ТИПОВЫЕ КОНСТРУКЦИИ, ИЗДЕЛИЯ И УЗЛЫ ЗДАНИЙ И СООРУЖЕНИЙ

СЕРИЯ 3.407.1-148 УНИФИЦИРОВАННЫЕ ФУНДАМЕНТЫ ПОД ТРАНСФОРМАТОРЫ

выпуск О

МАТЕРИАЛЫ ДЛЯ ПРОЕКТИРОВАНИЯ

Осфинен гасстроя ссер, 1988г

МАНДАЛАДТО МІНДАЛАК-ОЧЭВОЗ МЭИНДАЛАК-ОЧЭВОНИИ МЕНДИНИКТИРИНИТЕЛЬНИИ СТОРОВЕНЬНИМ

2444 -01

УТВЕРЖДЕНЫ И ВВЕДЕНЫ В ДЕЙСТВИЕ МИНЭНЕРГО СССР ПРОТОКОЛ N 11 ОТ 22.01.88

ЗАМ. ГЛАВНОГО ИНЖЕНЕРА Общий В.В. КАРПОВ ГЛАВНЫЙ ИНЖЕНЕР ПРОЕКТА ЖИЛУ Ю.Д.ПАРФЕНОВ ТИПОВЫЕ КОНСТРУКЦИИ, ИЗДЕЛИЯ И УЗЛЫ ЗДАНИЙ И СООРУЖЕНИЙ

СЕРИЯ 3.407.1-148

УНИФИЦИРОВАННЫЕ ФУНДАМЕНТЫ ПОД ТРАНСФОРМАТОРЫ

ВЫПУСК О

МАТЕРИАЛЫ ДЛЯ ПРОЕКТИРОВАНИЯ

СФ ЦИПП 620062, г.Сверджовск, ул. Чебышева, 4 Зак. 4885 инв. 2444-01 тирах 900 Сдано в печать 9.09 1988 г.Цена 1-52

Обозначение	Наименование	CTP.
3, 407, 1-148,0-00	Содержание	2
3.407.1-148,0-00 /13	Пояснительная записка	2,,5
3,407.1-148.0-01	Таблица исходных данных для выбора Фундаментов под трансформаторы	6,7
3,407.1-148.0-02	Таблица для выбора фундамента из мит под грансформатор по расчетной схемен	1
3,407 1-148 0.03	Ταδρυμα δης δωδορα φυμθοφεμτα με πρωτ ποθ τρακεφοραστορ πο ρασμετικού εχεμεν2	
3.407.1 -148,0 - 04	Ταδλυγα δλη δωδορα φυμθαμέμτα υξίμο Αυμθρυγεςκυχ τριβ ποδ τρανςφορματορώ	14
407.1-148.0-05	Таблица д.,я \$ыбара анкера из уи- Линдри 43ских Труб,	1517
3,407.1-148,0-06	Таблича расчетных нагрузок на плиты типа "ПФ"	18

	H.KOHTPKOBANES MES 3.0031	3,407.1-14	
129677W-TO	HOY. 078 POMENCKUD JULY 50 ST FUN TOPOGROSS M 0887 PYK. LP KUPCCHOSO WWW. 308 87	Содержание	CTODURAUCT AUCTOR P I 3HEPZACETENPOEKT CESEPO-Sappahoe orderend NEMUNIPOS
3	<u> </u>		Формат АЧ

инвуподл. Подпись и дата Взатинвы

1. BBedenue

Типовые канструкции, Унифицированные фундомен. Ты под трансформоторы" выполнены Северо-Западным отделением института, Энергосеть проект "по плану типового проектирования Госстроя СССР на 1986 (поз. 13.6,29) годы взамен серий 3.407-127, вып. 1,2 3.407-103 вып. 2 и 3.407-116. вып. 1

Настоящая серия выполнена в следующем составе:

Выпуск О. Материалы для провытирования Выпуск I, Канструкции срунда ментов пад транс форматоры и анкерных устройств.

Робочие Чёртёжи Выпуск 2. Строительные изделия. Рабочие чертёжи

BEDOMOCTE CCEINDYHEIX DORYMEHTOE

	Обозначение	Ноименование	Примечания
	3,407-102 Boin.1	Унифицированные железобетонные элементы подстануий 35-500 кв	
	3. 407-115 Boin. 5	Унифицированные фундаментные конструкции ВЛ 35-500 кв	
	3.407-123 Bain. 2	Фундаменты под унифицированные опоры 81 35-500x8 для обычных грунто- вых человий	
	3, 407.2-140 Boin. 4	Υπυφυμυροβοπποίε CTOΛЬπЬΙΕ ΠΟΡΤΟΛΟΙ ΟΤΚΡЬΙΤΟΙΧ ΡΟΟΠΡΕΘΕΛΟΤΕΛЬΜΟΙΧ ΥΟΤΡΟύΟΤΕ 35-150κ8 ΘΛΑ ΟΘΕΙΥΜΕΙΧ Ο CESEPMEIX ΡΟύΟΝΟΕ	
	3. 407.1-144. 8617.0,1	Унифицированные конструкции фундо- ментов для стольных опор вл 35-500 кв	
	3.407.9-146 Boin.0,2	Унифицированные конструкции свойных фундаментов для стольных опор 8135-500кг	
	Н. КОНТР. КОВАЛЕВ УСЯ 1	3, 407.1-148.0-00 <i>1</i> 73	
2-6	Нач. отд. Роменскуй Спи 3. ГИП Пароренов Я то 30	TORCHUTENBHOR P	1 4
1050	PYK. 20. KUPCOHOBO MYELY-30	SONUCKO CESEPO-SO	CETBNPOEKT DABHOE DTBENEHUE NEHUHPPAD

POPMAT AY

Облость применения

Унифицированные фундаменты под трансформаторы предназначены для применения на понижающих подстанциях нопряжением 110,220, 330 и 500 кв применительно к типовым установочным чертежам трансформаторов, действующих на 01.01.87 г.

КОНСТРУКЦИИ ФУНДАМЕНТОВ ПОД ТРАНСФОРМАТОРЫ разработаны для следующих условий применения:

- а) Расцетная минимальная температура наружного воздуха по самой холодной пятидневке до минус 40°с включительно;
- 6) ΗΟΡΜατυβΗΝΙά εκοροετΗού Ησπορ δετρο πρυΗπτ πο ΠΥΘ υ3α. 6 απη το δετροβοτο ραύομα; απη Ησπρηχερίος 110... 330 κβ-9=50 αση/μ 2

(50 ^{KC}/m²) при повторяемости Іроз в 10лет; для напряжения 500кв-д⁴-55дон/м²(55 ^{KC}/m²) при повторяемости 1роз в 15лет.

6) ερμητω β οινοβαμμях πρυμяτω γιποβμο με πυγυμυτω β οινοβαμμях πρυμяτω γιπουσωμο με πυγυμυτω β οινοβετιτβου ο κποιουφμικα γυεύ CHUΠ 2.02.01-83;

2) 2 PYHTO SHE BOOM OTCYTCT BYFOT;

δ) ρεπьеφ τερρυτορυυ εποκούκοιύ.

Πρυμεμέμυε κοκτροχαμού Ης πρεδουστρούσι-ΕΤΕЯ βρούρμας βευμού μεροποτοί ο μα πποσομάλος, παδερχεμμοίς οποποκικών ο καροπακικών.

Технические решения, принятые в данной серии, обладают патентной чистотой в отношении СССР, волгарии, венгрии, ГДР, Польши, РУМЫНИИ, Чехословакии и Югословии.

В настоящей серии использованных изобре-

тений по авторским свидетельствам или поданных заявок на изобретения не имеется.

3. KOHCTPYKTUBHHE PEWEHUA

Конструкции фундаментов под трансформаторы состоят из следующих элементов:

- 1. Фундаменты.
- г, Маслоприемники.
- 3. Анкерные устройства (якоря).
- 3.1 Фундаменты.
- В работе разработаны следующие варианты фундаменть ФП-из сворных железоветонных плит типа неп по серии 3.407-102 вып. 1 и ПФ, уклады ваемых на щевеночно-песчаном бапласте.

 $\phi_{\Gamma-1/3}$ сборных железобетонных грибовидных подножников по серии 3.407.1-144 вып.1. $\phi_{C-1/3}$ железобетонных свай посерии 3.407.9-146 вып.2. $\phi_{J-1/3}$ полых цилиндри ческих свай по серии 3.407.2-140 вып.4, устанавливаемых в сверленые котлованы с последующей обетонировкой пазух.

Длина Фундаментов принята 3.5м. По верху подножников, свай и цилиндрических фундаментов предусматрива-ЮТСЯ СТАЛЬНЫЕ БАЛКИ ОЛЯ УСТАНОВКИ И ЗАКРЕПЛЕНИЯ РЕЛЬСА ПО О ВСЕХ ТИЛОВ ТОЯН СФОРМАТОРОВ ПРИНЯТЫ РЕЛЬСЫ

ANA BEEX TUNO & TRANCEPOPMATORO & ROUNATE PENDEN PSO FOCT 7174-75.

выбор варианта фундаментов, толщину валласта, типа плит подножников и свай, диаметра сверленых котлованов определяется в зависимости от конкретных грунтовых условий и нагрузок от трансформаторов в соответствии с рекомендациями, приведенными в указаниях по применению серии.

3,407,1-148.0-00113

2

3.2 Маслаприемники

В настаящей работе маслоприемники неразрабатывались и изображены на чертежах планов условно КОНТУРНЫМИ ЛИНИЯМИ.

Конструкции маслоприемников выполнены в типовых работах, Установочные чертежи трансформаторов" по нопряжениям.

110 KB- N 407-03-410.86 220 KB - N 407-03- 320 330 KB- N 407-03- 433.87 500 x 8 - N 407-3 - 0378.86

3.3 AHKEPHALE YCTPOU OTGO (AKODA)

В работе разработаны следующие варианты анкерных устройств, необходимых для перемешения трансформаторов при их установке и выкатке:

- из вибрированных цилиндрических труб, установливаемых в сверленые котлованы;
- из унифицированных железобетанных подножников;
- из унифицированных железобетонных свай.

βωδορ τυπα αμκερμοτα γςτρούς τθα ελεθγετ προυзводить в зависимости от несущей способности конструкиии основания анкера по тяговому усилию, указанному для каждого трансформатора в док. 3.407.1-148.0-01

Закрепление полиспастов на анкерах выполняется при помощи инвентарных хомутов, предусмотриваемых в кинкретном проекте из расчета одного или двух штук на подстанцию, независимо от количества истанавливаемых трансформаторов.

4. Ματέρυαλ κομοτργκουύ

4.1 Стальные изделия

Δης εταποκοίχ υβθελού, εκεπληστοργέλοιχ β ρούσκας ραενετκού тамперотурой воздуха до минус 40°С включительно следует применять:

DAR SAEMENTOS TORMUNOÚ DO IOMM

- CTANS MADRU 8 Cm 3 AC 6

BAR SARMENTOB TONULUHOÙ CBULLE IQ MM - сталь марки вСт3 сп5 по

TOCT 380-71 * UNU TY 14-1-3023-80

Сварки элементов конструкций производить электродами 342 FOCT 9467-75

4,2, HEARSOGETONHUR USBEAUA

Железобетонные изделия, используемые в данной работе из Вригих серий, изготовливаются из матери алов, указанных в соответεγθυροщих ποη εκυτελьных βαπисках этих серий.

Материал плиты под трансформатор, разработанный в саставе данной серии следующий:

Бетон тяжелый класса по прочности но сжатие 8-25 Марка бетона по морозостойкости должна быть не менее \$100 Требований по водонепронициемости не предусматривается

в качестве арматуры применяется: а) стержневая горячекатаная арматурная сталь гладкая классай ГОСТ 5781-82 Марки 8 Ст3 кл 2 при расчетной минимальной температуре воздуха до минус 30% включительно и марки встэлс 2 при расчетной

минимальной температуре воздуха ниже минус 30°С до минус 40°Свключительно. Для подъемных петель применять марки встзаго и встзасо б) стержневая горячекотоная арматурная сталь периодическо-TO APOQUAN KARCCOA-ITI FOCT 5781-82 MOPOK 2572CU 35TC

3.407.1-148.0-00/73

5. Указания по применению
5.1 Общие указания по выбору фундаментов под
Трансформаторы и онкеров.

выбор ворианта фундаментов и анкеров для трансформаторов следуем производить с учетом принятого для конкретной подстанции способа производства работ (возможности забивки свай, выполнения сверленых котпованов и т. д.), а также в зависимости от действующих нагрузок и несущей способности элементов и аснования.

- 5.2. Выбор фундаментов под трансформаторы.
- 5,2.1 выбор фундаментов из железоветонных плит.

ПЛИТЫ для фундаментов под трансформаторы следует принимать при отсутствии на ПС путей перекатки (для трансформаторов ПО, 220 и частично 330кв) типа ЛФ35-10 или ПФ35-15 и При наличии путей-типа НСП-1 или НСП-3, имеющих большино несущую способность, необходимую для установки домкратов в глухих пересечениях путей перекатки. Выбор плит следует производить по прочности и из условия абеспечения расчетных сопротивлений балласта и подстилоющего слоя конкретно-10 грунта.

Минимальная толщина слоя щебня и песка для 2[±] расчетных схем загружения, и различных сил от давления на каток приведены в докум. 3.407.1-148.0.07 или 3.407.1-148.0.03 5.2.2. Выбор фундаментов из цилиндрических труб,

выбор фундоментов из уилиндрических труб сводится к обеспечению несущей способности основания при действии нормальных.

Несущая способность основания цилиндрических фундаментов определена для различных грунтовых усповий и сверпеных котпованов диаметром 800 и 1000 мм, а также для заглубления стоек на глубину 3mu~2m (при наличии верхнего насылного слоя 1m, а также при обетанировке позух котлованов с учетом трения по боковой поверхности) cm. 3.407.1-148.0-09

5.2.3 выбор фундаментов из подножников и свай, выбор типа подножников при действии вертикальных сих по несущей способности фундамента и основания про-изводится в соответствии с рекомендауиями и графиками, приведенными в серии 3,407.1-144 вып. 0, а свай в докум. 3,407.9-146 вып. 0.

5,3 Выбор анкеров для перекатки трансформаторов
5,3,1 Выбор анкера из ципиндрических фундаментов

выбор типа анкера из разработанных в настоящей серии производится из условия обеспечения прочнасти основания при действии горизонтальной силы, приведенной для каждого типа трансформатора в докум. 3.407.1-148.0-01, каторая должна быть меньше предельной горизонтальной силы, приведенной в докум. 3.407,1-148.0-05 для конкретных грунтовых условий.

5.3.2 Выбор анкера из подножника и свай.

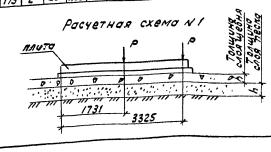
Выбор типа анкера из поднажников, рекомендуемых в настоящей серии необходимо производить из условия обеслечения прочности конструкции подножника и основания в соответствии с графикоми и таблицами, приведенными в серии 3.407.1-144.0

выбор типа анкера из наклонных подножников производится из условия обеспечения предельных напряжений грунга засыпки по верхней и нижней граням плиты подножника. Выбор типа анкера из свай рекомендуется производить по несущей способности сваи.

3, 407.1-148,0-0073

4

V N	Tun		Пасса, п	,	KONU-	Схема загружения	Довлени	e na katak	-	TATOBOE YCUNUE	
1/0	трансформатора	Транспорт Ная	Масла	Полная	HECTEO KOTKOE	penbod u nauthi	HOPMO- TUBHOE	Pacyet- noe	Konea	CHX 8,0	Примечани
1	TMH-2500/110-8091	15,98	6,57	17.81	4	+0 +0	4.45	4.9	1594	1.8	
2	7MH- 6300/110-8091 (473)	22,2	9.75	27.28	4	- + P - P - P	6,82	7, 5	2070	2,7	
3	TMH-63000/110-8041 (373)	24.5	10.5	28.4	4		7.1	7.8	2070	2,8	
4	TAH-10000/110-8241 (473)	26.4	10.1	30.4	4	+ P + P	7.6	8.4	2070	3,0	
5	TAH-10000/110-8291 (373)	27.0	10.1	30.5	4	1 P	7.63	8.4	2070	3,1	
5	TAH - 16 000/110 - 79 41	33.4	13.3	40.3	4	1 P 1 P	10.1	11.1	2070	4	
-	TPAH-25000/110-7991	44	15	52	4	- i P	13	14.3	2070	5,2	
8	TPAH-40000/110-8091	55,6	17.6	56.5	4	P. 10 P. 10	14,1	15.5	2070		
-	TPAH-63000/110-8091	72.1	21.5	87	8	ρ, ιρ ρ, ιρ	10, 9	12	2070	8.7	
-	TPAH - 80000/110-81 41	91.5	24	104	8	P, P P, P	/3	14.3	2070	10.4	
-	TPAYH- 125000/110-74 91	/38	32.7	159.6	8	PiP	19.95	21.9	2570	16 3,5	
	TMTH - 6300/110-81 91 (373)	30	12.8	34.5		ρ, , ρ	8.63	9,5	2070	3,4	
	TMTH-6300/110-81 41 (473)	20.4	12.1	33,4	4	ρ, , ρ	8.5	9,3	2070	4,2	
	TATH - 10000/110-79 41(333)	36.7	13.08	42	4	P	10,5	11.6	2070		
	TATH- 10000/110-7941(733)	36.7	15,2	41.8	4	ρ, ,ρ	10.8	11.9	2070	4, 3	
	TATH-10000/110-79 41 (473)	36.7	15	50,4	4	P	12,6	11.6	2070	5,0	
	TATH-16000/110-8091	43	14.5	65	4	P+ +P	16.25	/3,9	2070	6,5	
8	7ATH-25000/110-7991(T33)	57	20, 2	65	4	P. P	16,25	17.9	2070	6,5	
9	TATH-25000/110-7991 (373)	58	20,2	81	4	P\$ \$P	20,25	17,9	2070	8,1	
	TATH-40000/110-7841/3T3)	74	21.6	80	4	P	20	22, 3	2070		
	TATH-40000/110-7841 (T93)	59,5	30.3	117,5	8	P + P P+ +P	14.69	55	2070	8,0	
2	TATH-63000/110-81 41	94.5		121	8	PI IP PI IP		16,2	2070	11.8	
3	TATH-80000/110-83 YI	/03	28.9	39.1	8	P+ +P +P +P	15.1	16.6	2070	12.1	
	POA - 33333/110	25	3,3	00,,			4.9	5,4	1594+1106- +1594	3,9	
						H.KOHTP. KOBANES	120			3.407.1-	148.0-01


Таблиус исходных данных ру 2 для выбора фундаментов ЭНЕР2ОССТЬПРОСКТ под трансформаторы (2860-30004008 атдение Денинград Формат я 3 FUR LP KUPCOHOBO MILLS

٠	۰	/	,	
	•			

									Оконча	HUE 7	σ <i>δл.1</i>
NN	דעת	Mo	icca, m		KONU - 48CTBO	Схема загружения	AOBA CHUS				7
1/0	Трансформато ра	Транспорі ная	Масла	Полная	KO TKOB	פאשכם ע האעדטו	Нар ма тив нов	Pacyet- Hoe	Колея		Примечание
5	TAH-16000/150	44,8	18,8	51.8	4	P 1 1 P	12,94	14.2	2070	5,2	
5	TPQH-32000/150	72	25	83	8	P1 10 P1 1P	10,38	11.4	2070	8,3	
7	TPAH-63000/150	86	27. 23	103,67	8	A + 10 A + 10	12,96	14.3	2570	10.4	
8	TATH-18000/150	55	20,25	64.1	4	م ا ا	16.03	17.6	2070	6,4	
.3	TATH-25000/150	67	23.1	76.5	8	7 1 1 2 1 1 2	9,56	10,5	2070	7.7	
30	TATH - 40000 /150-69	88,2	27.1	100.7	8	م الم م الم	12.59	13.8	2070	10.1	
31	TATH-83000/150-60	109	34.4	130.8	8	م ا ام م ام	16,35	18	2570	13.1	
02	TPA4H-63000/220-7441	84,5	39	136	8	P P P	17	18.7	3070	13,6	
33	TPAUH-160000/220 Y1	209	55,1	236	16	9 19 9 19	14.75	16.2	1594+2570 +1594	23,6	
:4	TATH - 25000/220 91	95	38,5	113,49	8	م ام م	14.19	15,6	3070	11.4	
35	TATH-40000/220-7091	99,5	41.6	121.3	8	9 19 9 19	15,16	17.2	3070	12.1	
36	ATAUTH- 53000/220/110-7891	/06	46.72	126	8	P	15.75.	17.3	3070	12,7	
37	ATAUTH-125000/220/110	/57	63,06	186	/2	P + P P + P	15,5	17.1	2070+2070	18,6	
38	ATAYTH-200000/220/110	230	76	255	16	P P P P	15,94	17.5	2070+3070	25,5	
39	ATAYTH-250000/220/110-7591	230	84	278	18	P I P P I P	17.38	19.1	То же	27.8	
40	TPAUH-63000/330-73 41	145	51	170	12	P ₁ ₁ P P ₁ ₁ P	14,2	15,6	2070+2070	17	
	ADAUTH - 133 000/330/220-7491	112	38	133	12	$\frac{\rho_{\downarrow} \downarrow \rho \rho_{\downarrow} \downarrow \rho}{\rho_{\downarrow} \downarrow \rho \rho_{\downarrow} \downarrow \rho}$	11.1		2070+2070	13,3	
	ATAUTH-125000/330/110-7791	212	77.5	240	12		20		2070+2070	24	
	ATAYTH-200000/330/110-8491	180	80	280	16	PL PPL P	17,5	19,3	2070+3070 +2070	28	
_ "	ATAUTH-250000/330/150-809	180	86	295	16		18.4	20,3	TO ME	29,5	
1	ATAUTH-250000/330/227-8641	162	52	192	12		16	17.6	2070+2070	19, 2	
	ATAUH-400000/330/150-7641	215	78	327	16	P I P P I P	20,4		2070+3070 + 2070	32,7	
	AOAUH-167000/500/220-1591	146	40	167	16	9 1 9 9 1 9	10.44	11.5	1594+2570	16.7	
	ROAYTH-267000/300/220-7941	190	53	225	16	P	14.1	15,5	TOME	22.5	
	AOAUTH-167000/500/220-7691	142	52	165	12	P P P P	13,75	15,1	2070+2070	16.5	
	ATAUTH-25000/500/110-7891	232	66,25	338	24	P, PP, PP	14.1	15,5	1594+1594+ 1594+1594+1594	33,8	
	ATAUTH-500000/500/220-8341	3/5	75	366	24	P+ IP P+ IP	15,25	16,8	Тоже	35.6	
52	PURY - 60000/500 41	55	15	66	8	P IPPI IP	8,25	9.1	2570	6.6	
								3. 4	107.1-14	3 - 01	

Tabn.	2

Hopi	1070	/	4874	ישונעו	HQ			mc			10	mc			151	mc			20	mc				me		TOALL	סאטו	me Tonu	_
TU	cu /	PYH	PUE TOB		TOK	7044				FOAU		TONU	IUHO	TONU	SUHO	TOAL	UHO	7014	140	TONY	AHO	TONU		CA	28		108	000	0
11.0	SOMIK	_	IJ,	c,	49	CA 4488	ا ۾ ح	TONG	0.9	ان ا	OHA OHA	nec	O.R KO	Web)	YA	nec		useo Con		nec.	TQ Nou	nou		nec Nou	TOU	Πρυ	При	Прц	Ī
846 209	OHO!	14	RH	RH.	2000	MALL	1700	Tall	Tou	TOU	nou	1704	TPU	חסט חמט-			MPU	מתח	anu	noul	nnu	MU						-0	1
HOMER SOUNT	205		m ³	243	2,000	nnu•	TE	70	78	7e	70	70	TE	Te Rios	TE Relsm	TB 8:1,0M	7E 6=1,5m	8=1,0m	FE 1.SM	8=1.0m	5:1.SM	TE 8=1,0m D 25	6=1,511	B=1.0m	6=1,5m	8=1.0M	8=1,5~	8=1,0m	16
401	¥								i .	ı	1.		04,377	0,25	0.25	0.1	0.1	0,25	0,25	0,1	0.1	0,25	0,25	0,2					
1		_	20	2		0,25	_		01		0,25	Ι .		0,25			_	0.25			0.1	0,25	0,25	0.4			0,25		†
2		_	20	1		_			01	,	0.25	1	0,1	0.25			0.1	0.25	0,25	0.4	0,1	0,25	0,25	0,5			0,25		†
3		_	20			0,25		1	01	1	0,25	1	0.1	0.25		-	0.1	0,25	0,25	0.2	0.1	0,25	0,25	0.3			0,25		+
4		_	19	3		0,25			01		0,25		_					0.25			0.1	0,25	0,25	0.4			0.25	+=-	
5		_	19	2		0,25	1				0,25	1	+	0,25		1	0.1	0.25	0,25	0.4	0.1	0,25	0,25	0.5			0,25		
6	0	_	185	1		0,25	1		01	1	0,25	T	-	0,25		1	9.1	0.25	0,25	0,2	0,1	0,25	0,25	0,3			0,25		
7	ec,	_	185	6		0.25	T		01		0,25	-		0.25			0.1	0,25	0.25	0.4	0.1	0,25	0,25	0,5	0.2	0,25	0,25	1 -	. T
8	0	_	185	14	36	0,25	1	1	01			02				0.5	0.2	0.25	0.25	0.6	0.3	0,25	0,25	0,8			0,25		_
9		_	18	12		0,25			01		0,25			0,25			0.4	0.25	0.25	0,9	0.6	0,25	0,25	1	0.7	0,25	0.25	1.2	+
10		_	18	0		0,25			01		0,25			0,25			0.1	0.25	0,25	0.3	0.1	0,25	0,25	0.4			0,25		
11		_	18	8	34	0,25	0.25	01	-	0,25	1		01			0.2	0.1	0.25	0.25	0,4	0.1	0,25	0,25	0,5		т :	0,25		
12			18	6	30	0.25	0.25	01			т.	0.2	0,1	0,25	0.25	0.5	0.2	0.25	0,25	0.7	0,4	0,25	0,25	0.1			0.25	1	7
13		=	175	2	26	0,25	0,25	01		925		0.5	0,2	0,25	0,25	0.8	0.5	0,25	0,25	10	0.6		0,25		0.8	0,25	0,25	1.3	

Уподл. (Подпись и дата Взат.инвм

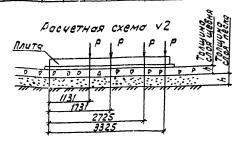
H. KOHTP. KOBALES MAJOSE1	3. 407.1-148	
HAY.078 POMPHICKUM DULL +854 [MI] ROSSENOS Way 30654 PYK. 20 KUP CUNDO TOKAS 30654	PUPPEMENTE US ANUM	CTOBUS AUCT AUCTOS P / 3 3HEPZOCETS (TPOEK) CESEPO-30:00H0E VIDENEMUE JEHUNTPOO
		ФОРМОТЯЗ

[i]	Pa	CHET	V08	urin																				7/070					
	6/A x	apak	2 K	arox			5	mc			10	mc			15	mc			20	mc			25	mc			30	mc	
l Ś	OGOHUR TO			c ^H	φH	ще		nec	28	TOAU CAT USE	1440 80 848	TON44 CA 1180,		cn c wee	HA	nec	CAOS KO	Толц сл цеб	OR	Tony cho neck	A	Толщ сліс щеб	7,44	TOAU, CAC neck	7 <i>9</i> 7 1	Tony cso yes	2	Tony Cho nech	28
Yenobabiú Homep røya	HOUMER	IL	<u>кн</u> м3		2 <i>po</i> 8	MPU MMU 7 0 81.0m		PPU PPU TE Rollon	NAU- TE RedSm	MAY MAY TE B=10m	1114-	nnu.	MPU MMU TE Balism	nnu	MPU MAU- TE BIJSM		TE	MPU MAU TE	′ 1	NAU- Te	TPU TPU TE	70	nnu-	NPU NAU- TE 8=1.0m	Npu nnu Te	NPU NNU- TE	MPU MU Te 8=1.5m	NPU NNU- TE	Прц Mu Te
15		0,25	20	15	30	0,25	0,25	0,1	0,1	0,25		01	0.1		0,25	_	9.1	0.25	0,25	Q, 2	0.1	0,25	0,25	0.4	_				_
16		0,25	105	11	29		0.25	0,1	0,1	0,25	0,25	01	0,1	0,25	0,25	0,2	0.1	0,25	0,25	0,4	0.1	0,25	0,25	0,6	0,1	0,25	0,25 0,25	0,5	0,1
17		0,25	19	8	27	0,25	-	0.1	0,1	0,25	0,25	01	0,1	0,25	0,25	0,4	0.1	0,25		0,6	0,3	1-/	0,25	0,8	0,4			0,9	0.6
18		0.25	1.8	6	25	0,25	0,25	0,1	0,1	0,25	0,25	01	0,1	0,25	0.25	0,3	0,1	1			0,2	0,25	0,25	0,7	0,7	-	0,25	0,9	0,6
19	Cynece	0,6	19	13	28	0,25		0.1	0,1	0.25	0,25	01	0.1	0,25	0,25	0,1	0.1	0.25		0,4	0,1	0,25		0,5			-	0,7	0,3
20	34	0,5	1,9	9		0.25		0.1	0,1	0.25	0,25	01	0.1	0.25	0,25	0,4	0.1	0.25		0.5	0,3	0,25		0,8	0,2		0,25	0,9	0.6
2/	5	0,6	185	6	24	0.25	0.25	0,1	0,1	0,25	0,25	01	0.1	0.25	0.25	0,6	0,3	+	0,25	0,9				1,0	0.7		0,25	1,2	0.8
22		0,6	18	93	21	0,25	0,25	0,1	0.1	0,25	0,25	0.7	2.4	0.25	0,25	1,0	0,6	0,25	0,25	12	0.8			1,4	10	0,25		1,6	1,2
23		0,25	2.0	47	26	0,25	0.25	0,1	0.1	0,25	0,25	0,1	0.1	0,25	0.25	0,1	0,1	0,25	0,25	0,1	0,1	0,25		0.1	0.1	0,25	-	0.1	0,1
24		0,25	17	2	19	0,25	0.25	0,1	0,1	0.25	0,25	0,1	0.1	0.25	0,25	0,1	0,1	7	0,25			1	0,25	0,1	0,1	1		0,1	0,1
25		0.25	195	37	25	0.25	0.25	0,1	0,1	0.25	0,25	0,1	0,1	0,25	0,25	0,1	0,1	0,25	0,25	0,1		_	0,25	0,1	0,1	0,25		0,1	0,1
26		0.25	19	31		0,25		0,1	0,1	0,25	0,25	0,1	0,1	0,25	0,25	0,1	9,1	1		0,1			0,25	0,1	0.1	-	0,25	0,2	0,1
27		0.25	1.8	25	23	0,25	0.25	0,1	0,1	0,25	0,25	0,1	0,1	0.25	0,25	0,1	0,1	0,25	0,25	0,1	0,1	0,25		0,3	0,1	 	0,25	0,4	0,1
28		0.25	1.8	2	23	0,25	0.25	0,1	0,1	0,25	0,25	0,1	0,1	-	0,25	0,1	0,1	0,25			0,1	0,25	0,25	0,4	0.1	-/	0,25	0,5	0,1
29	*	0,25	18	19	20	0,25	0.25	0,1	0,1	0,25	0,25	0,1	0,1	0,25	0,25	_	0,1	0,25	0,25	0,1	0,1	0,25	0,25	0.6	0,2	0,25	-	0,7	0,3
30	F	0.5	1.9	39	24	0,25	0.25	0,1	0,1	0,25	0,25	0,1	0,1		0,25	_	9,1	0,25	0,25	0,1	0,1	0,25	0,25	0,1	0,1	 	0,25	0,1	0,1
30 31 32	CYFAUMOR	0,5	185	34	23	0,25	0,25	0,1		0.25		0,1	0,1		0,25	0,1		1		0,1	0,1	0,25	0,25	0,1	0,1	0,25		0,1	0,1
32	3		18	28	22	0,25	0.25	0,1	 +	-	0,25	0.1	0,1	0,25	-	0,1	0,1	0,25		0,1	0,1	0,25	0,25	0,2	0,1		0,25	0.4	0,1
33	~ F	0,5	1.8	2.3	21	7		0,1		0,25		0,1	-/		-	0,1	0,1	0,25		0,2	0,1	0,25	0,25	0,4	0,1	0,25		0,6	0,1
34			1.8	18		-,	0.25	 +		-	0,25	0,1		0,25		_	0,1	0,25		95	0,1	0,25	0,25	0,7	0,3	0,25	0,25	0,8	0,4
35	Ī		1.8	1.5			0.25				0,25	0,1		0.25		-	0,1	0,25	-	-		0,25				0,25	1		0,6
36	ľ	0,5	19	25	19	0,25	0.25	9,1	0.1	0,25	2,25	0.1	0.1	0.25	4,63	0,/	0,1	0,25	0,25	0,3	0,1	0,25	0,25	0,5	0.1	0,25	0,25	0,7	0,3

ในค์เมกออัน กิจอักบระบ อิชาซ ชีริฉพ.นหรีนา

3.407.1-148.0-02

																						IKOP	449	HUE	70	51.	3	
HOPMO	Pa	C401	HOE	ycu g ka	AUE TOK	1 .	5 mc				mc				m c				mo	- 1			חת ל	- (mo	
TEPU	<u> </u>	KU I	JAM		-	Толщина слоя	Tonu	UHO	Толщ	UHO 7	ТОЛЩ	UHQ OA	TONU	SUHQ OR	TONU	14H0 0A	TOALL	OHU OR	TONU	UHO R	TONK	0.0	CA	08	2//	7/5	TOAU CÎ nec	,,,
£ 5 3	56		8H	c"	₽#	слоя щебня	nech	Ka	4800	-	700					_	_						nec	TOU	При	При		
2 7 2	3	T _L		KH	2003	APU APU	1704	При	.7	7-1	704	, , ,	חקח טומח	,	חףט חאט	/	' ' 1	חפת	חףט ממח	, - 1	מתח		חחע	., .	nnu-	טחח	nnu	תה
20 5	2	-~	KH M3	m ²	град		טחח	70	70 :	. 1	TE	70 70				7 <u>e</u> 8:1,5m		70	70	70	re		Te	re Belsm	70	TE 8=1,5m		70 81
HOUM PHO NO-	HUE TOYHTO		//-	′ ′		70 70	70 16=1m	8:1,SM	B=1m B	=1,5m 5						_		B=1,SM			8=1M	5=1,5m	9		0,25			0,
		0,6	185	20	18	0,25 0,25	0,1	0,1	0,25 0		-/	0,1	0,25					0,25	0,5			0,25	0,7		0,25			0,
38	9 1	0,6	18	16	15	0,25 0,25		0,1	0,25 0				0,25		0,5			0,25	0,8	-	-,+	0,25	1,0		0,25			C,
39	2	0.5		14		0,25 0,25							0,25				_	0,25	1,0				1,2		0,25			1,
	<u>5</u>	0.6	175	12		0,25 0,25			0,25 0				0,25		0,9		0,25	-	1.2			0,25 0,25	0,1		0,25		0.1	0,
41	+	2.25	18	81		0,25 0,25				/	-+		0,25		0,1		0,25		0.1		-7-+				0,25			0
42	+	0,25	18	68	20	0,25 0,25	0,1	0,1	0,250				0,25		0,1			0,25	0,1			-7			0,25			0
43	-	0,25	18	54	19	0,25 0,25	0,1		0,25 0		-		0,25		0,1		0,25		0,1			0,25		0,1	0,25			0
44	-	0,25	18	47		0,25 0,25		0,1	0,25 0	,25 4	-+	-	0,25		0,1		0,25		0,1		-/	0,25			0,25			0
45	-	2,25	175	41		0,25 0,25		0.1	0,25 0	7,25 (0,25		0,1			0,25	0,1		-	0,25	0,1	0,1	0,25			0
46	٠.		175	36		0,25 0,25		0,1	0,25 0				0,25			_	·	925	0.1			0,25			0,25			0
47	. I	0,5	175	57		0,25 0,25		0,1					0,25		0,1			-	0,1			0,25	0,1		0,25			0
		0,5	18	50		0,25 0,25			-		-		0,25					0,25	0.1		0,25 0,25	_			0,25			-
	`` F	0,5	17	43		0,25 0,24	1 1		0,25 0		-		0,25			<u> </u>	-	-	0.1			0,25			0,25		_	0
50		0,5	17	37	14	0,25 0,25	0,1			2,25			0,25	_		-	0,25	-	0.1		-/				0,25			0
51	Ì	0,5	165	32	11	0,25 0,2	0,1			2,25		0,1	0,25				0,25		0,3		0,25 0,25				0,25			-
52	ı	0,6	175	45	15	0,25 0,25	0,1		0,250			0,1		0,25		 	0,25	-	0.1		0,23 0,23				0,25			
53	ı	0,6	175	41		0,25 0,2		-	0,25	-/		0,1	0,25			0,1	-	-			0,25				0,25			1
54	ı	0,6	17,0	36	12	0,25 0,2		0,1	0,25		0,1		0,25					0,25		21	0.25	0,25	0.6					+


<u>UHE</u>Mnodn. Modnuce y data Bzam.uvén 12967 tw-70

55 56

3. 407. 1-148.0-02

Juct 3

Xopi	TRIP	0 6		ycu.			5	TC			10	770			15	mc			20	me				5 m	c		30	mo	;
mep	3/1/6					Tanu	OA	CA		TOAU CÁ Web			YUHO OA	70/14 C/1 4186	OA	ان	YUHQ ROS	7014 CA WES	20	TOAU	28	7014 C1 Web	7.8	TONY CA nec	OR	7014 C10 44.86			YUHO 102 1KA
YCTOBHOLU N TPYHTO	женова 29 унта	I,	No. Mo/ M3	C mc/	9, 2908	Apu Apu Anu Te	HA Nou NO- TE	nec. Npu nnu re		-	APU AAU TE	, .	TPU TRU TE	TPU TPU TE	APU ANY TE	7e	NPU NNU- TE	npu nnu re	Πρυ ΠΛυ- ΤΕ	APU AAU- TE	NPU NAU TE	Npu nnu- re	MPU MAU TE	TPU NAU- TE	MPU MU TE	APY AAU- TE	Apy AAU- TE	ANU. TE	7P4 7AU- 7E
1900	Har		2.0	0,2		8=1,0m Q,25			8=1,Sm 0,1	8=1,0m 0.25	6=1,5m 0.25	B=1,0x	0.1	0,25		-		0,35			0=1,5m	8:1.0M	0.25	1	92	5=1,0M 	6=1,5m 0,35		0,2
2		_	2,0	0,1	40	0,25	_			13738	0,25			0,25		1		0,35	0,25	0,4	0,2	_	0,25	_	03	_	0,35	_	0,3
3		_	2.0	0,0		0,25					0,25	0,3	0,1	0,25	0,25	0,5	0,2	0,35	0,25		0,3	_	0,25	-	05	-	0,35	_	0,5
4	İ	_	1.9	0,3	40	0,25	0,25	0,1	0,1	0,25	0,25	0,1		0,25			_	0,35		-	0,1	-	0,25		0,3		0,35		0,3
5			1.9	0,2	38	0,25	0,25	0,1			0,25		0,1	0,25			1	0,35		_		-	0,25		0,4		0,35		0,4
6	ب	_	1,85	0,1	35	0,25	0,25	0,1	0,1	0,25	0,25	0,4	0,1	+			_	0,35			_	=-	0,25		0,6		0,35		0,6
7	600		1.85		-	0,25					-/		0,1	+	-			0,35 0,35			0,2	=	0,25		05		9,35		0,4
8	1	_	1,85		+	0,25		_			0,25			0,25							0,5	 -	0,25		08		0,35		0,5
9			1.8	0,2	32	0,25			_		0,25			0,25				0,35			0,9	<u> </u>	0,25	-	11		0,35 0,35		1,2
10		-	1.8	0,0	28	0,25					0,25 0,25			0,25				0,35			_	_	0,25		0,4		0,35		9,5
12		=	1.8	0,8	<i>36</i>	0,25					0,25		-/-	0,25			-	0,35			0,4	-	0,25		05		0,35		0,6
13			1.75	-	30	0,25			_					0,25			0,5	0.35	0,25	1.0	0,7		0,25	_	0,9		0,35		0,9
14		-	1.75			0,25					0,25			0,25				0,35			1,0		0,25	_	1,2		0,35	-	1.3

H. KOMTP KOBONES Im JOSET	3, 407.1-148,0-03
HOY OTO POMENCKA 10 13 MET THA MODERNO W - SOST DYK. 20. KUPCOHOBO THAS SOST	Tabnuya din Bubopa pyn. CTabu Sucm Nucrof damenta uz inut nod Trancopopmatop na pac. HEP20CETBNPOEKI 4EMHOU CXEME NZ

формат АЗ

QK- UCTU YHM	206	Ha		OK			5 mc			, -	TC				57c				2 TC				τc			30	7 <i>т</i> с	
COMUR		8	c	q		DHUY RO RH					TONU CN nec		Tonu cn yes		TOAU	•	TOAU CA 488	• • •	TON4 CA nec	<i>UA</i>	Толщ сло щев	040 8 843	TOAU CA nec	RO	TOAU CAR LYER	цино 08 6ня	TOAL	O A
HOUMEHOGONUE	IL	TC/ _M 3	7¢/ _M 2		nnu. Te	70	Apu nau- Te 8=1,0m	TE	70	TAU-	NPY NNU- TE B=1,0m	TAU.	TPU TE B=1,0m	MAU-	nnu-	nnu- Te	nnu-	nau. Te	nnu-	NAU TE	TPU	NOU NAU- TE	APU AAU- TE	Mpu nnu-	MU-	NPU NNU- TE	70	PAU- TE B=1,5m
1	0,25	20	1,5					0,1	0,25		0,1		0,25					0,25		0,2		0,25	_	0,4	-	0,35	_	0,5
7	0,25	1,95	1,1	29	0,25	0,25	0,1	0,1	0,25		0,3	0,1	0,25	0,25	0,6	0,2	0,35	0,25	0,7	0,4	_	0,25	-	0,6	_	0,35	_	0,7
1	0,25	1.9	0,8	29	0,25	0,25	0,1	0,1	0,25	0,25	0,5	0,1	0,25	0,25	0,8	0,4	0,35	0,25	1.0	0,7		0,25	_	0,8	_	0,35	_	2,9
0	0,25	1.8	0.6	25	0,25	0,25	0,1	0,1	0,25	0,25	0,4	0,1	0,25	0,25	0,7	0,3	0,35	0,25	1.0	0,5	_	0,25	_		-	0,35	_	0,8
900	0.6	1,9	1,3	28	0,25	0,25	0,1	0,1	0,25	0,25	0,2	0,1	0,25	0,25	0,8	0,2	0,35	0,25	0,7	0,4	-	0,25	_	0,5	_	0,35	_	0,6
187	0,6	1.9	0,9		0,25				0,25		9,5	0,1	0,25	0,25	0,8	0,4	0,35	0,25	1.0	0,7	_	0,25	_	0,9	_	0,35	_	0,9
1	0.6	1,65	0,6			0,25	0,3						0,25			0,7	0,35	0,25	1.3	0,9		0,25	_	1,1		0,35	_	1,2
_	0.6	1.8	0,3	21	0,25	0,25	0,5	0,3	0,25	0,25	1.1	0,7	0,25	0,25	1.5	1.0	0,35	0,25	1.7	1,3	_	0,25	_	1,5		0,35	_	1,6
十一	0,25		4.7		0,25	-	0,1	0,1	0,25	0,25	0,1	0,1	0,25	0,25	0,1			0,25		0,1	_	0,25	_	0,1	_	0,35	_	0,1
1		1.95	3,7	25	0,25	0,25	0,1	0,1	0,25	0,25	0,1	0,1	0,25	0,25	0,1	0,1	0,35	0,25		0,1		0,25	-	0,1	_	0,35	-	0,1
1	0,25		3,5		0,25			0,1	0,25	0,25	0,1	0,1	0,25	0,25	0.1	0,1	0,35	0,25		0,1		0,25	_	0.1	_	0,35	_	0,2
\vdash	0,25		3,1		0,25			0,1	0,25	0,25	0,1	0,1	0,25	0,25	0.1	0,1	9,35	0,25		0,1		0,25	_	0,1		0,35	=	0,2
-	0,25	1.8	2,5		0,25			0,1	0,25	0,25	0,1	0,1	0,25	0,25	0,3		0,35		0,4	0,1	_	0,25	_	0,3		0,35	=	0,1
-	0,25	1.8	2,2		0,25				0,25			0,1	0,25	0,25	0,4			0,25		0,2		0,25	_	0,4		0,35		0,5
×	0,25	1,8	1,9	20	0,25	0,25		0,1	0,25	0,25	0,2	0,1	0,25	0,25	0,6					0,5		0,25	_	0,7		0,35		0,7
Ĭ.	0.5	1,9	3.4	24	0,25			0,1	0,25	0,25	0,1	0,1	0,25	0,25	0.1			0,25		0,1		0,25	_	0,1	_	0,35		0,1
углинок	0,5	1,85			0,25			0,1	0,25	0,25	0,1	0,1	0,25		0,1			0,25		0.1		0,25	_	0,1	ا	0,35		0,2
Cyznu HO	0,5	1,8	2,8		0,25		0,1	0,1	0,25	0,25	0,1	0,1	0,25	0,25				0,25		0,1		0,25		0,5	_	0,35		0,4
-	0,5	1.8	2,3	21	0,25		0,1	0,1	0,25	0,25	0,1		0,25					0,25	_	0,3	-	0,25	_	0,3	=	9,35	=	0,8
1	0,5	1,8	_	19	0,25			0,1	0,25		0,3		0,25					0,25		0,5		0,25	_	0,7	_	0,35	-	
-	0,5	1,8	1.5	17	0,25	0,25	0,1		0,25			0,1	0,25	0,25	0,9	0,5	0,35	0,25	4	0,8		0,25		1.0	_	0,35		0,7
_	0,5	1,9	2,5	19	0,25	0,25	0,1					0,1	0,25	0,25	0,5	0,1	0,35	0,25	9	0,4		0,25		0,6	_	0,35		0,/

WHEN nogn nognace adorated as unew

OKOHUOHUE TO	761	, .
--------------	-----	-----

150	UK	a rpi	140 1470	Kat	ok mc		5	TC			107	C			15	70			20	70			25	mc			30	TC	
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0					9	Tony	DA	Tonu chi nec	2.0	TOAU CA UYBÓ		TONU CAR DECI	R	TONU, CA 0 UP 0)R	Tanu che nech	7.4	Толи сло щев	19	TOAU CAR neci	ו מס	Tanu ci yeb	08 1	nec	RO	щев	מם מאי	TONU C.N. 1180	08 07
HOUM	1801	IL.	70c/ 143	[7c/ /M ²	Spa3	dalla	Te	nnu- TE	Te .	Te	nnu re	ПРU 114- TE 8:1.0m	nnu re	<i>78</i>	nnu Te	MU TE	7e	MOU MU- TE B:1,0m	nnu re	re	MU- TE	NPY NNU- TE Bel,OM	nnu- Te	nnu- Te	re	MPU MRU- PE B=1.0M	•	Te.	76
17 18			1,85	20	18	0,25			0,1	0,25	0,25	0,3	0,1	0,25	0,25	0,7	0,3	0,35	0,25		0,6	_	0,25	=	0,8		0,35	=	0
8 9 9		2,6	18 1,8	16	16	0,25			91	0,25	0,25	0,6	0,2	0,25		1,0		0,35		1.3	1.1	=	0,25	=	1.1	_	0,3S 0,3S	_	1
		4 4	1,75	1.2	12	0,25			0,1	0,25	0,25	1.0		0,25		1,5	1.0	0,35	_	1.9	1.3	_	0,25	_	1.5	_	0,35		1
11	-		1,8	81	21	0,25	0,25	0,1	0,1	-	0,25	0,1	0,1	0,25	 	0.1	0,1	0,35	/		0,1	_	0,25	=	0,1	_	0,35	=	4
3	-	0,25 0,25	1,8	5,4	10		0,25		0,1	0,25	0,25	0,1	0,1	0,25	0,25		0.1	0,35	0,25		0.1	=	0,25	_	0,1	_	0,35 0,35	_	1
14	-	0,25		4,7	18	0,25	-		0,1	0,25	0,25	0,1	0,1		0,25		0,1	/	0,25	0.1	0,1	=	0,25	=	0,1	_	0,35	=	4
16	-	7,25	1,75		16	+	0,25	+	0,1	0,25	-	0,1	0,1	0,25	-	0,1	0,1	1	0,25 0,25	0,3	0,1		0,25	=	0,2	_	0,35 0,35	=	4
77		0,25	1,75 1,75		_	0,25	+	-	0,1		0,25	0,1	0,1	0,25	-			-75-	0,25	0,1	0,1		0,25	_	0,1	_	0,35	=	4
ष्ठ इ	2 1	_	1,8	5,0	+	0,25	0,25	0,1	0,1	-	0,25	0,1		0,25				0,35			0.1		0,25	_	0,1		0,35		4
19 50		0,5	1,7	4,3	-	0,25	-	0,1	0,1	0,25	0,25 0,25	0,1	0,1	0,25	0,25	0,1		 ' 		0,2	0,1	_	0,25	=	0,1	_	9.35 9.35	_	6
7	- 1	0,5	1,65	3,7	11	17	0,25	0,1	0,1		0,25	0,1		<u> </u>	-		0,1	-			0,4		0,25	_	0,6		0,35		3
2		0,6	1.75	4.5	15	125	0,25	0,1		0,25		0,1	0,1	0,25	0,25	0,1			0,25 0,25		0,1		0,25	_	0,2		0,35 0,35	=	4
3	-		1.75 1.70	3.6				0,1				0,1				0,5		/			0,1		0,25	_	0,6		935		0
3	-		1,70	3,3		0,25			0,1	0,25	0,25	0,2	0,1		-		0,2				0,5		0,25	Ξ	0,7		9,35	\equiv	0
66	0	26	65	2,9	7	0,25	0,25	0,1	0,1	0,25	0,25	0,5	0,1	0,25	0,25	0,9	0,5	0,35	0,25	1,2	0.8		0,25	_	1.0		0,35	ᆜ	

UHBNOGA ABBAUCO UBOTO BBOM.UHBN

		Расчетное	сапротив-	несущая с	пособнасть О фундамен	10060 HUÚ 1706, KH		Ta61.4
Наименовоние		Nehue apy	HTQ OCHOBA.	В сверлено	M KOTAOBO. 1034)	HE C OFETON	ированием	
9 h		HOM KOTA	06040	Φ 80	O MM	\$10	00 MM	RPUMEYOHUS
грунта		При h7,3м ненарушен-	Mpu H=2m He-	7	un sakpei	TACHUR		,
		ной структуры	структуры	<i>C5</i>	CH5	CE	CHE	
Пески крупные		5200	3640	2053	1433	3193	2230	
Пески средней крупности		3900	2730	1551	1081	2408	1681	
Пески мелкие		2050	1435	823	572	1274	888	
Пески пылеватые		1300	910	523	363	810	564	
Суглинки и глины	(0,2	3600	2520	1428	996	2218	1550	
	0,3	2300	1610	913	636	1419	990	
	0,4	1600	1120	6 36	442	987	688	
J _L =	0,5	1300	910	516	359	802	559	
	0,6	800	560	318	221	495	344	
	0,75	400	280	160	110	248	/73	

8 ταδλυμε πρυματοί ελεθυρώψυε αδοβμανέμυς C6- εβερλεμού κοτλοβαμ με 3m ε αδετομυροβκού παβγχ CH6- Το же, в грунтах ненарушенноύ επρуктуры H=2m

UHG.NAODA (ROBANCS W BOTT BOOM, UHGN

н. комър	KoBanes	1000	20282		
				3,407.1-148,0	- 04
Hay, 070.	POMENCKUL	Jour	30 847	Таблица для выбора	CTOBUS JUCT JUCTOB
PYK.2P.	VI арфенов Кирсанова	mil	2000	COUNDAMENTO & U.S. UUNUH	P /
		-		Таблица для выбора Фундаментов из ципин Врических труб под трансформаторы	Cesepa Sanadhoe ordenem Nemumrpad
			_	1 17-11-7-07-17	GENERAL DES

Формат АЗ

Budbi necya	Una	Xo	POKT	epuc:	TUK	U 204	14000	P						Tuch	QHK	2008				
чых грунтов И консистен-	~	Hop	MOTUR HOYE	HUE	Pag	487761		MODYNO MODYNOU						7 4 77 87	U H K	0000	Γ	<u> </u>		
MEIX TOUMTOE U KOMCUCTEM- UUA PAUHUC- TOIX POYHTOB	2 <i>рун</i> Та	Spogs H		8 KH/ M3		CIKH	8 KH/ M3	EKH/M2	tq Y	A-1	A-2	A-3	A-4	A-5	A-6	A-7	A-8	A-9	A-10	
Пески гра Велистые		43	2	20	39	0,5	20	50 000	0,952	115	139	174	156	179	212	196	218	249	810	
ч Крупные	2	40	1	20	35	0,25	20	40 000	0.849	91	110	138	125	143	170	159	176	201	691	
	3	38	-	20	34	-	20	30 000	0,781	77	94	118	107	123	146	138	152	173	618	
Necku cped Heú kpyn-		40	3	19	35	0,75	19	50 000	0,859	88	107	135	122	140	165	156	172	196	672	
HOCTU	-	30	2	19	34	0,5	19	40000	0,801	76	92	115	106	121	143	136	150	170	604	
		35	1	18,5	32	0,25	18,5	30 000	0,710	63	77	97	89	102	121	115	127	144	530	
Пески		38	8	18,5	34	1,5	18,5	48 000	0,841	78	95	119	110	126	148	142	156	177	622	
MEAKUE	-	36	4	18,5	33	1.0	18,5	38 000	0,766	7/	86	108	100	114	135	129	142	161	578	
MENINUE	10	32	2	18	29	0,5	18	28000	0,645	51	62	78	73	84	99	96	105	119	457	
	11	28	-	/8	25	-	18	18000	0,592	38	46	58	<i>55</i>	63	74	73	80	90	372	
Пески пылева-	15	36	8	18	33	2	18	39000	0,806	74	89	112	105	119	140	135	149	168	596	
THE	40	34	6	18	31	1,5	18	23000	0,734	62	76	95	89	102	120	116	128	144	530	
1010	14	30	4	17,5	27	1.0	17.5	18000	0,607	45	55	69	60	75	88	87	95	107	422	
		26	2	17,5	23	0,5	17.5	11000	0,503	34	4/	52	50	57	67	67	73	82	345	
~		30	15	20	27	6,25	20	32000	0,727	69	84	105	104	117	136	138	150	167	821	
0 £ J _L		29	<u>"</u>	19,5	26	4,58	19,5	24000	0,664	59	7/	89	88	100	116	117	128	142	544	
		27 25	8	19	24	3,33	19	16 000	0,590	47	58	72	72	81	99	96	104	116	460	
			6	18	22	2,91	18.5	16000	0,520	52	68	79	78	92	110	111	116	128	504	

3,407.1-148,0-05

Таблица для выбора Стадия лист Листов В 1 3 чилинари Знергосеть проект Северо-Запарное отделями вымителя формат АЗ Нач. отд. Роменский [Оддомов 37 ГИП Парфенов Ит 30337 РУК. 29, Кирсанова ПИСА-30187

	F.,	T v.			7/12	30.	Tak	,		I			-		au 50	200			Прод	ОЛЖЕНИЕ ТОВЛІ
KOHCUCTEH-	N	Нар	MOTUB SHOYE	HOIC	Pag	U ZPS	1 e 4 u A	Modynb Jepopmay.	tg Y						ahkek			l		
тых грунтов	79 70	2007 2007	KH/m2	KH/M3	2pa8	KH/M 2	KH/m3	KH/M2		A-1	A-2	A-3	A-4	A-5	A-6	A-7	A-8	A-9	A-10	
0,25≤ J _L ≤ 0,75	19	28	13	19	25	3,94	19	32000	0,662	52	53	79	79	89	103	105	114	/27	494	
-, -2 ,,	20	26	9	19	23	2,73	19	24000	0,579	43	52	68	65	73	86	87	95	105	428	
	21	24	6	18,5	22	1,32	18,5	16 000	0,505	37	45	57	56	64	74	75	82	91	381	
	22	24	3	18	19	0,91	18	10000	0,414	28	34	43	43	49	57	58	63	70	311	
	23	19	2	<i>‡</i> 7	16	0.87	17	1000	0.389	24	30	40	52	60	69	70	76	82	360	
	24	26	47	20	23	19,58	20	34000	0,958	98	116	143	150	167	190	201	216	237	866	
	25	25	37	19,5	23	15,42	19,5	27 <i>000</i>	0, 836	83	99	123	128	142	163	172	185	203	752	
067660,25	26	24	31	19	22	12,92	19	22000	0,755	70	84	104	109	122	139	147	158	174	658	
10,20,20	27	23	25	18	21	10,42	18	17 000	0,674	58	70	86	90	101	116	122	13,2	145	560	
	28	22	32	18	20	9,17	18	14000	0,624	51	62	77	81	91	104	110	119	130	5/4	
	29	20	19	18	18	7.92	18	11 000	0,554	43	52	65	69	77	88	94	101	111	455	
	30	24	39	18	22	16,25	19	32000	0,835	80	96	119	125	139	159	168	181	198	740	
	31	23	34	18,5	21	14,17	18,5	25000	0,764	70	83	103	109	121	138	147	158	173	658	
	32	22	28	18	20	11.67	18	19000	0,684	58	70	87	92	103	117	125	134	147	570	
0,25 <j∟≲0,5< td=""><td>33</td><td>21</td><td>23</td><td>18</td><td>19</td><td>9,58</td><td>18</td><td>14000</td><td>0,614</td><td>50</td><td>60</td><td>75</td><td>79</td><td>88</td><td>101</td><td>108</td><td>116</td><td>127</td><td>505</td><td></td></j∟≲0,5<>	33	21	23	18	19	9,58	18	14000	0,614	50	60	75	79	88	101	108	116	127	505	
	34	19	18	18	17	7.50	18	11 000	0,524	40	49	<i>51</i>	64	72	82	88	94	104	428	
	35	17	15	18	15	6,25	18	8000	0,456	34	41	51	54	61	70	75	80	88	376	
	36	19	25	19	17	7,58	19	17000	0,594	42	50	63	67	74	85	91	98	107	445	
	37	18	20	18,5	16	6,08	18,5	12000	0,525	36	43	54	57	64	73	78	84	92	392	
0,5474 60,75	38	16	16	18	14	4,85	18	8 000	0,447	29	35	44	47	52	60	64	69	76	334	
																3, 40	7.1-14	18.0-0	75	<u>Ииа</u> 2

формат АЗ

Окончание	TOBA.	5
4 <i>~ 4 7 7 4 7 1 1 6</i>	/ 4 0 - / .	$\boldsymbol{\sim}$

Консистен-	Vac	X	ρακτ	epuci		eu ex	-				***************************************		TU	1761	OHKE	006				
Консистен- Ция ГЛИНИСТЫХ ГРУНТОВ	2011	1971	C	H 61 6 1 1 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4.	C I KH/ _M 2	8	Modynb Bepopmay E KH/m ²	tq ¥	A-1	A-2	A-3	A-4	A-5	A-6	Я-7	A-8	A-9	A-10	
	39	14	14	18	13	4.24	18	6 000	0,389	26	32	40	43	48	55	58	63	69	311	
	40	12	12	17,5	11	3,64	17.5	5000	0,233	27	27	34	36	41	47	50	54	59	273	
	41	21	8/	/8	19	33,75	18	26 000	1,194	119	140	169	182	201	226	243	260	28,2	1048	
	42	20	68	18	18	28,33	18	24000	1.044	107	127	154	165	183	207	221	237	25,8	955	
0 € 76 € 0,25	43	19	54	18	17	22,5	18	2/000	0,884	77	92	113	123	136	154	166	178	194	749	
110019	44	18	47	18	16	19,58	18	18000	0,195	67	80	98	107	118	134	145	156	169	666	
	45	16	4/	17.5	14	17.08	17,5	15000	0,697	54	65	8/	89	98	111	122	130	141	57/	
	46	14	35	17.5	13	15	17,5	12000	0,609	48	57	71	78	87	98	107	115	125	5/4	
	47	18	57	17.5	16	23,75	17,5	21 000	0,895	77	91	112	122	135	152	165	177	192	747	
	48	17	50	18	15	20,83	18	18000	0,806	66	19	98	107	118	134	146	156	169	671	
0,25≤J _L ≤0,5	49	16	43	17	14	17, 92	17	15000	0.707	56	67	82	91	100	114	124	133	144	581	
-7	50	14	37	17	13	15,42	17	12000	0,6/9	48	58	71	79	87	99	108	115	125	5/5	
	51	11	32	16,5	10	/3,33	16,5	9000	0,514	37	45	56	63	69	78	87	92	100	428	
	52	15	45	17.5	\vdash	13,64	17,5	18000	0,718	47	56	70	77	85	96	105	112	122	502	
	53	14	41	17,5	13	12,42	17,5	15 000	0,659	42	51	63	69	77	87	95	102	111	464	
0,5 £ 7_ £0,75		12	36	17	11	10,91	17	12000	0,573	35	42	53	59	65	73	8/	86	94	403	
	55	10	33	17	g	10	17	9000	0,506	30	36	46	51	57	67	7/	76	82	363	
	56	7	29	16.5	6	8,79	16.5	7000	0.413	24	29	37	42	46	52	58	62	67	307	

mal Condenses in drama Barnes

3, 407.1 - 148.0 - 05

3

Тавлича расчетных нагрузок на плиты типа "ПФ"

Марка	ΓαδαρυτΗΒΙΘ	5em	04	Расчетные Схемы в длинном	направлении	Pacyethole CXEMbi B Kopotkom Hanpablehu	שַ ע"מ "איי או אַנאי איי אַ אַניא
חמעת	pa3Mepbl (cm)	Knace	KON-80 (m3)	Cxema I		Cxemo 2	AAA TOBÕODO AP- MATYPEI & AAUHHOI HAAPABABHUU
7	2	3	4	5	6	7	8
<i>Π</i> Φ 35, 10	350 × 100 × 25	825	0.875	minimm	P = 15,6 TC M mox = 8,12 TCM Q = 18,6 TC max	9. 777777777777777777777777777777777777	M = 8,12 тсм для верхней и ния ней арматуры Q = 22,44 тс
P 35, 15	350 × 150 × 25	825	1.31	678 556 1044 550 678 3500	P = 24,2 TC Mmax = 13,37 TCM Q max = 22,44TC	1 1	нижней армату

2. Схема 2- принята расчетной для подбора арматуры плит в коротком направлении. 3. Максимальная пояеречная сила принята ספטעד אטסטס פתם האט מספטא דיים פתר האטחום 4. Армирование плит см. чертеж ... 3.407.1-148,2-019 UHB. NIOON NOOMUCE U BOTO BSOM. UMPN 12967774-7.0

H. KONTP KOBONEB AS 03 DE8 3,407.1-148.0-05 На 4.070 Роменский На 103 08 87 ГИП Парфенов Исприов 17 РУК. 20. ШПЕНОВО БИЦИ! 0308 87 Таблича расчетных нагрузак на плиты 74ng "79" Северо Западнов отделение Ленинград

& rape , 8 ".

плит в продольном направлении. Максимальный момент для расчета плит по прочности дан