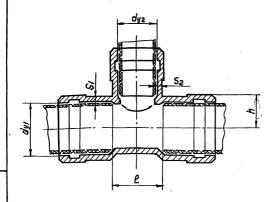
Муфты изготавливают на можсимальное рабочее довление воды Юкгс/см² при температуре 20°С и используют для соединения труб типов С и Т по ТУ6-19-100-78. Пример условного обозначения муфты надвижной для трубы диаметром 63мм на максимальное рабочее довление воды 1,0 МЛ о (10,0 кгс/см²):

b						•				
u dama						4. 900 - 9 - B.		-1	- Committee of the Comm	
3	11:			_			1	um	Macca	Масшта
Подп.	03 %	Juem	м докум. Гусево	1000	Daro	Муфто надвижная				ĺ
	 no.	оB.	Свердлова	77	-	TY6-19-223-83	1	1 1	-	-
റാറു	7. K	OHTP.	Санниково	27	 	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1	2 vem	Juc	maß 1
1	L.					DRY (OCHOBUS) HOMBO	_			
UWB.	H.K	OHTP.	MUDDHYUK	Jun,	b "_	ПВХ (основной компо- ненъп гост 14332-78))CI	JHJ3BC	AOKAHAY	IIPUEK I
2	 Jr	<i>no.</i>	LOPOHG	Nun	1 42	HETTS/ 1007 1430E-10/	丄			

Konupoban B. Punumnoba 21224 55 Popmam A

BOOM UND Nº UND Nº BUDA NOTA. U Acma.

Тройники изеотавливают на максимальное рабочее давление 1.0 мПа 10 кгс/см²) при температуре 20°С. Пример условного гбозначения тройника неравнопроходного к трубям диаметром 110 и 63 мм: Тройник ПВХ но /13 -10 ТУБ -19 - 223 -83.


					4.900-9-B.	1-0		
РОЗР ПРО	96. 5.	№ докум. Гусеба Сбердлова Санникова	Tycf-	ДОТО		Turn Tucm	Macca —	Масштав —
H.Ko. Ymb	нтр. 5.	Мирончик Харина	7.u	86	118% (OCHOBHOÚ KOMNOHEHT MOCT 14332-78).		DOKAHAN	MPDEKT
			Κοπυρ	0008	HOLPHKO. Seef-	90	PMOM A	4

Приложение 2.6.4 От

Пример условного обозначения тройника диаметром вэмм. на рабочее давление до1.0 мла (юкгс/см²) Тройник ЛВХ 63-10 ТУБ -19 - 223 - 83.

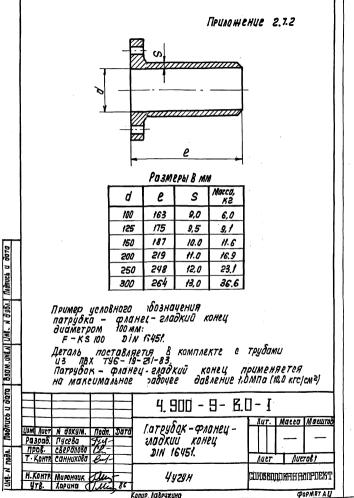
Натинал. Виаметр труб.	ď	d,	ď ₂	е	7	4,	Macca
63	63.6 +Q7	63.6 +1.7		96	280	140	850
75	75.6 +0.7		93.9+0.8	103	310	155	1100
90	90.7+0.8	90.7 +1.8	110.7+0.8	105	337	158	1900
110	110.8+0.9	110.8+1.9	132.5 +0.9	114	375	185	2900
160	161.0+1.1	161.0 +2.1	185+1	131	470	234	7100

ı.		_							
200	Ħ					4.900-9-6	1-0		7.
š	Изм. Ли	m	Nº OOKYM.	non	TATA	TpoúHUK	Aum	Macca	Масштоб
1	ruspu	0.	ם סשטעיו	Jul-	4070			_	_
Š	17,006.	72	Свердлови Синникова	Ch-		TY6 -19 - 223 - 83	111	ì	
	1	- 1			_		Лист	Tuch	1051
	H.KOH.	ρ.	Мирончик .	tien	-	ЛВХ (ОСНОВНОЦІ КОМПО-	เปราชย	ОДОКАНА	אחמתבציד
<u> </u>	19/110		X ODUHO!	lins	, 96	HEHM FOCT #4332 -18)	401000	пиналин	MILOTIVI

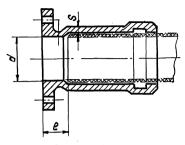
Пример условного обозначения тройнико треж-раструбного разнопрожодного чугунного диа-METPOM 100 x 100.

MMB-KS 100 x 100 AJN 16451.

UHB. N nobh. | Noonuce u dara | Baam. UHE. N UHE. N Oyde. | Noon. u dara


Деталь поставляется в комплекте с труба-ми из пох ту 6-19-231-83. Тройник применяется на максимальное

Source dasnehu? 1,0 MMa (10,0 Kr c/cm2)


Размеры в мм

dyı	dy₂	е	h	Sı	Sz	Maeea K2
100	100	124	65	9.0	9.0	10,2
125	100	130	80	9,5	9,0	18,4
	125	151	80	9,5	9,5	20,8
	100	136	85	10.0	9.0	22,0
150	125	163	85	10.0	9,5	23,9
	150	181	96	10.0	10,0	26,9
	100	148	175	11,0	9,0	36,8
500	125	175	120	11.0	9,5	39,0
	150	193	120	11,0	10,0	41.9
	500	252	130	11,0	11,0	48,8

		4.900 - 9 - B.O - 1		_		-
USM AUCT Nº BOKUM. TIORE	\Box	THOUHUK THEY HATTOUR	٨u٠	7.	Macea	Маештаб
шэм лист N. Вокум. Подп. Разраб. Пусева Туб провер. Сверднова С Т. Контр. Санникова	Дото	Тройник треж раструв- ный равнопрожодной Дін 16451			_	_
THE CORPORADE			hue	T	Aueto	
Н. Кантр. Мирончик чески. Чтв. харина ческ	86	44244	core	1380	ДОКАНН	MPOEKT
Kanup,	Ааврукина	21224	57		ď	DOMBT AS

Pasmephi B MM

d	e	S	Macca, K2
100	11	9,0	6.2
125	18	9,5	9,8
150	8	10,0	12,7
200	29	11,0	22,0
250	36	12,0	25,7
300	6	13,0	32,7

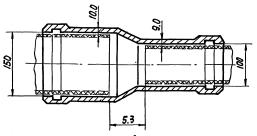
Пример условного обозначения патрубко-Фланец - раструб диаметрам 100 мм: E-KS 100 Din 16451.

Дегаль поставляется в комплекте с течвами из пвх туб-19-231-83. Патрудок — фланец — раструб применяется но максимальное рабочее довление 1,0 мПа (100 кгс/cm²)

и дата				4.900 - 9 - 6.1] - <u>I</u>		
пада. Падп. и	Usm Juct Paspad. Tipak. T. Konte.	Tycf-	Dara	Патрубок - фланец - раструб Дін 16451	Aur.	Maeca ——	мосштоб
LHB. N nagh.	Н. КОНТР- УТВ -	Turn	, 8%	Чугун тир. Лаврухина 21224 50	COHOSEDA	DKAHAN	

Пример условного обозначения тройника с двумя растубами и фланцем диаметром 200 мм:

MMR-KS 200 x 200 DIN 16451.

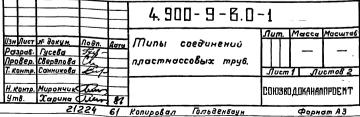

UNB. N nobl. | Nabnuch u gara | \$30M.UNB.N UNB. N Byan. | Nabnuch u dard

Деталь поставляется в комплекте с трубами из пах ту6—19-231-83. Тройник примегяется на максимальное рабочее давление гомпо (10,0 κ rc/cm²)

Pasmeph 8 MM

dy1	dyz	e	h	. S,	Sz	Macea, Kr
200	200	248	260	11,0	11,0	53,2
250	250	310	300	12,0	12,0	65,0
300	300	372	340	13,0	13,0	80,0

				4.900 - 9 - 6 .0 -	1		***
изм лист м Разраб. Г Провер. Св Т. Кантр. Са	Perguppa	Roon.	Дото	Тройник с Авумя раструбами и Фланцами Фін 16451	AUT.	Maeca — hucto	Масштаб ——
	(apuHa <	the.	1	4 <i>424H</i>			MOPOEST
		Kenup. A	а Врахоні	21224 .	59	q	EA TRMOO


Пример условного обозначения пережода двужраст-рубного диаметиром 150 мм на диаметр 100 мм: MMR - KS 150/1000 DIN 16451. Деталь поставляется в комплекте с трубами из ПВХ ТУ6-19-231-183. Пережод применяется на максимальное рабочее DaBARHUR 1.0 MTO (10.0 KTC/cm2).

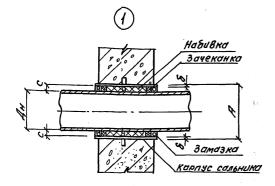
F					4.900 - 9 - B.O - 3				
r					Пอกอาจกาศ	Aur.	Маееа	М а сштаб	l
Ū	M Auer	N BOKYM.	Подп.	Дота	Пережод двужраструдный				ł
E	Разраб.	Гусева	944-	-	<i>О Б УЖРОСТРУОНЫ</i> И			-	ŀ
L	правер	свердлово	05-		DIN 16451	ىبا		Ļ,——I	ı
L	T. Kohrp.	еа нникова	en			Auer	Листо	5/	ı
H	H. KOHTP	410-01000	-	Ь	4 <i>429H</i>	กานาวเก	nneuta	OPDEKT	ŀ
Ľ	<u> 478</u> .	Мирончик . Харина с	THE S	u	736317	תחרתמוח	Н ишти	TITE TITELE	1
_	3/0-	I WOUND C	Konup.	Au Roux	UNB 21224	60	a)o	PMATA3	Ľ

JAK. N noon. | Noonuch u data | Baam.uHB.N | UHB.N ByEn. | Noonuch u data

Приложение 3.1

W: W:	Наружный диаметр	Материал	Схема соединения	Способ саединения	Примечание
n. n.	до 1200 на		Неразъенные соединения	Контактная стыковая сварка	Напорные и безнапорные трубопроводы с толщиной стенки более 4 мн
ક	00 140 mm	ПВД, ПНД, ПП	Муфто	Контактная сворка в раструб с литы- ми фасонными час- тями	Напорные и б'езнапорные трубопроводы
3	80 140 mm	пвх	Муфта	Склейка в раструб с литыми фасон- ными частяни	Наторные и безна- порные трубопроводь
4	80 160 mm	ЛВХ		Склейка в форно- Ванный раструб	Напорные и безна- порные трубопровод
5	63-315 nn	пвх	Компенсационные и реазвенные со Профильное резиновое кольчо	единения Раструбное сое- динение с профиль- ным резиновым коль- цом	Напорные трубопроводы

UHB. жподп Подпись и дата | Взан. инв. я: | UHB. я: дубл, Подпись и дата

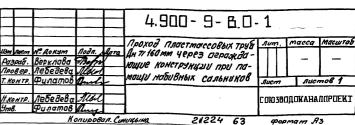

Продолжение приложения 3.1

N N N.N.	Наружный Виаметр	Ματερμαλ	Схета соединения	Опосаб саединения	<i>Примечание</i>
6		ЛВД, ПНД, ПП, ПВХ	PESUHOBOE KONGUO	Раструбный с рези- новым уплотнитель- ным кольцом	Elshanophble TPy Oanpo8odbl
7	160 - 315 mm	лнд, пп лвх	Резиновое кольцо	Раструбный с рези- навым уплатнитель- ным кальцам	ፍደ <i>ՖΗΦΠΟΣΗЬΙ</i> Τρ <u>υ</u> δοπροδοδ <i></i> δ
8	до 140 мм до 160 мм	ЛВД ЛВХ	Фланец свобод- ный етальной Трубо пласт массовоя Трубо пласт массовоя	На евободных флан- цах с втулками под Фланец (сварка в раструб трубы с втулкои ПВД; Склейка в раструб трубы с втулкой	Напарные трубопроводы для присаединения к арматуре, металическим фас. онным частям и трубам.
9	07 63÷1200	пнД	<u>Теуба пласт</u> массовая Втулка пой фланец	На свободных фланцах с приваренными втулками под фланец (сворка ветык трубы с втулкой)	Напорные трубопаоводы для присоединения к артотуре, металличес- ким фасонным частям и трубам

				4,900 — 9 — B.D	-1		_
					AUT.	Macea	Маештаб
Uam Avet	N dokum.	nodn.	Дата	Типы соединений	111	1	1
Разраб.	f y cebq	Test-		плистмаесовыле труб		_	
NPOBEP.	CBEPD NOSU	G/S		Tinge Tinge Coolinge Tipgo		<u></u>	
T. KOHTP.	Санникова	01-			Nuer	2 Auer	96
					DULLIZZ	מכנת שחוות	משימחמו
					LM:naa	nthronm	MULDEKT
yr8.	осарина с	Tour	¥.				
		Konue	. Aales	KUHO 2/224	62	фо	PMAT A3

UHB. N TDBA. | Nobruch u data | Baam. UHB. N | UHB. N BYEA. | Nobr. u data

УЗЕЛ Задыки набивного сальника


1. Набивку сальника произвадить в соответствии с MEXHUYECKUMU SIGBOHURMU N.4.2 CEPUU 5.900-2 2 Canbhuku dar ipaaoda naacimaccabbix mpyb

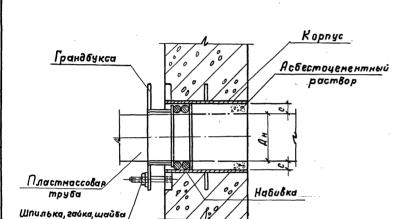
amaurahamer an cepuu 5.900-2 Tonujuhau Habubku ... c"

Приложение 3.2

TARALINA RESERVA HABIIRUN CARLUNUR II MARIINHA HABIIRKII

Нарчокный диаметр Дн Пласт, трубы	Диаметр Сальнико Ду Ла серии 5.900-2	A MM	8 Mm'	С ММ (ТОЛИЦИНО Набивки)	Примечание
160	150	245	7	35,5	
180	200	299	8	51.5	
200] ===]	200	L	41.5	
225	250	351	9	54	
250	1 ~~~	00,		41.5	
280	200	426	7	66	
315	300	760	'	48.5	
355	350	478	8	<i>5</i> 3. <i>5</i>	
400	1,00	£2.5	7	58	
450	400	530		33	
500	500	630	g	56	
560		720	10	70	
630	600	IEU	10	35	
710	700	820	g	46	
800	800	920	g	51	
900	900	1020	g	51	
1000	1000	1120	g	51	
1200	1200	1320	10	50	

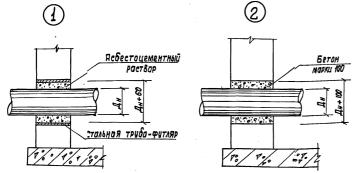
Таблица выбора нажинных сальников и талщины набивки


ПЛАСТ. Трубы самынка по серии \$900-3 25 30 30 30 30 26.5 25 40 50 17.5 63 27 28 75 80 110 125 126 126 127 128 128 128 128 128 140 128 128 128 140 150 128 128 16.5 16 160 17.5 16 180 180 180 180 180 180 180	Даанетр	Диаметр Ду	Толщина	Размеры на	
32	ПЛаст. труби Дн	нажимного сальника по серич 5,900-3	набивки С м м	биВкчХ6Силч ЛП пь ГОСТ 3152-79	Принечание
40 50 22.5 22 50 17.5 16 63 27 25 75 80 21 20 90 13.5 12 110 125 24 22 125 16.5 16	25		30	30	
40 22.5 22 50 17.5 16 63 27 25 75 80 21 20 90 13.5 12 110 125 24 22 16.5 16	32		26.5	. 25	
63 27 25 75 80 21 20 90 13,5 12 110 125 24 22 125 16,5 16	40] 50 [22.5	22	
75 80 21 20 90 13,5 12 110 125 24 22 16,5 16	50		17.5	16	
90 13,5 12 110 24 22 125 16,5 16	63		27	25	
110 125 24 22 125 16.5 16	75	80	21	20	
125 16.5 16	90		13,5	12	
125 16,5 16	110	105	24	55	
140 150 22 22	125	123	16,5	16	
	140	150	22	22	

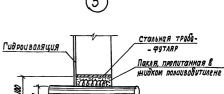
Дааметр Гіласт. труби Дн	диаметр ду нажимного сальника по серии 5,900-3	Толщина набивки Смм	Размеры на- бивки ХБС или ЛП пь ГОСТ 3152-79	Принечание
25		30	30	
32	En.	26.5	. 25	
40	50	22.5	22	
50	1	17.5	16	
63		27	25	
75	80	21	20	
90		13,5	12	
110	105	24	55	
125	125	16,5	16	
140	150	22	22	

- 1. Набивку сальника производить в соответствии с техническими указаниями п.4 серии 5.900-3
- 2. Сальники для прохода пластнассовых труб отличаются от серии 5. 900-3 толщиной набивки "С"

			4.900-9-B.O-1	· Ma	et a
Пров. Лебедева	Before.	40.0	Конструкции при понощи на- Конструкции при понощи на-		_
Т. контр. Филатов Н.контр. Лебедева Утв. Филатав	deBa May		жимных сальников. Копировал Гольденбаун 21224	ОДОКАН	INNPOEKT

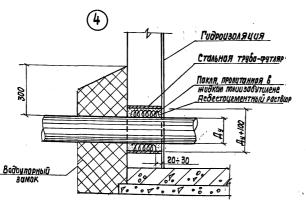

Узел эсделки нажимного сальника

Асб<u>естоцементный</u> раствор



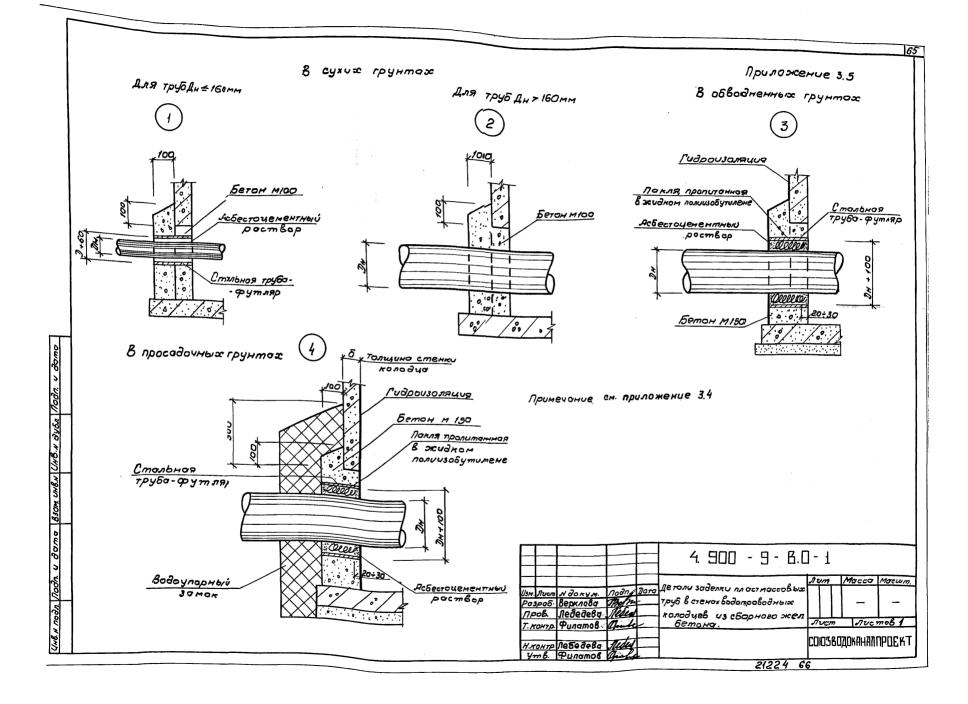
ДЛЯ ТРУВ ДH7-160 MM ANA TPYE Ly ≤ 160 MM

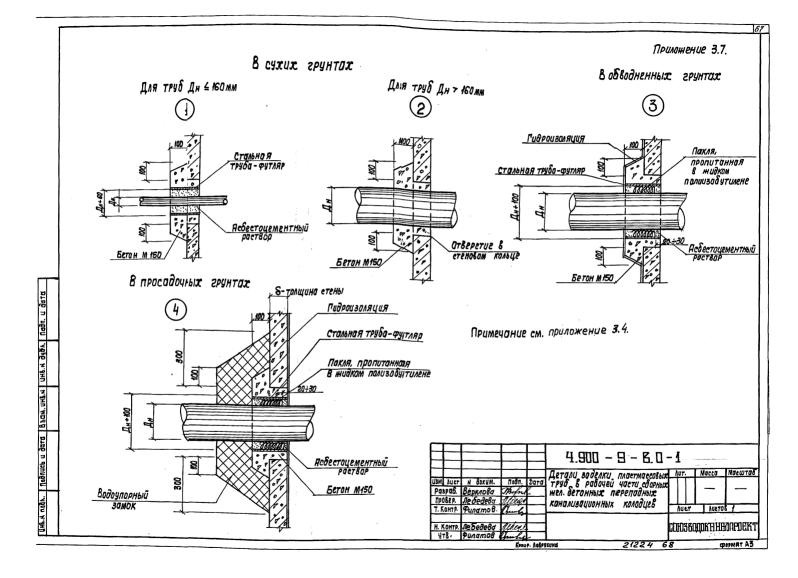
B OBBODHEHHUX ZPYHTOX


303000

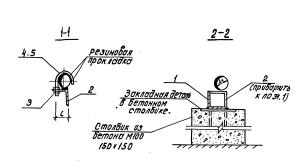
20÷30

. D. D. D. 00 . C


В просадочных грунтах



Водочпорный замок Выполнять из глины или плотночложенного перемятого суглинка, смешанного е битумными или дегтевыми MATEPUANAMU

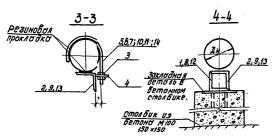

				4.900 - 9 - 6.0	- ?	l	garanteen de la companya de la compa	
				Дегали заделки пластидесовых	^	UT.	Maeea	Маештад
USM. AUCT	N dokym.	Подп.	Дата	TPY & KUPTU 4 HOUSE UNU DETOH-	П	T		
Разраб.	Верклова	Beh	_	בייטים טאט אפון אוייטיים או מעיין אייטיים אוייטיים אוייטיים אוייטיים אוייטיים אוייטיים אוייטיים אוייטיים אוייטיים	П	- 1		_
провер.	Лебедева	Mous		ныя стения водопроводных				
Т. Кантр.	Филатав	and		KanadyeB	^	uet	Auer	181
							1 1	
Н. Контр.	Лебедева;	Stelled			Ш	113B	WOKAHE	OOPDEKT
YTB.	Филатов						1.0	
		Konup. A	aBPYXUI	10 2/224	65		ФОР	MRT A3

ин. и подл. | Падпись и дата | Бэам. инв. и инв. и дибл. | подпись и дата

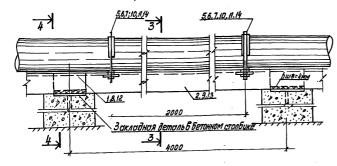
Приложение 3.9.

Формат	ЗОНО	1103.	Обозначение	Наименование	KO A.	Приме- чание
				00-25		
	T	7		L50x5x5, 100T8509-72,* C=100	1	
		2			1	
		3		Γούκοι M8, 10CT 5915-70 *	4	
		4	00T 36-17-77	XOMYT 28, 100T 24139-80	2	
-				OC-32		
	1	4.3		1103. 1+3 см. Быше		
	T	5	OCT 36-17-77	XOMYIN 36. 100T 24139-80	2	

Прокладка трубДн25, Дн32 на сплошном основанши. (anopu OC-25, OC-32)


Сварку производить электродоми типа Э-42 (1007 9467-75) Высота шва ншв.= 4мм.

-+	2 4.5	1	4.5
(ПРИБИРИТЬ К ЗИКЛИЙНОЙ ЗЕМИЛИ Б БЕТОННОМ			
de Maiu 6 Betohkom CTOABUKE)		2000 2000	
	2-1	5000	


				4.900-9-8.0-1							
Г					1	מחט	Macca	Macural			
POS	3ραδ.	<i>№ дакум.</i> В е рклава Лебедева	Befry	Γορυзομπια πο μα Άπρακπαδκα πλαστησοςοδοίχ πρυδ Άμε 5 μ. Α. Α. Α.			-				
		Филатов		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		ucm	NUC	mo5 1			
		Лебедева Филатов			CI)H)38	DÝOK VA VQ	NPDEKT.			

KONUPOBEIL! LOYENKO A

Приложение 3.10

Прокладка труб Дн=40+110 на сплошном основании (Опоры ос-40+00-110)

UNS APPORTA ROGINCO U BOTO BOOM UND AL UND ALANDA ROGINCO U DOTO.

POPMOT	3040	1103.	Обозначение	Наименование	KOA.	Noume .
-	П	П		OC -40, OC- 50, OC- 63	П	
		1		L50x5;0x5, FOCT 8509-72*, E =100	1	
		2		" 2 = 4000	1	
		3		100KM M12, 100T 5915-70*	4	
		4		-50 x 8, 100T 103-76 # 8=50	2	
		56,7	DCT 36-17-77	XDMy/m 50, (55), [70]	2	
				DC -75, OC -90		
		8		L 50 × 50 × 5, 100 1 8 5 0 9 - 72 * E = 100	1	
		9			1	
		3.4		ПОЗ. 3.4 СМ. ВЫШЕ		
		10.11	OCT 38 -17-77	XOMYT80(95) 100T24139-80	2	
				00-110	П	
		12		L63x63x5,F0C78509-72,*E=100	1	
		13			1	
		3.4		Поз. Э.4 см. выше		
		14	OCT 36-17-77	XOMY: MIS, 1007 24139-80	2	

Марки хомутов в скобках(55)и(95) соответствуют ОС-50 и ОС-90, в квадратных скобках [70]-к опоре ОС-63.

_					4.900- 9- B.O-1						
						1	m	Macca	Масштав		
		Nº dokum.		1010	7 ann ann ann ann an ann an 7, an	Г	П				
		BEDKADEO	Belmy		Горизонтальная прокладка		11	:	_		
		Лебедеба	Redel		пластмассовых руб.Дн40÷110		LL				
<u>T. /</u>	контр.	Филатоб	Queles		1,,, G C 1, G C C C C C C C C C C C C C C C C C C	V	UCM?	South	1051		
4.1	CONTP.	Nebedeba Punarob	fleded			C	0103	BODOKAH	ANDPOEKT		
41	nB.	PUNCTOB	Quelet			L					
					21224 71	,					

-Konupoban: Loyenka. Def-

POPMENTA3

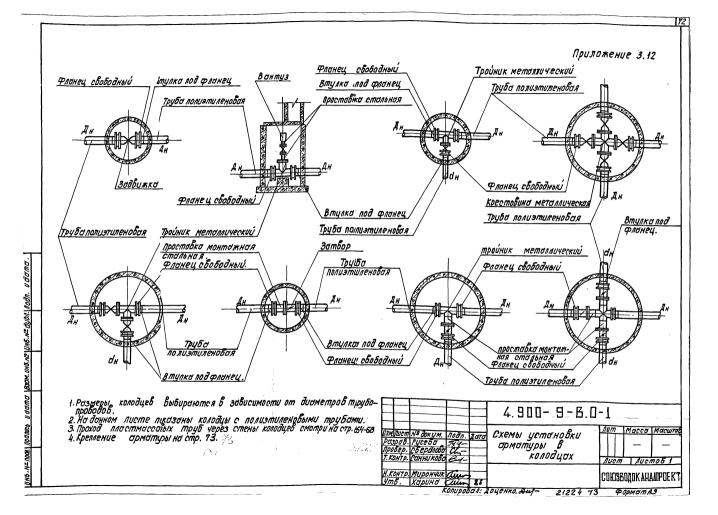
Rpunoscenue 3.11

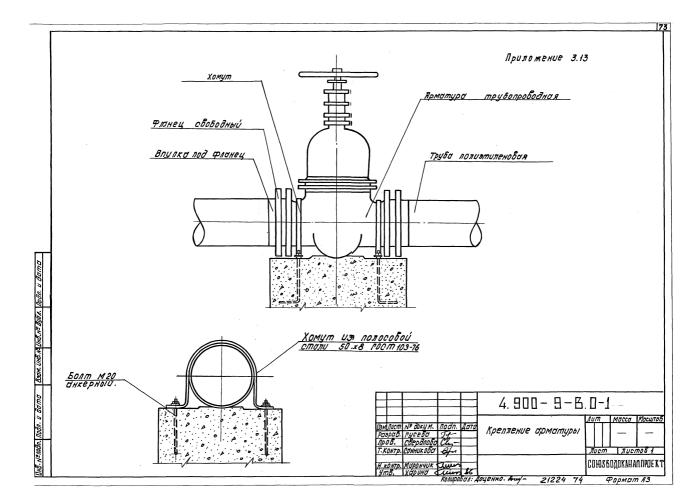
					. , ,		
Диаметр Лиаст труб. Дн		Розмеры бе танного стор бико Яхв.тт	Приме- Чанив	Диаметр Пласттрубы Дн	C. MM	Размеры бе- тонного стол- бика Д -В мм	Npume- uquue
125	160	450×300		400	470		
140	180			450	520	750×300	
160	200			500	580	950×300	
180	250	550×300		560	640		
200	255			630	730		
225	280			7/0	810		
250	305			8:00	920	1200× 500	
280	335	600×300		900	1020	1	
3/5	370			1000	1150		
355	425	750×300		1200	1350	1500×500	

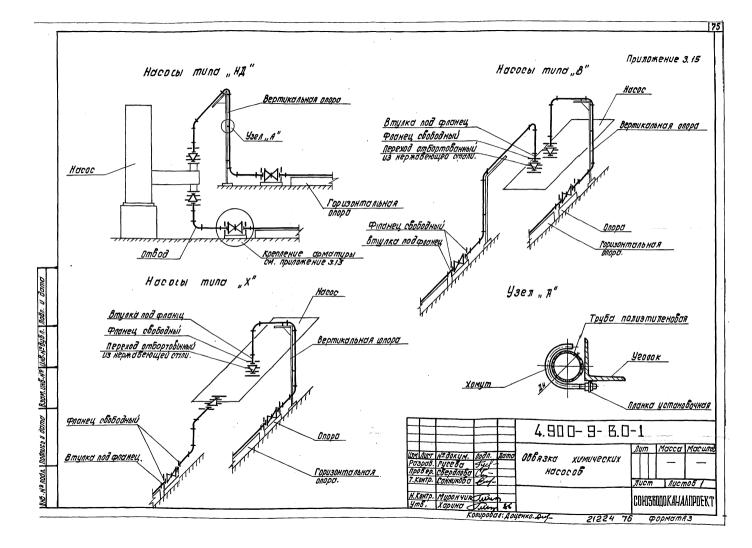
Прокладка	труб] >110мм по бетонным <u>-стол</u> бикам
Резиновоя проклюдко	50 200 50 Jung Toyle 30 + 4 630 100 300 100 Jung Toyle 6301 Jung 1200

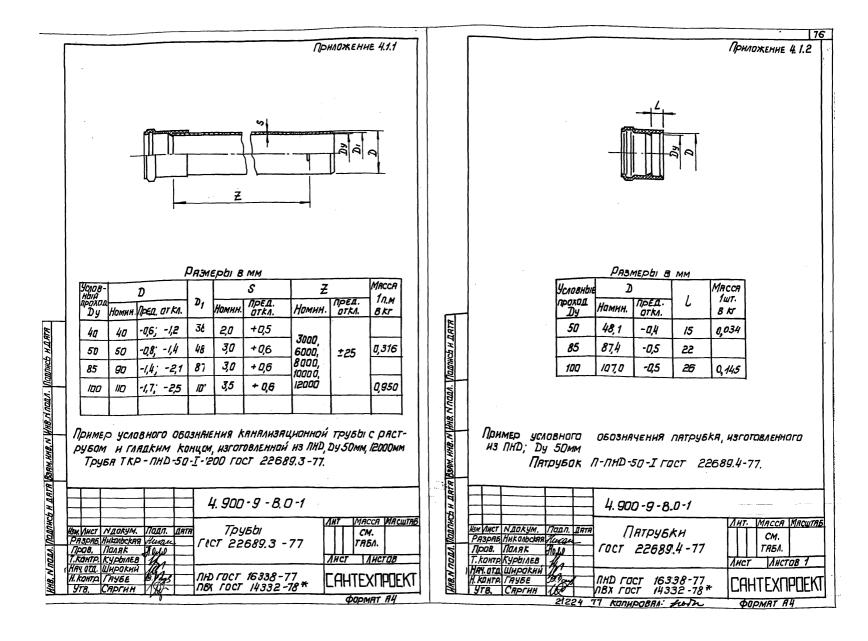
1	<u>Резиновоя</u> проклодко
3	
<u>2</u> Столбик из бетона миоо — 77	V333,4 88

UHB N MOBR NOGINCO U DOTO BROW WHEN UHBN DYBR NOGINCO U BOTO

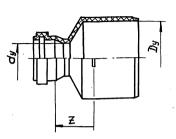

Расстояние между опороми приним оть по тоблице 4

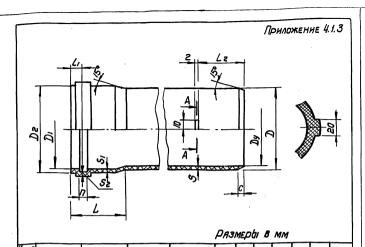

E					4.900-9-8.0-1			
						Лит	Macca	Масштаб
Usn	Juc7	N докум.	Λοđn.	Jarq	Горизонтальная прокладко	ПТ		
Pas	pag.	Верклово	Theful-		πλαεπμοιεοβώς πρυδ	111	-	_
ħρ	овер.	лебедево	rescel			Ш		
T. n	онтр	Рилатов	Cul		3H > 110 1114	Nucm Nucmab 1		
H. H.	онтр. пв.	Лебе дево Филотов	Medest			CO1038020KAHAANPOEKT		
4		-2- 0	00	0	21224 72	æ		D 2


ONUMBER B. PUNUMMOBO


21224 72 Pop

Popmom A3





		PRIMEPL	I B MM	
Условный	ί προχος	Ž	Масся	
Ду	dy	Нам:ин.	ΠΡΕΔ. OTKA.	1шт В KT
50	40	34/	+9	}
85	50	42	+11	
/00	50	54	+12	0,160
100	85	50] '/-	

Пример условного обозначения переходного патрубка, изготовленного из ЛНД ,Ду 100 и dy 50 мм . Переход Л · 100 ×50 -ПНД -I ГОСТ 22689.6 -77 .

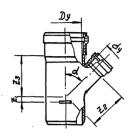
_											ı
				Γ				_			ŀ
						4.900 -9 - B.O -1					
	Uare	Acces	Nantum	Donn	7.000		ЛИТ	Ε.	MACCA	МАСШТ.	l
			Никольская	Hunce	LHIH	VIRTPY6ku ПЕРЕХОДНЫЕ	111		CM.		
	Πρ	18.	Паляк	AOLLO		roct 22689.6-77	$\ \ $		TABA.		l
				1/2			Лис	\overline{r}	ЛИСТ	a8 1	
	H. KI	игр,	TAYBE	189		NHD FOCT 16338-77 NBX FOCT 14332-78*	CA	Н	ΤΕΧΠ	PDEKT	
						KONHPOBAN from 21224	78	5	DOPMAT	A4	_
	_	PAS TIPO T. KO HAY. H. K.	РАЗРАБ. Пров. Т. Контр. Няч. от.а. Н. контр.		ПРОВ. ПОЛЯК ПОЛО Т. КОНТР. КУРЫЛЕВ НЯЧ. ОГД. ШИРОКИЙ Н. КОНТР. ГЯУБЕ	ПРОВ. ПОЛЯК 1010 Т. КОНТР.КУРЫЛЕВ НЯЧ.ОТД. ШИРОКИЙ Н. КОНТР. ГЯУБЕ	H3M/AHET N. QOKYM. ПОДЛ. ЦЯТЯ ПЯТРУБКИ ПЕРЕХОДНЫЕ ПОСТ 22689.6-77 ПОВ ПОВ 10 ПОВ 10	HSM/AMET N_DOKUM. ПОДП. ДАТА ПАТРУБКИ ПЕРЕХОДНЫЕ ПРОВ. ПОЛЯК ДОЛО ГОСТ 22689.6-77 Т. КОНТР КУРЫ ЛЕВ ЛИК ПОТОКИН НЯЧ ОТА. ШИОКИН ЛИК ПОТОКИН Н. КОНТР ЛУБЕ ЛИК ПОТОКИН Н. КОНТР ЛОТОКИН Н. КОНТР ЛУБЕ ЛИК ПОТОКИН Н. КОНТР ЛУБЕ ЛОТОКИН Н. КОНТР ЛОТОКИН Н.	НЗМ/АНЕТ N. ДОКИМ. ПОДП. ДЯТЯ ПЯТРУБКИ ПЕРЕХОДНЫЕ ПРОВ ПОЯК ПОЯК ПОЕТ 22689.6-77 ПОВ ПОЯК ПОВ ПОЯК ПОВ ПОЯК ПОЕТ 22689.6-77 ПИСТ 16338-77 ПИСТ 1838-17 ПИСТ 1838-17 ПИСТ 1838-17 ПИСТ 1838-18 ПОВ 1838-18	НЭМ/АНЕТ Л. П.	MAINT MAIN

	YCIOB HbW	1	D	2	1	2)s		S							,
		На- мин.	NPEA. OFKA.	Но- мин.	ΠΡΕΔ. OTKA.		ПРЕД. ITKA.	Ho - мнн.	ПРЕД. ОТМ.	S_t	ړی	۷	۲,	L7	С	Π, HE ME- HEE
	40	40	-0,6 -1,2	40,5	-0,3 -0,9	49,6	-1,0	3,0		2,7	2,3	, .		32	6	0,
	50	5Q	-0,8 -1,4	50,6	-0,6 -1,2	<i>59,6</i>	-1,6	3,0	+0,6	2,7	2,3	41	11	36	6	8,1
·	<i>85</i>	90	-1,4 -2,1	90,8	-1,2 -2,1	101,5	- <i>2,</i> 0 -2,8	3,0		2,7	2,3	74	14	62	6	00
	100	סוו	-1,7 -2,5	110,9	-1,6 -2,4	IZI,5	-1,6 -2,4	3,5		3,1	2,6				7	9,0

4.900 - 9 - B.O - 1

AUT. MRCCA MRCWTAS

ЛИСТОВ

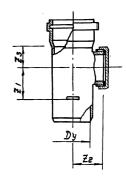

ФОРМЯТ ЯЧ

	H3M AHCT	N AUKYM.	Лодп.	Дата	Ріструбы и глядкиє коң-
	РАЗРАБ.	Hukonbekaa	Kulaus	-	UN PACOHHBIX YACTEH
	Πρα8.	Поляк	1060		
	T. KONTP.	KYPHINEB	160		[7]CT 22689,2-77
1	HAY,OTA.	Щирокий	16		
•	H. KOHTP.	TRYBE	BY		NAD FOCT 16338-77 NBX FOCT 14332-78*
	<i>978</i> .	CAPCUH	1000		IBX

<u>Инв. И подл. (Подпись и дятя Івзям. инв. Минв. И подл. Подпись и дятя</u>

ИЗ ПНД, ОС 92°30°, Ду Отвол 90°-50	1 51 MM: 1-1HD -I FOCT 22689.	977
	4.900 - 9 - 8.0 -1	
 HSM NUCT N. AGEYM, TOART, ARTH PRISPRE HUKUNDEKRI JUNGAN TIPOB. TIANAK WOLD T. KOHTP. KYP BINEB 144	Отвады ГІСТ 22689.9-77	AHT MACCA MACUTAS CM. TABA.
 Hou men Illunation 12	NFD FOCT 16338-77 NBX FOCT 14332-78*	CAHTEXPOEKT
		ФОРМЯТ Я4

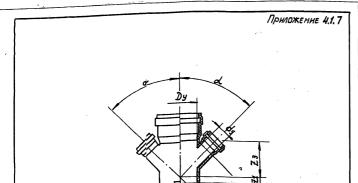
ПРИЛОЖЕНИЕ 4.1.6


PASMEDDI 8 MM

- Ł																_
I	Yana 8			۷												
į	,,pu	ЮД		4:	5 °		60°				87° 30'				₹, ₹2	l
	Dу	dy	Zı	72	Z3	WACCH BALT FUIT	Z1	Zε	Z 3	MAICO B KI IWT	Z1	Zε	Za	MP CCFI B KI T WIT	Z3	
4	50	40	9	58	56		16	65	410		31	36	22		+9	
	50	50	/7	63	63	0,110	23	46	46		39	39	<i>2</i> 6	0,086	+g	
	<i>8</i> 5	50	3	81	83		11	68	57		36	56	27		+11	
	<i>8</i> 5	<i>8</i> 5	<i>30</i>	111	111		16	80	80		68	68	47		+11	
1	/00	50	/4	105	93	Q 32 0	5	80	63	0,29	34	66	28	0,280	+12	
	100	85	20	125	121		35	92	86		68	78	49		+/2	
	100	100	37	136	/36	0,550	50	98	98	0,49	85	85	57	9,480	+/2	
٦																•

Пример условного обознячения тройникя изготовлен-ного и ПНD , d45°, Dy 100 мм и dy 50 мм: Тройник т 45° - 100 ×50 - ПНD - I гост 22689 ,10 - 77

<u>_</u>								
E				4.900-9-8.0-1				
		N Дакум. Никаньския		Тройники	1	<i>yr.</i>	MRCCR CM.	Масштаб
/]/ 7./	908. Кантр	Manak Kypbineb	Hall	FOCT 22689.10-77		HCT	TREA.	08 1
H.A	OHTP.	WHPOKHH FRYBE CRPSHH	Blog 100	NHD	۳		ΤΕΧΠ	
				 KONHPOBAN: fro 52 21224	7	9 ¢	DPMAT .	94

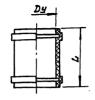

Pasmepbi	8	MM
----------	---	----

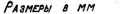
YCAOB- MBIH NPGXOD DY	Z1	Ξz	Z3	NPEA. OTKA. Zi, Zz U Z3	MACCA 8 KF JWT
50	39	48	26	+9	0,124
85	70	68	46	+11	
100	86	82	57	+12	0,475

Пример условного обознячения ревизии, изгатовленнай из ПНД; Ду 100мм:

PEBHAHA P-100-1141-I FOCT 22689. 15-77

Н								
ь и дятя					4.900 - 9 - 8.0 - 1	Test Million		-
Паались и						AHT.	MACCA	МАСШТАБ
ממ		NAOKYM.		DATA	Ревизии		CM.	
7		HHKOAbckas	Mas	_	,	\mathbf{I}	TABA.	
noan.		ΠαληΚ	10,40		ГОСТ 22689, 15-77			
100		KYPHINEB	110			NHCT	ЛИСТ	08 1
2		Широкий	the					
ИВ, N	Н Кантр.	TAY5E	13/4-1		NHI	ILUF	ITEXI	
чΗ	<i>918</i> .	CAPIUH	00%		NBX FOCT 14332-78*		II LAH	ווווווו
					KNOWDORAN: ADDW-21224	80 A	DOMET S	T LI

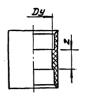

Услаг	RAHIU											ПРЕД.		
/IPQ			4	15°		60°			87° 30′				07KA. Z1	
Дy	dy	Žι	Ζz	Za	MACA B K! fut	Z 1	Zz	Zз	MACCA 8 Kr 1 UT.	₹1	Zz	Zз	MACCA B KI I WT	₹2 ₹3
<u>-5</u> 85	50	3	81	83		11	68	57		<i>3</i> 6	<i>5</i> 6	27		+11
85	85	30	111	111		16	80	80		68	68	47		+11
100	50	14	105	93		5	80	63		34	66	28	0,30	+12
100	85	20	125	121		35	92	86		68	78	48		+12
100	100	37	136	/36		50	98	98		85	85	57	0,60	+12


PARMEDEL B MM

Пример условного объянячения крестовины, изготовленной из ПНД, d 60°, Dy 100 мм и dy50 мм: Крестовиня K60°-101×50-ПНД-I ГОСТ 22689,11-77

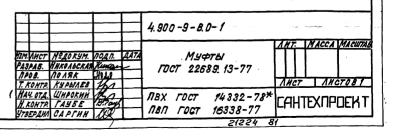
MAN MUCT N. ARKYM. TOAN. ARTH K.PECTOBUHBI PROPRE HIKONOCKRI HUNGAN.	AUT.		
1008, 1019K 2010 10CT 22589 11-77		СМ. ТАБЛ.	<i>Мясштя</i> <u>Б</u>
(HAY OTA VIJHOOK WY YA	Auer CAL	ATEXN	

RPHAOMEHHE 4.1.9.



YCAOB- Noin	L				
neoxo4 Dy	Номин.	ПРЕД. ОТКЛ.			
50	977	+,9			
50	87	79			
85	152	+11			
100	153	+12			

PHMEP YCAOBIOTO OFOSHAYEHUS MYDTH, HSTOTOBAEHHOÙ IS NBN, DY 50MM AAR COEANHEHHR NO THNY I:


MYTA M-50 - 187-I FOCT 22689.13-77

PASMEPHI & MM

YCAOB - HUM	Z				
NON NPOXOA DY	Номин.	ПРЕДЛ. ОТКЛ.			
50		+ g			
50	5				
85		+ 11			
100		+ 12			

PHMEP YCAOBHOTO OSOSHAYEHUR MYGTH, ИЗГОТОВЛЕННОЙ ИЗ ПВХ, ДУ 50 MM ДЛЯ СОЕДИНЕНИЯ ПОТИПУДТ МУФТА M 50 - ЛВХ - II - ГОСТ 22689.13-77.

PASMEDIDI 8 MM

Уславный праход Ду	D	S	MACCA 8 KF fut
40	52	3,5	
50	64	4,0	0,029
85	84	50	
100	126	<i>50</i>	0,124

Пример условного обознячения зяглушки, изготовленной из ПНД , Dy 50 мм: Зяглушкя 3-50-ПНД-I ГОСТ 22689.16-77

K										
ИНВ, N подлупадпись и д ятя							4.900-9-8.0-1		Table	
Ž	- 1							ЛИТ.	MACCA	Мясшт.
u		HBM	ЛИСТ	N ADKYM.	Падп.	LATA	ЗЯГЛУШКИ	ПТ	CM.	
8		PR	PAE	Никольская	Huran	_		111		
<u> </u>		08,	MONAK	70.00		FOCT 22689.16-77	111	TREA.		
2		T. KI	DHTP.	KYPhINEB,	1/20			JUCT	AHCT	08 1
ξĺ	1	HAY	.OTA.	Широкий	120]				
90		H.K	OHTP.	TAY5€	3.164			ורחו	ITEVI	POEKT
3		41.	θ.	CAPTUH	We		NHD FOCT 16338-77 NBX FOCT 14332-78*	LUL	HEVII	
					/		KONHPOBAN from 21224	82	Фармят	<i>9</i> 4

Приложение 4.1.10

Взям. инв. м Инв. И поа п. Паапись и дягя

FASMEPHI & MM

YCAOB - HUIU	l,	Z	MACCA B KF		
NPOXOA Dy	HE BONLE	Номин.	NOEA. OTKA.	1шт	
50	<i>1</i> 5 C	<i>1</i> 5	+9		
85	237	20	+ 11		
100	LOJ	20	+12	0,38	

Пример уславнага ОБОЗНЯЧЕНИЯ KOMPEHCALHOHHOIO PATPYSKA, USPOTOBNEHHOPO из ПНД, Dy 100MM: ПАТРУБОК ПК-ПУД-100-I ГОСТ 22689.5-77

Взям. инв. мунв. N под л.Подпись и

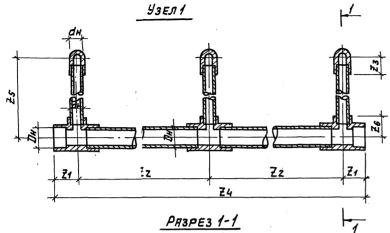
	Ь,								ł
						4.900 - 9 - 8.0 -1			
_	T-KI	B. OHTA	INNUMEROU	Monn. Muar Mys	ДЯТЯ	Пягрубки компенся- Цнанные Га:Г 22689.5-77	ЛИТ	MRCCA CM. TREA.	MACUTAS DR
_	HK	OHTP.	ГЯУБЕ САРГИН			ΠΗΣ ΓΟCT 16338-77 ΠΒΊ ΓΩCT 14332-78*	CAL	ΙΤΕΧΠ	POEKT
								DODMAT	A4

Приложение 4.2.1.

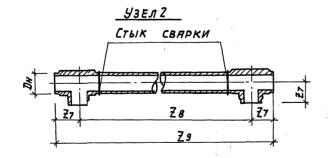
NN Y3/108	Няим є новяни:	Ду	Эскиз	N N СТРЯНИ
1	2	3	4	5
	Узлы из ПНД и ПВ1 для ня ГОСТ 18599-83	<i>גו</i> לא קסחו	K TPY5 NO	
1	Узел из трех тройников и угольников Для присоединения Душей	20 -50	· 111	
2	Узел из двуг тройников	63 -225	Ti	
3	УЗЕЛ ИЗ ДВУХ ТООЙНІКОВ И УГОЛЬНИКА ДЛЯ ГРИСО- ЕДИНЕНИЯ УМОІВЯЮНИ- КОВ, ПИССУЯРОВ И УНИТЯЗОВ	20-50		
4	УЗЕЛ ИЗ ТРЕХ ТРОЙНІКОВ ДЛЯ ПРИСОЕДИНЕНІЯ УМЫВАЛЬНИКОВ, ПИСУЯ- РОВ И УНИТЯЗОВ.	20-50	111	
	Узлы из ПВД и ПВХ 1ЛЯ СВ. ГОСТ 22689 77		סח 1945 אול	
5	УЗЕЛ ИЗ ТРЕХ ТРОЙНКОВ90 И ОТВОДЯ 90° ДЛЯ ПРИСОЕДИНЕНИЯ УНИТЯЗОВ	100	<u>, جکو کی کی ب</u>	
6	УЗЕЛ ИЗ ДВУХ ТРОЙНИЮВ 90° И ОТВ ОДЯ 90° ДЛЯ ПРИСОЕДИНЕНИЯ УНИТЯЗОВ	100	بدلجلبا	
7	УЗЕЛ ИЗ ТРЕХ ТРОЙИКОВ90 И ОТВОДЯ 90° ДЛЯ ПРИСОЕДИНЕНИЯ УМЫВЯЛЬНИКОВ И ПИССУЯРОВ	50	پر آرد آرد آل	

1	2	3	4	5
8	УЗЕЛ ИЗ ЛВУХТРОЙНИКОВ 90° И ОТВОДЯ 90° ДЛЯ ПРИ - СОЕДИНЕНИЯ УМЫВЯЛЬ - НИКОВ И ПИССУЯРОВ	50	_دڵڿڵؠٚ	
g	УЗЕЛ ИЗ ТРОЙНИКА 90° И ОТВОЛЯ 90° В РАЗНЫХ ПЛОСКОСТЯХ	50,100		
W	УЗЕЛ ИЗ ДВУХ ОГВОДОВ 135°	50,100	<u></u>	
11	93E1, из ДВУХ Тройников 90°	50, 100	¥ ¥;¥;~	
12	УЗЕЛ ИЗ ДВУХ ОТВОДОВ 90°; 135° /50°	50, 10Q	کی	
13	Узел из тройникя 45° и огводя 135°	50,10Q	7	

				E		1		4.900 -9	- B ₂ 0 -1					
1						1					ЛИТ	-	MACCA	Мясшт.
	Изм.	Лист	NAOKYM.	170	ηл	. [Qata	ПЕРЕЧЕНЬ	U.RATIR .	43108 ·		1	j	
	PA3	PR6.	Никольская	14	40	I	-	PICACITO	90700			ı	1	1
	Πp	98.	NONAK	J	ull	T					ᆚ	丄	<u> </u>	
	T. KI	литр.	Курылев	1	ζ_{λ}						AH	<u>:7</u>	AHC	T08 1
1	HAY	QTA.	Ширакий	1		Ţ							~~.	
•	H. K		ГАУБЕ .	13,	么	Ø					ĽН	Η	I I.XI II	POEKT
	91	8.	Сяргин	1	×	1			. # . 7 - 5/	221.				12


Приложение 4.2.1

NN 43108	Няименовяние	ДУ	Эскиз	NN CTPR-
1	2	3	4	<u>ннц</u> 5
14	Узел из гройника 90° и отвода 90°	50,100	-(<u>_</u>	
/5	УЗЕЛ ИЗ ТРОЙНИКА 45° И ОТВОДА 135°	50,100	Y	
16	Узел из тройникя 60° и отводя 150°	<i>50,100</i>		
/7	Узел из тройник) 90° и отводя "35°	50, 100	چــــــــــــــــــــــــــــــــــــ	
18	Узел из Крестацины 45° и двух отводов 135°	50, 100	7	
19	Узел из крестовины 60° и двух огводов 150°	50,100	7	
20	Узел из Креставины 90° и чегырех, атвахов 135°	50,100) J	
21	Узел из тройним 90°, тройника 45° и отвода 135°	50,100	<u> </u>	


1	2	3	4	5
22	Узел из тройника 90° Тройника 60° и Отвода 150°	50, 1:00		
23	УЗЕЛ ИЗТРОЙНИКА 90° И ОТВОДЯ 150°	50,1100		
24	Узел из компен - САЦИОННОГО ПЯГРУБКЯ И РЕВИЗИИ	50,100) 	

		_				•		
						4.900-9-B.0-1		
			N ДОКУМ. Никольская Поляк Курылев	Mann. Huran Stowa	LATA	ПЕречень УЗЛОВ	ЛИТ. МЯССЯ МЯСШ	TAB
	HAY	OTA	Широкий Гяубе	The same			AHET AHETOB 1	_
	Ÿī		CAPFUH				CAHTEXTPOE	KT
_				_/		KONHONBAN: SUNTA 21224	4 84 DODMAT AS	

76
75

DH	dн	Z 1	Zz	Z3	Z 4	25	7 6			
для холодной воды										
20	20	24	950	24	1948	795	24			
50	20	47	950	24	1994	755	24			
	А	1.8	горя	YEÚ	BOAL	5/				
20	20	24	950	24	1548	645	24			
50	20	47	950	24	1994	605	24			

Дн	27	78	<i>79</i>
63	60	850	970
110	112	1000	1224
160	162	1000	1324
225	239	1100	1478

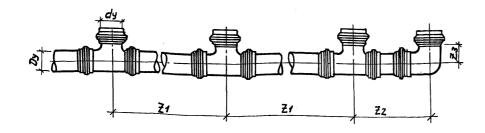
СОЕДИНИТЕЛЬНЫЕ ДЕТЯЛИ ПРИНЯТЫ ДЛЯ: Ф20÷50 по ОСТ6-05-367-74. Ф 63 ÷ 225 по ТУ6-19-213-83.

Рязмер 78 принят условно. Рязмер 72 уточняется в зависимости от Толщины перегородки между душевыми кабинями.

			4.900-9-B.0-1	****	and the lates of	The second state of the se	
			//- 40	111	17.	MACCA	MACUITAS
			Узлы 1,2 для няпорных	П	Т		
PASPAS.	HUKONGEKA	Hunan	TPY5 NO FOCT 18599-83	11	1		1
	/TOTAK	TION	[P36 //U VC 100333-83				
T. KOHTP.	KYPHINEB	He		JIH	ICT	SHCI	08 1
HAY. OTA.	ШИРОКИЙ	1/2	ΠΒΩ ΓΟCT 16337-77 *				
H. KOHTP.	[AYSE	13:25	THE FOCT 16338-77		٩Н	LEXIIL	JUEKT
STREPANI	CAPFUH	10%	1/11/2 1001 10038 17	_			u

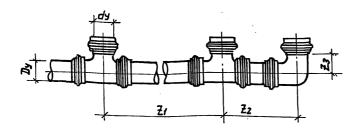
Приложение 4.2.3

dн	21	Z2	<i>₹3</i>	Z 4	₹5						
ДЛЯ УМЫВЯЛЬНИКОВ											
20	24	650	1324	1	24						
20	28	650	1328	26	1						
20	34	650	/334	29	_						
20	40	650	1340	34							
20	47	650	1347	39	_						
ДПЯ	nn	CCYAF	08								
20	24	700	1424		24						
20	28	700	1428	26							
20	34	700	1434	2.9							
20	40	700	1440	34							
20	47	700	1447	39	_						
Д	я у	HHTAS	308								
20	24	900	1824	_	24						
20	28	900	1828	26	_						
20	34	900	1834	29	_						
20	40	900	1840	34	_						
	47										
	20 20 20 20 20 20 20 20 20 20 20 20 20 2	ДПЯ УМ 20 24 20 28 20 34 20 40 20 47 ДПЯ ПМ 20 24 20 34 20 40 20 47 ДПЯ У 20 24 20 24 20 24 20 24 20 24 20 24 20 24 20 28 20 34	ДЛЯ УМЫВЯЛ 20 24 850 20 28 650 20 34 650 20 40 650 20 47 850 20 47 850 20 24 700 20 28 700 20 34 700 20 40 700 20 40 700 20 47 700 20 40 700 20 47 700 20 47 700 20 47 700 20 48 900 20 28 900 20 28 900 20 34 900	ДЛЯ УМЫВЯЛЬНИК. 20 24 850 1324 20 28 650 1328 20 34 650 1334 20 40 650 1347 ДЛЯ ЛИССУЯРОВ 20 24 700 1424 20 28 700 1434 20 40 700 1447 ДЛЯ УНИТЯЗОВ 20 24 900 1824 20 28 900 1834	ДЛЯ УМЫВЯЛЬНИКОВ 20 24 850 β324 — 20 28 650 β324 26 20 34 650 β34 29 20 40 650 β340 34 20 47 850 β347 39 ДЛЯ ЛИССУВРОВ 20 24 700 β424 — 20 28 700 β424 29 20 34 700 β440 34 20 40 700 β440 34 20 47 700 β447 39 ДЛЯ УНИТЯЗОВ 20 24 900 824 — 20 28 900 824 — 20 28 900 828 26 20 34 900 834 29						


	dн.					
12 10						1 3 2
1	₹1	₹z		Z2	75	-
	ļ		73			

*Узел*4

Y3En3


Ä	4			777
7	. Z 1	, Z 2	<u></u> ₹2	Zı
7	·		1 ₹3	1
Co	ЕДИ	инительные деталь	1 ПРИНЯТЬ ПО ОСТБ-О.	5-3 6 7-74

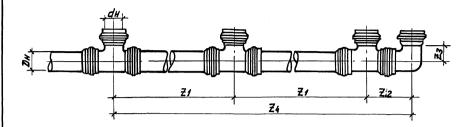
1/2 2	7 <i>H</i> 7	7.	MACCA	МАСШТА
ИЗМЛИСТ № ДОКУМ. ЛОДП. ДЯТЯ УЗЛЫ 3,4 ДЛЯ НАПОР.	Т	Т		Ţ
PRIPAS. HUKUALEKAN MAGAL HOLX TPYS no COCT 18599-83	1	1	ì	1
1//POB. 1//O/IAK 1/19WW		L		
T.KOHTP. KYPWIEBA /LA	ПИС	7	JHC	TOB 1
HAY.OTO, WIMPOKHA MA				
H.KONTP TAYSE PARTY TOUT 16337-77 *	A	Н	I FXIII	PUFKI
УТВЕРДИЛ САРГИН ДА				

ДУ	dу	Z /	Zz	23	
100	100	900	350	85	

УЗЕЛ6

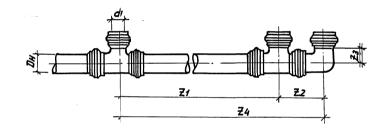
Ду	dУ	₹ı	₹2	₹3
100	100	900	350	85

ДЛЯ ПРИСОЕДИНЕНИЯ УНИТАЗОВ С КОСЫМ ВЫПУСКОМ
ТРОИНИКИ ДОЛЖНЫ ЕЫТЬ ПОВЕРНУТЫ ПОД УГЛОМ 30° ОТНОСИТЕЛЬНО ПЛОСКОСТИ (ТВОДА, Я ДЛЯ ПРИСОЕДИНЕНИЯ УНИТА30В С ПРЯМЫМ ВЫПІСКОМ ПОД УГЛОМ 90°

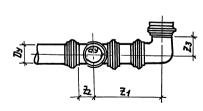

						4.900-9-8.0-1			
						Узлы 5,6 ДЛЯ КЯНАЛИ-	SHT.	MACCA	МАСШТАБ
1	ИЗМ	SHET	Nº AOKYM.	Nogn.	ARTR		П		
	PA.	3PA5.	НИКОЛЬСКАЯ	Hurau		ЗАЦИОННЫХ ТРУБ ПО	111	1	1
	ΠP	0 <i>8</i> .	Поляк	Howe		FOCT 22689-77	111	1	1
	T. A	COHTP	KYPHAEB	Ken		1001 22089-17	THET	JIHO	708 1
1	HA	Y.07.Q.	Шнрокий	1260		NBX FOCT 14332-78*			
			TAYSE	13. Way		MHQ FOCT 16338-77		TEVN	PULKT
			CAPTHH	(C)		1174 1001 10338-11	רעח		וווטבו
_				,		21224	87		

KORHPOBRA: COCHHOBA

PORMET A3


ПРИЛОЖЕНИЕ 4.2.5

УзЕЛ 7

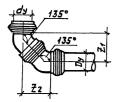

Дн	dн	7,	Z2	₹3	24					
ДЛЯ УМЫВПЛЬНИКОВ										
50	50	650	106	39	1406					
ДЛЯ ПИССУПРОВ										
50	50	700	106	39	1506					

Узел 8

Dн	dH	71	72	23	Z 4			
ДЛЯ УМЫВЯЛЬНИКОВ								
50	50	650	106	39	756			
Для писсуярав								
50	50	700	106	39	806			

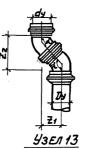
УзЕЛЯ

Дч	dу	₹/	Z 2	23
50	50	350	39	39
100	50	350	34	85
100	100	350	85	85

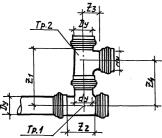

1						4.900-9-B,O'-1			
•						Uzauzaa ana mayaru-	ЛИТ.	MACCA	МЯСШТЯБ
			№ докум.			Узлы 7, 8,9 для канали-			
			Никольская	Hurar	-	3AUUOHHBIX TPY6	111	ĺ	1 1
	Πρ	78.	NONAK	HOW		NO FOCT 22689-77			
	T. K	антр,	Курылев	1/81		## / OC/ 2200/5 //	SHET	ЛНС	TOB 1
Ø	HAY	. 074.	Широкий	1/2		NBX			
			TAYSE	B. ? beef		NHA FOCT 16338-77	IL AH	TF XNF	DEKT
	YTBL	ранл	CAPTHH	144					

Колировал: Посинова

PODMAT A3


ПРИЛОЖЕНИЕ 4.2.6.

¥3 ЕЛ 10


Ду	dу	Z /	Z 2
50	50	70	70
100	100	153	153

<u> Узел 12</u>

Дy	ds	a°	71	72
50	50		119	78
100	100	92°30′	244	170
50	50		53	87
100	100	135	111	195
50	50	150	32	77
100	100		61	154

		DУ	dУ	71	72	Z 3	24	
7	P.1	50	50					
· [7	TP. 2	50	50	145	65	39	.119	
7	TP.1	100	50					
17	TP. 2	50	50	172	62	35	146	
. 17	P.1	100	100					
7	P. 2	100	100	301	142	142 85		244

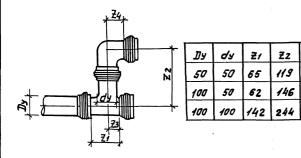
	¥ Z 2	
+ 45		
7	/35° m	
	Dy Dy	

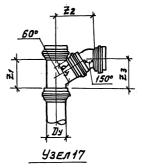
ДУ	dy	2/	72	23
50	50	80	102	102
100	50	107	131	128
100	100	173	218	213

YCTOBHOE OFOSHAYEHUE

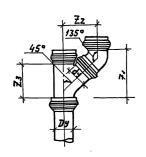
ТР • ТРОЙНИК

F			4.900-9-8.0-1				
1/200 01/02	NºDORYM.		<u> Узлы 10,11,12,13</u> для	11	17.	MACCA	МАСШТАВ
	HUKONLCKAR	Reson		Н	1	1	l
MPOB.	TOARK	Rew	no FOCT 22689-77	ш	L		
7. KOHTP	KYPHINEB	16a	_ · · ·	NH	cr	AHC	TOB 1
	Широкни	12		_			
H. KOHTP	CAPTHA	7	ПВХ ГОСТ 14332-78* — ПНД ГОСТ 16338-77	LA	١H	TEXU	infki
		•••	0/224	20			


-Konhpobas:Sephhoba-


-POPHATA3-

43EN 16

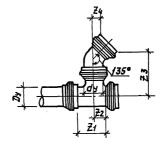


Дч	dУ	71	Z 2	Z <i>3</i>
<i>50</i>	50	69	96	72
100	50	68	125	71
100	100	148	194	148

Уз*Ел 15*

43EA 14

ННВ. И°ЛОДЛ. ПОДПИСЬ И ДЯТЯ ВЗЯМ. ИНВИ ИНВ. ИПОДЛ. УПОДПИСЬ И ДЯТЯ

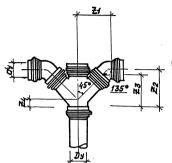

Ду	ďУ	₹1	72	₹3
50	50	119	85	80
100	50	145	114	107
100	100	255	178	173

23

26

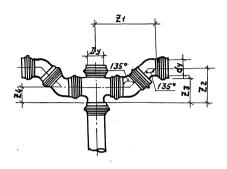
28

39

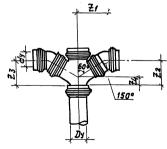


Дy	dч	Z 1	Ζz	23	Z 4
50	50	65	26	109	12
100	50	52	28	136	12
100	100	142	57	230	29

+				4.900 - 9-B ₁ 07-1		- main		
				1/2011 11 12 12 12	NA	17.	MACCA	МАСШТАБ
3M VIHET	N° AOKYM.	Magn.	Дятя	<i>43лы 14,15,16,,17 для</i>	П	Т		
PASPAS.	Никольская	Hura	_	· ·	11	1	1	
		Trodul		КАНАЛИЗАЦИОННЫХ ТРУБ	Ш			
T. KOHTP.	KYP641E8	160		NO FOCT 22689 -77	11	ICT	AHET	OB 1
HAY. OTA.	Широкий	12		11 11 11 11 11 11 11 11 11 11 11 11 11	L			
	TAY5E	8.72		NHA FOCT 16.338-77	F	۹Н,	LEXUE	JULKI.
TBEPANA	CAPIHH	1198			<u> </u>	<u>,, , </u>		
		V-)		21224	90			



УЗЕЛ 18


ДУ	ds	Z1	£2	Z3	241
100	50	131	128	107	14
100	100	218	2/3	173	37

43EA 20

Дy	dУ	Zı	₹2	23	Z 4
100	50	194	87	62	34
100	100	355	197	142	85

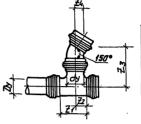
УЗЕЛ 19

НВ. И "ПОДЛ. ПОДПИСЬ И ДЯТР ВЗРЯ. ИНВ. МИНВ. МПВДЛ. ПОДПИСЬ И ДЯТР

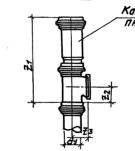
Дy	dy	21	₹z	23	2.4
100	50	125	71	68	57
100	100	194	148	148	500

					4.900-9-8.0-1		-		
					Узлы 18,19,20 для	1	WT.	MACCA	<i>МАСШТАБ</i>
[H3/	MINCT	Nº AOKYM.	Подп.	ARTR	облог 10,13,20 для		11		
PR	3PAS.	Никальская	Huxan	F	КАНАЛИЗАЦИОННЫХ ТРУБ		П	1	
m	208.		30.00		70 FOCT 22689-77		1 1		i
7. /	KOHTP	KYPUNEB	Her		110 1001 22003-11	1	HCT	JAC	1081
HA	4.072	ШИРОКИЙ	12'-		DRX FOCT 14332-78*				
H. A	COHTA.	TAYSE	13,70		ЛВХ ГОСТ 14332-78* ЛНД ГОСТ 16338-77	Г	ΑН	T E XIII	POEKT
47	B.	CAPLAH	128		MAH 10C1 10938-17	Г			
			$\overline{}$		2/22/ 0/	_	_		

Копировал: Логинова ФОРМАТАЗ

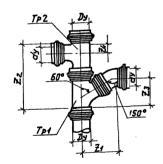

<u> Узел 21</u>

	Дч	dy	7,	Zz	23	214
TP1	50	50	400			
TP2	50	50	102	186	102	216
TPI	100	50				
TP2	100	100	131	290	128	57
TPI	100	100				
TP2	100	50	218	309	2/3	2:8
TP1	100	100				
TP2	100	100	2/8	389	213	57


Узел 23

Приложение 4.2.9.

DУ	dУ	71	22	23	Z 4
50	50	65	26	101	10
100	50	62	28	128	10
100	100	142	57	204	21

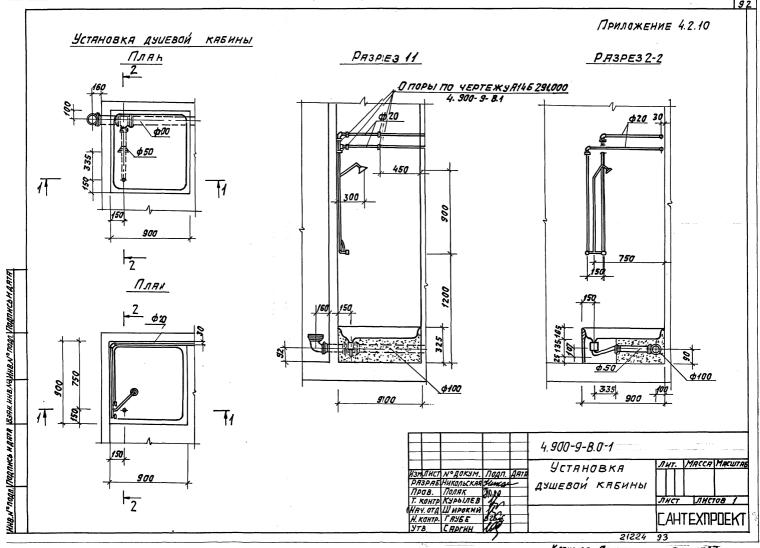

<u> Узел 24</u>

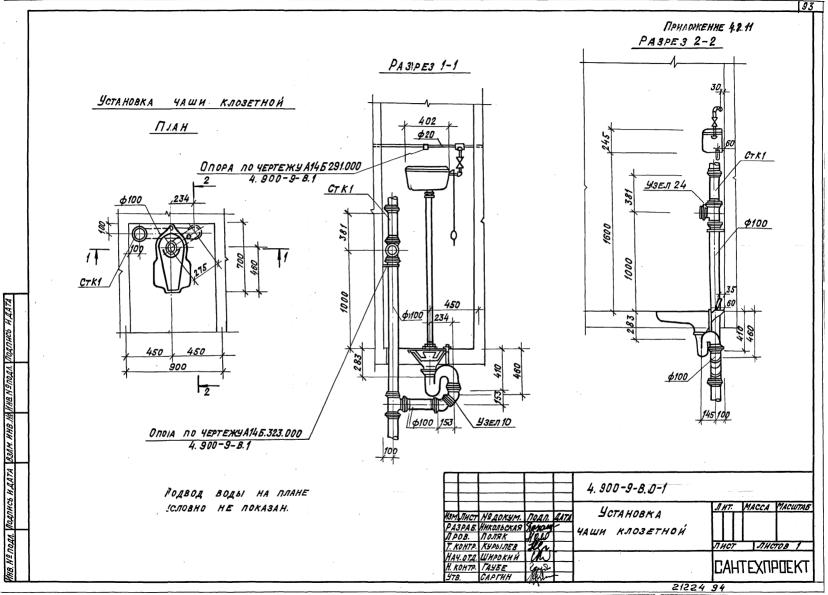
Kamne		нонн	<u>ь</u> ін	
	ДУ	21	₹2	Z

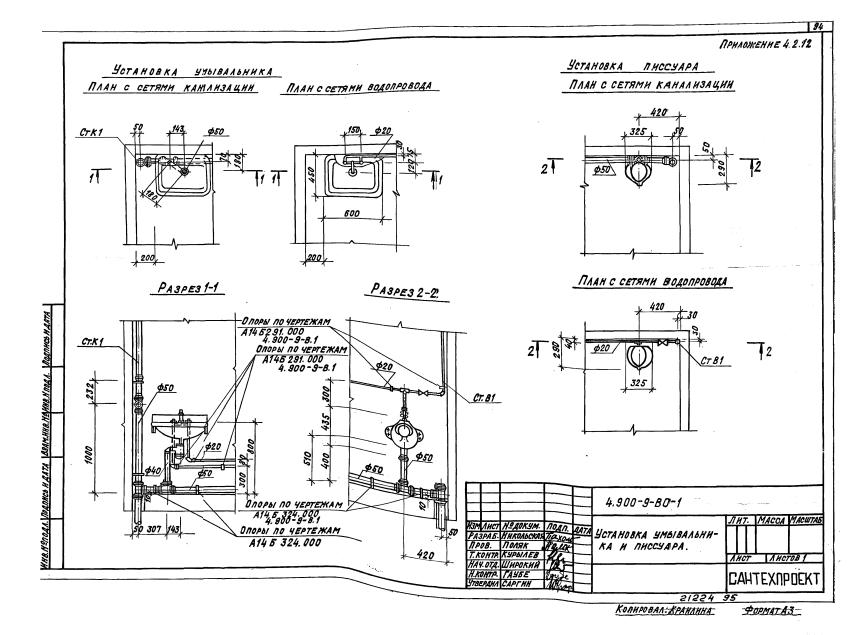
ДУ	21	₹2	23
.50	271	39	48
100	467	86	82

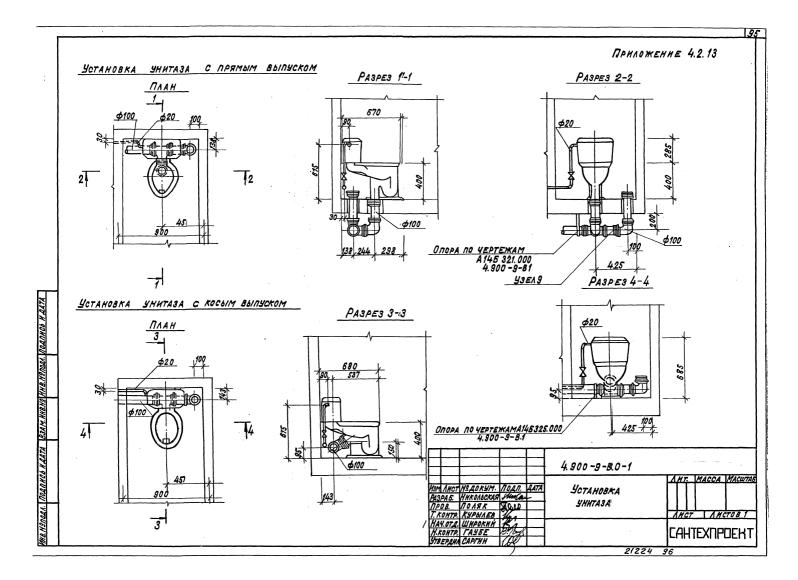
УзЕЛ 22

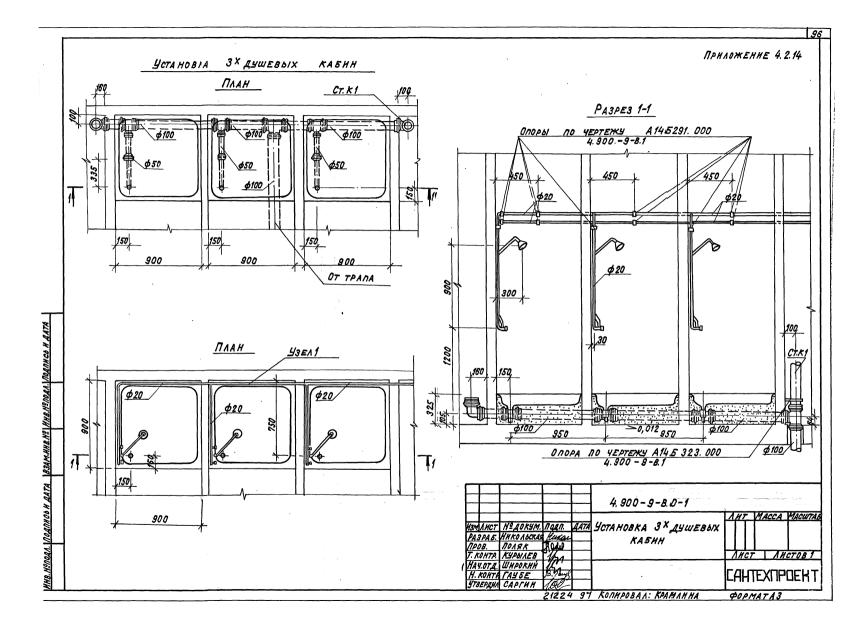
	ДУ	dу	721	₹2	Z 3	 24
TP1	50	50				
TP2	50	50	96	175	72	226
TP1	100	50				
TPZ	100	100	125	251	7/	577
TP1	100	100				_
TPZ	100	50	194	284	148	26
TP1	100	100	Ī		_	-
TPZ	100	100	194	364	148	57

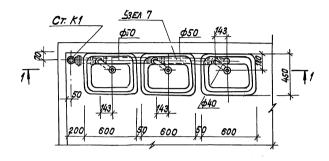

YCARBHOE GEOSHAYEHUE TP- TPOUHUK.

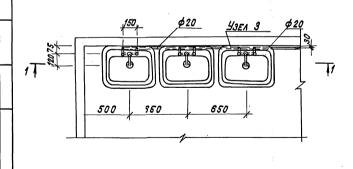

4.	900	-9-B.	0.1

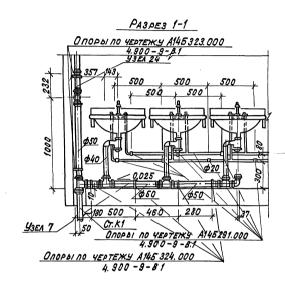

AUT. MACCA MACUTAS Узлы 21,22,23,24 для HIMMUT N° GORYM. NOGN.
PRIDRE HIKKOLKKO MULLEN
NPOB. NOGRK
T.KOHTP. KYPENIES
HAY. OTT. III MPOKMA
H, KOHTP. 1795E
STB. CAPPMA КАНАЛИЗАЦИОННЫХ ТРУБ no [OCT 22689 -77 ПВХ ГОСТ 14:332-78* ПНД ГОСТ 16338-77 CAHTEXNPOEK

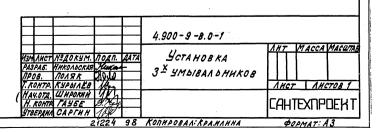

	21224	:
-Konneasas:Sari	THUBA-	


JINCTOB .

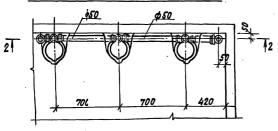


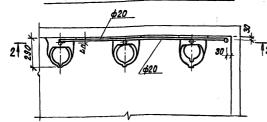



RPHAOMEHHE 4.2.15

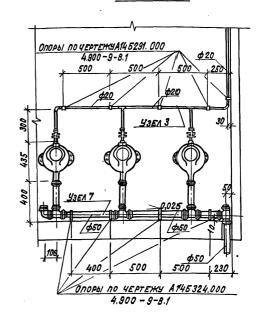

$\underline{\mathcal{G}_{CTAHOBK}}$ 3 $\underline{\mathcal{S}}$ \underline

MAAH C SETAMU BOLORPOBOLA

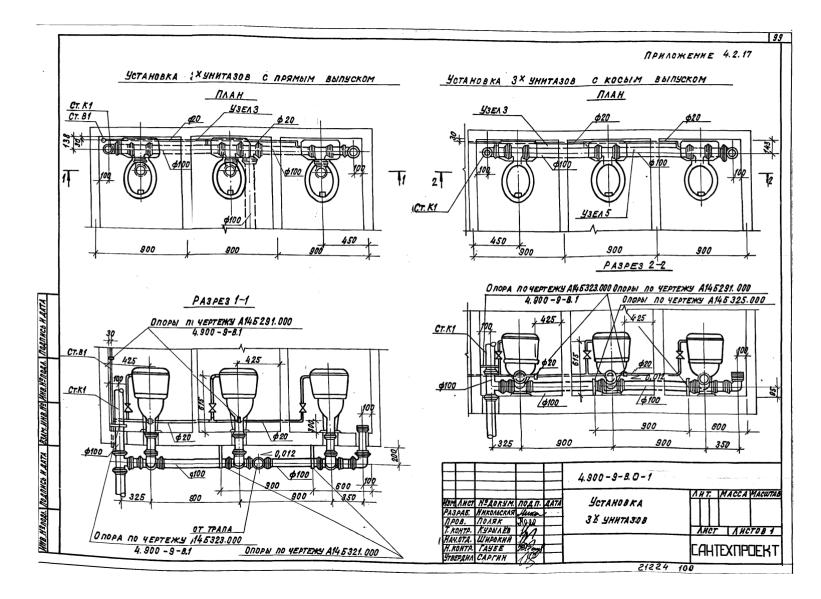



RPHAOMEHNE 4.2.18

YCTAHOBIA 3X NHCCYAPOB


NAAH C CETAMU KAHANUSALLUU

MAAH C CETAMH BOLONPOBOLA


PASPES 2-2

		4.900-9-B.O-1	
H3MANCT HAROKUM. NOAN. PASHAS. HUKONOKIM KUMA TRON. NOAN K. TRONTR. KYPINES KA	AATA	YCTAHOBKA 3× THCCYAPOB	AHT. MACCA MACUTAL AHCT AHCTOB!
HAY.OTA WHPOKHH ALL HISOHTE FAYSE PLAYS		21294 99	CAHTEXNPOEKT

TO A COLL A A COLL WAS NOT MAN WAS IN LAND IN LAND OF A COLL OF A

HHB.Nº NOBALINGANHCS H. AATA 18

ПРИЛОЖЕНИЕ 4. 2. 18

Эскиз	НАРУКНЫЙ ДИАГЕТР ТРУБПРО- ВОДЬ, ММ	0503HAYEHHE NO CEPHH 4.900-9-8.1	Наименование	Эскиз	HAPYWHII QUAMETP TPY50NPO- BOQA,MM	0 503НАЧЕНИЕ ПО СЕРИИ 4.900-9-8. 1	Наименование
	50 -200	A 44 5 289.000	ОПОРА ОТДЕЛЬНАЯ К КИРПИЧНОЙ ИЛИ БЕТОННОЙ СТЕНЕ		20÷160	A145293.000	ОЛОРА ОТДЕЛЬНАЯ ТРЕХРЯДНАЯ К БЕТОННОЙ СТЕНЕ ИЛИ ЖЕЛЕЗОБЕТОННОЙ КОЛОННЕ
	50÷200	A 145 290.000	Опора ОТДЕЛЬНАЯ К БЕТОННОЙ СТЕНЕ ИЛИ ЖЕЛЕЗОБЕТОННОЙ КОЛОННЕ	+ +	110 ÷200	A145 294.000	ОПОРА ОТДЕЛЬНАЯ К ЖЕЛЕЗОБЕТОННОЙ КОЛОННЕ
	⊐ ₂₀ -160	A145 291.000	Onopa Othenbhar K BETOHHOÙ CTEHE MAN ЖEAE305ETOHHOÙ KOAOHHE	+ +	110÷200	A145 295.000	О ПОРА ОТДЕЛЬНАЯ К ЖЕЛЕЗОБЕТОННОЙ КОЛОННЕ
	 	A 14 5 292.000	Ondpa Otdeabhar Abyxpadhar K Getohhoù Ctehe Mau ЖEAE305ETOHHOÙ KOAOHHE	H3M, AHOT IN E A OKSIM. NO.A PASPAS H H KOANCAS, JULA NPOS. NOAR K SYDWA KES HAY. OTA, LUHPOKHI JA HROATP. TA SYSE LES HISBARIA CA PINH JA	D. AATACXEM	900-9-8.0-1 16) KPENJEHWÝ TPY THN 4145 28.9.00 A 145 295.000	ANT. MACCA MACUTA

Приложение 4.2.18

30843	НАРУЖЫЙ ДИАМЕТР ТРУБОІРО- ВОДА,ММ	0503HAYEHUE NO CEPUN 4.900-9-8.1	HAUMEHOBAHHE
	20÷12	A145 296.000	ОЛОРА СО СПЛОШНЫМ ОСНОВАНИЕМ К КИРЛИЧНОЙ ИЛИ БЕТОННОЙ СТЕНЕ
	20÷32	A146 297.000	ОПОРА СО СПЛОШНЫМ ОСНОВАНИЕМ К БЕТОННОЙ СТЕНЕ ИЛИ ЖЕЛЕЗОБЕТОННОЙ КОЛОННЕ
	40÷10	A145 298.000	ОПОРА СО СПЛОШНЫМ ОСНОВАНИЕМ К КИРПИЧНОЙ ИЛИ БЕТОННОЙ СТЕНЕ
+ + +	63÷110	A145 299.000	ОПОРА СО СПЛОШНЫМ ОСНОВАННЕМ К ЖЕЛЕЗОБЕТОННОЙ КОЛОННЕ

Эскиз	НАРУЖНЫЙ ДИАМЕТР ТРУБОПРО- ВОДА, ММ	0503HA4EHHE NO CEPUN 4.900-9-8. 1	HAHMEHOBA HHE
800	63÷110	A145 300.000	ОПО РА СО СПЛОШНЫМ ОСНОВАНИЕМ К ЖЕЛЕЗОБЕТОННОЙ КОЛОННЕ
	40 ÷ 110	A145 301.000	000PA CO CONOWHEIM OCHOBAHUEM K SETOHHOÙ CTEHE UNU KENE30SETOHHOÙ KONOHHE
	125÷200	A145 302.000	ОПОРА СО СПЛОШНЫМ ОСНОВАНИЕМ К КИРПИЧНОЙ ИЛИ БЕТОННОЙ СТЕНЕ
H3MAHCT Nº AORYMEN TOU PASPAS HIKKANGKAS JOU TPOB TOURK JOHK T. KUTTA KSPONES J.J.	D 0474 CY	4.900 - 9 - 8.0 - ; EMЫ КРЕПЛЕНИЙ 80,408. ТИП A1452. A 145302.000	A HT. MACCA MACWTAS
HAY. OTA. WHPOKHA AL H. KOHTP. FAYSE B.J. YTBEPAHA CAPTHH		2	CAHTEXTPOEKT

Z1224 102 KONHEOBAN: KEAHAHHA POPMAT: A3

ПРИЛОЖЕНИЕ 4.2.18

Эскиз	-מפחת צפד	ОБОЗНА ЧЕНИЕ ПО СЕРИИ 4.900-9-8.1	НА именование	Эскиз		0503HAЧЕНИЕ ПО СЕРИИ 4.900-9-8-1	Наименование
+ +	125-200	A145 303.000	ОПОРА СО СПЛОШНЫМ ОСНОВАНИЕМ К ЖЕЛЕЗОБЕТОННОЙ КОЛОННЕ	800	125÷200	A145 807.000	ОПОРА ДВУХРЯДНАЯ СО СПЛОШНЫМ ОСНОВАНИЕМ К ЖЕЛЕЗОБЕТОННОЙ КОЛОННЕ
+ +	125-200		ОПОРА СО СПЛОШНЫМ ОСНОВАНИЕМ К ЖЕЛЕЗОБЕТОННОЙ КОЛОННЕ		40÷110	A145 308 000	ОПОРА ДЛЯ ВЕРТИКАЛЬНЫХ ТРУБОПРОВОДО В С СОПРОВОЖДЕНИЕМ К КИРПИЧНОЙ ИЛИ БЕТОННОЙ СТЕНЕ
	∌ 125-200	A145305.000	ОПОРА ДВУХРЯДНАЯ СО СПЛОШНЫМ ОСНОВАНИЕМ К КИРПИЧНОЙ ИЛИ БЕТОННОЙ СТЕНЕ		40÷110	A145 309.000	ОПОРА ДЛЯ ВЕРТИКАЛЬНЫХ ТРУБОПРОВОДОВ С СОПРОВОЖДЕНИЕМ К БЕТОННОЙ СТЕНЕ ИЛИ ЖЕЛЕЗОБЕТОННОЙ КОЛОННЕ
400	125-200	A/45 306.000	OTOPA ABYXPAAHAA CO COLOWHIM OCHOBAHUEM K WELESO SETOHHOH KOLOHHE	13M ANCT HOROXYM. NOR PASPAS. HAKOROKOM VIIII NOR NORM (III) NORM		4. 900-9-8-0-1 THOI KPEDAEMIÑ 180408. THA 1145 145309. 000	AUT. MACCA MACUT

ПРИЛОЖЕНИЕ 4.2.18

Эскиз	НАРУХНЫЙ ДИАМЕТР ТРУБЛЯРО- ВОДА ММ	ОБОЗНАЧЕНИЕ ПО СЕРИИ 4.900-9-8.1	Наименование
	125÷200	A <i>145310.000</i>	ОПОРА ДЛЯ ВЕРТИКАЛЬНЫХ ТРУБОПРОВОДОВ С СОПРОВОЖДЕНИЕМ К КИРПИЧНОЙ ИЛИ БЕТОННОЙ СТЕНЕ
	125-160	A145 311.000	ОПОРА ДЛЯ ВЕРТИКАЛЬНЫХ ТРУБОПРОВОДОВ С СОПРОВОЖДЕНИЕМ К БЕТОННОЙ СТЕНЕ ИЛИ ЖЕЛЕЗОБЕТОННОЙ КОЛОННЕ
	50-200	A 14 5 315.000	ОПОРА ПОДВЕСНАЯ ОТДЕЛЬНАЯ
	20÷32	A145 316.000	Onopa noabechar co cnadwhim ochobahhem

Эскиз	Наружный диаметр трубопро- вода, мм	0503HAYEM HE NO CEPHH 4.900-9-8.1	Наименование
	40 ÷110	A145 317.000	Onopa Modbechaя Co cnaowhum Ochobahhem
	125÷200	A145 318.000	О ПОРА ПОДВЕСНАЯ СО СПЛОШНЫМ ОСНОВАНИЕМ
	50÷200	A 145 318. 000	ОПОРА ПОДВЕСНАЯ ОТДЕЛЬНАЯ ДВУХРЯДНАЯ

L					4.900-9-8.0-1					
L						1	HT.		MAGCA	MACUTA 5
131	AHCT	Nº DOKYM.	подп.	4ATA	CXEMBI KPENAEHUR TPYSONPOBO-					
PA	3PA5.	HHKOABCKAST	Hugan	_	THE THE ALL SET FOR ALLESSEE		1			l
1	08.	ROARK	فللوات		4/45315.000 ÷ A 145 319.000	1	ı			l
7.	KOHTP.	KYPHAEB	1/11		MMB 313.000 - A 140 379.000	7	ИС	74	AHC	085
HA	4.07.4.	ШИРОКИЙ	16	_		_		_		
H.	KOHTP.	TAYSE	By Pary				ΔL	ΙT	FYMP	DEKT
472	EPAHA	CAPFHH	100			-	7	11		וונוטט

21224 104 KONHPOBAN: KPAHAHHA

POPMAT:A3

RPHAOMEHHE 4.2.18

\$0 PMAT: A3 Koky

	Эскиз	HAPYKHII AHAIETP TPY67NPO- BOAA, MM	0503HA4EHME NO CEPHH 4,800-9-8.1	Наименова ние
			A145320.000	O DOPA DOLBECHAR ABYXPRAHAR CO COLOMBIM DOCHOBAHUEM
N ANTA		50÷110	A145 321. 000	O N O P A NOQBECHAR AN R KAHANUSAYHOHHЫX TPY 50 NPO 80 A 08
31 M. MHB. Nº WHB Nº NOGA. NOGANCS		50 - 110	A145322.000	On op a no a b e c h a a a a a a Kahan n 3 a u h o h h b i x TP y 5 o n p o b o a o b
THE NUMBER VIOLUNCE IN ANTA B.		50-110	A 14 5 3 2 3. 000	ONO PA ANS BEPTH KANDH 61X KAHANH 3A 440 HH 61X TPY 50NP 0BO A 0 B K SETOHHOH CTEHE

Эскиз	HAPYWHЫЙ ДИАМЕТР ТРУБОПРО- ВОДА, ММ	0503 HAYEMHE NO CEPHH 4.900-9-8.1	Наименование	
	50 ÷ 110	A145324.000	ОПОРА ДЛЯ КРЕПЛЕНИЯ КАНАЛИЗАЦИОННЫХ ТРЧБОПРОВОДОВ К ПОЛУ	
	<i>50÷110</i>	A145 325.000	0 пора для крепления канализационных грубопроводов к полу	
	50÷110	A145 326.000	Onopa And Beptukanbhbix Kahanhjauuohhbix Tpy5onpoboaob K Setohhoù Ctehe	
	20	A 145 327. 000	ОПОРА ДЛЯ ТРУБОПРОВО- ДОВ	
	4	900-9-8.0-1		
HIMMART Nª QOKYM. POGT T PAJPA 5. HUKONGCKAR JACKE TIPOB. PONTR HOLT T.KOHTP. KYPOINEB HI HAYOTQ. WINDKHI PUS	1P06	МЫ КРЕПЛЕНИЙ 1040В ТИПАЩБЗ20 Б 327.000	TPY 50- 0.000÷	
H. KOHTP. TAYBE LAND	4 (05) 40	THPOBAA: MEAGHA	CAHTEXNPI	