ТИПОВЫЕ СТРОИТЕЛЬНЫЕ ІОНСТРУКЦИИ, ИЗДЕЛИЯ И УЗЛЫ

СЕРИЯ 1.420.1-25

КОНСТРУКЦИИ МНОГОЭТАЖНЫХ ПРОИЗВОДСТВЕННЫХ ЗДАНИЙ С СЕТКАМИ КОЛОНН 6×6 И 9×6 м С БЕЗБАЛОЧНЫМИ ПЕРЕКРЬ ІТИЯМИ ПОД НАГРУЗКУ СООТВЕТСТВЕННО ДО 30 кПа (3000 КГС/м²) И ДО 20 кПа (2000 КГС/м²)

выгуск 4

Железобетонные межколонные и пролетные плиты для зданий с сеткой колонн 9×6м РАБОЧ ИЕ ЧЕРТЕЖИ

ТИПОВЫЕ СТРОИТЕЛЬНЫЕ ІОНСТРУКЦИИ, ИЗДЕЛИЯ И УЗЛЫ

Серия 1.420.1-25

КОНСТРУКЦИИ МНОГОЭТАЖНЫХ ПРОИЗВОДСТВЕННЫХ ЗДАНИЙ С СЕТКАМИ КОЛОНН 6×6 И 9×6 м С БЕЗБАЛОЧНЫМИ ПЕРЕКРЫ ТИЯМИ ПОД НАГРУЗКУ СООТВЕТСТВЕННО ДО 30 кПа (3000 кгс/м²) И ДО 20 кПа (2000 кгс/м²)

выпуск 4

Железобетонные межколонные и пролетные плиты для зданий с сэткой колонн 9×6м

РАЗРАБОТАНЫ:

ЦНИИЭПСЕЛЬСТРОЙ

ЗАМ.ДИРЕКТОРА

ЗАВ. ЛАБОРАТОРИЕЙ Зам В.Г. Выжиги

киевский промстройпроект

Зам.гл.инж.ин-та вамен Юл

Гл. констротдела Гл.инж. проекта Ю.Т.БАБЧЕНКО А.Н.СЫТНИК

В.А.Козлов Г.А.Либерман **ЦНИИПРОМЗДАНИЙ**

ЗАМ.ДИРЕКТОРА В.В.

ЗАВ. СТДЕЛОМ / ОТИМИ ВЕД. НАУЧНЫЙ СОТР.

ниижь

SAM. JUPEKTOPA

T.U.MAMEGOB

Утверждены: Главагропромнауч проектом

ТОСКОМНЕСИИ ЕМ СССР
ВО ПРОДОВОЉЕТВИЮ И
ЗАКУЛКАМ, ПИСЬНО ОП
27.09.89 № 15 - 8//5,
ВВЕДЕНЫ В ДЕЙСТВИЕ С
01.03.90 ЦИНИОПЕРАСТРОЕМ,
ПРИКАЗ ОТ 28.09.89
№ 1496-0

© ЦИТП Госстроя СССР, 1990

	9инегрансор0	Наименование	CTp.		9инервнеод0	Налименование	CTp.
	I.420.I-25.4-TT	Технические требования	3		I.420.I-25.4-30	Изцелие заклющное МНІМН4	43
	I.420.I-25.4-IΦЧ	Плита межколонная МПЗ, МП4.			- 31	Изделие закладное МН5МНІО	43
1		Опалубочный чертеж	10		_		44
	- I	Плита межколонная МПЗ,МП4	12		-32	Изцелие заклащное МНИМНІЗ	
	- 2 4 ¥	Плита межколонная МП5. Опалубочный чертеж	16		- 33	Изделие закладное МН 14	44
	- 2	Плита межколонная МП5	17		-34	Изделие закладное МНІ5	45
	- ЗФЧ	Плита межколонная МП6.			- 35	Изделие закладное МНІ6МНІ8	45
	 ⊙4.	Опалубочний чертеж	21		- 36	Изделие макладное МН19МН21	46
	- 3	Плита межколонная МП6	22		- 37	Изделие заклацное МН22МН24	46
	-4	Узлы І5	25		- 38	Изделие закладное МН25	47
	- 5 Φ Ч	Плита пролетная ШІЗ. Опалубочний чертеж	26		- 39	Изделие заклащное МН26, МН27	47
	-5	Плита пролетная ШІ2	28		-PC	Ведомость расхода стали	48
	-6 -6	Cetra CIC3	31	•			
	- 7	Сетка С4С6	31				
	-8	Сетка С7С9	32				
		Сетка CIOCI2	32				ļ
	-10	Сетка СІЗСІ6	33				ļ
	-II	Cetka CI7CI9	33				
	-I2	Сетка С20С23	34				
	-I3	Сетка С24С26	34				
	-I4	Сетка С27С29	35				
	- I5	Сетка С32С34	35				1
	- I6	Сетка СЗО, СЗІ	36				1
	-17	Сетка СЗ5,СЗ6	36				
1	-I8	Сетка СЗ7СЗ9	37				ļ
18	- I9	Сетка С40, С4I	37				
7	-20	Сетка С42С44	38				
0830	-2 I	Сетка С45С47	38				
0	-22	Сетка С48С50	39				
Som	-23	Сетка С51С53	39				
00	-24	Сетка С54С56	40				
33	- 25	Каркас КРІКРЗ	40		PASPAD. KUWENSZOP PR		
2000	-26	Каркас КР4КР6	41			1.420.1 - 25.4	
<u> </u>	-27	Каркас КР7КР9	41		 	Cmadus Avam	Aucron
100	-28	Сетка С57	42				1
100	-29	Позиция 1216,18,19	42			Содержание Киеваки	5
सम्ह औँ गाउँ। गाउँ गाउँ गाउँ । अवाम व ४३वम. प्रमर्थ ११					H.KOHTR A. SMOK BAS	Прометрой	
13	<u> </u>			<u></u>	Н.КОНТЯ Д.УЖАК ДУЗ	24098 3	

І. ОБШАЯ ЧАСТЬ

I.I.Данный выпуск является частью работы, полный состав которой приведен в выпуске "0" серии I.420.I-25.

Межколонные плиты приняты трех основных типоразмеров в плане: 2980 x3280 мм / МПЗ/, 2090x3280 мм /МП4/ и 2980x6280 мм / МП5/. Дополнительно к ним предусмотрены межколонные плиты, располагаемые в перекрытиях у проемов для лестничных клеток и шахт лифтов / МП6/ а также плиты с углублениями для образования технологических отверстий. Толщина всех плит принята 180 мм.

Пролетние плиты приняты одного типоразмера в плане: 2980 х 5980 мм / ШІ2/. Дополнительно к ним предусмотрены пролетные плиты с углублениями для сбразования технологических отверстий. Томшина плит 180 мм.

1.2. Маркировочные схемы раскладки межколонных и пролетных плат и номенклатура их приведал. в выпуске 0 настоящей серии.

Плиты обозначены марками в соответствии с ГОСТ 23009-78.

Обозначение марки состоит с основном из двух частей. Первая часть марки, обозначающая типоразмер плиты, состоит из буквенного обозначения МП / межколонные плиты/ или ПП / пролетные плиты/ и порядкового номера типоразмера, который соответствует основным габаритным размерам плиты.

Нумерация типоразмеров принята сквозной для плит безбалочных перекрытий в зданиях с сеткой колонн 6 х 6м, разработанных в выпуске 3 / плити МПІ, МПС, ЧПГ/ и для плит зданий с сеткой

колонн 9 х 6 м / плиты МПЗ, МП4, МП5, МП6, ПП2/, разработанных в настоящем выпуске.

Вторая часть марки обозначает порядковий номер ее несущей способности в зависимости от временных нагрузок на перекрытиях и класс напрягаемой арматуры.

Возможна третья часть марки, ко торая обозначает наличие углублений для образования технологических отверстий, дополнительных закладных изделий, индексов, отражающих применение плит в условиях воздействия агрессивных с ред и т.д.

Таким образом, МП5—2АШв—I обозначает межколонную предварительную напряженную плиту второй несущей способности, с напрягамой арматурой класса А-Шв, с углублениями для образования технологических отверстий.

І.З. Плити безбалочних перекритий разработани для применения в зданиях с неагрессивной и слабоагрессивной газообразними средами.

Условия применения данной конструкции в зданиях со среднеагрессивной газообразной средой приведены в пояснительной записке к выпуску "О" данной серии.

І.4. Плити "МП" рассчитани, как элементи ригелей перекрестных рам с жесткими уэлами, ображуемими замоноличиванием капителей с колоннами. Плити "ПП" рассчитани, как неразрезные балки, упруго опертые на плиты МПЗ.

Более подробно условия расчета приведени в выпуске "O" настоящей серии.

Гл. КОНСТІ ГИП	Козлов Либерман	Off.	 1.420.1 - 25,4-77		
			Технические требования	Cmaður Slucm P	Slucmob 7
Н. контр	Дужак	asha	TOXHOTECHOC TPEUDDUNGT	Киевский Промстрой	роект
., ., .,		7/0	 24098	· U	

- I.5. Предел отнестойкости всех плит перекрытий равен
 I,0 час , согласно "Пособию по определению пределов отнестойкости конструкций" / ЦНИИСК им.Кучеренко, М. "Стройиздат",
 I985 г/.
- I.6. Плиты изготовляются из тяжелого бетона классов B25... B35.

Классы тяжелого бетона для изготовления плит приняты по ГОСТ 25192-82.

Марки бетона по морозостойкости и водонепроницаемости должны быть указаны в конкретном проекте с учетом требований ГОСТ 27108-86.

- I.7. Толщина защитного слоя у нижней / открытой / поверхности плит принята равной 15 мм, что соответствует требованиям как для слабоагрессивной, так и для среднеагрессивной среды. Ширина раскрытия трещин в плитах принята из условия их применения в слабоагрессивной среде / см. также п.І.3/.
- І.8. При применении плит в агрессивных средах дополнительные мероприятия, соблюдение которых обязательно, должни быть определены в соответствии со СНиП 2.03.II-85 "Защита строительных конструкций от коррозии" и указани в проекте конкретного здания.
- І.9. В плитах применяется арматурная сталь следующих классов:

ненапрягаемая арматура:

стержневая горячекатаная сталь периодического профиля классов A-Ш и A-I по ГОСТ 5781-82 ;

напрягаемая арматура:

стержневая горячекатаная сталь, упрочненная витяжкой с контролем удлинения и напряжения, периодического профиля класса А-Шв ; стержневая горячекатаная перис дического профиля класса A-IV по ГОСТ 5781-82.

Допускается замена арматуры икласса A-IV на арматуру класса Aт-IVК по ГОСТ 10884-81 при сохранении диаметров и количества стержней.

При применении плит в неагрессивной среде, а также при слабоагрессивной степени воздействия газообразной средн возможна замена стержней из стали клюсса А-Ш стержнями того же диаметра из стали клюсса Ат-ШС по ГОСТ 10884-81.

Для изготовления закладных изделий следует применять сталь марки ВСт3пс6-I по ТУ I4-I-3023-80.

2. ТРЕБОВАНИЯ К ИЗГОТОВЛЕНИЮ ПЛИТ

2.1. При изготовлении плит следует выполнять требования перечисленных ниже нормативных документов:

ГОСТ 27108—86 "Конструкции жаркаса железобетонные для многоэтажных зданий с безбалочными перекрытиями. Технические условия";

ГОСТ 10922-75 "Арматурные изделия и закладные детали сварные для железобетонных конструкций. Технические требования и метолы испытаний";

ГОСТ 26633-85 "Бетон тяжелый. Технические условия"; ГОСТ 10180-78^х "Бетоны. Метюцы определения прочности на ожатие и растяжение";

ГОСТ I2730.0-78 "Бетоны. Общие требования и методам определения плотности, влажности, водопоглощения, пористости и водонепроницаемости";

ГОСТ 12730. 1-78 "Бетони. Метод определения плотности";

ГОСТ 12730.5-84 "Бетоны.Методы определения водонепроницаемости":

ГОСТ 24452-80 "Бетоны. Методы определения призменной прочности, мощуля упругости и коэффициента Пуассона";

ГОСТ 10060—87 "Бетоны. Методы определения морозостойности";

ГОСТ 26134-84 "Бетоны. Ультразвуковой метод определения морозостойкости":

ГОСТ I3015— 75^{XX} "Изделия железобетонные и бетоные. Общие технические требования";

ГОСТ 13015.0— 83^{x} "Конструкции и изделия бетонные и железобетонные.Общие технические требования";

ГОСТ I3015.3-81^х "Конструкции и изделия бетонные и железобетонные.Документ о качестве":

ГОСТ I3015.4-84 "Конструкции и изделия бетонные и железобетонные сборные. Правила транспортирования и хранения";

ГОСТ I3015.I-84^х "Конструкции и изделия бетонные и железобетонные сборные. Правила приемки";

ГОСТ 13015.2-81^х "Конструкции и изделия бетонные и железобетонные сборные.Правила маркировки";

ГОСТ 14098-85 "Соединения сварные арматуры и закладных изделий железобетонных конструкций. Типы, конструкция и размеры";

ГОСТ 23858-79 "Соединения сварные стыковые и тавровые арматуры железобетоных конструкций. Ультразвуковые методы контроля качества. Правила приемки";

СНиП 3.09.01-85 "Производство сфорных железобетонных кон-

- 2.2. Плиты полжны изготовляться в соответствии с требопаниями технических условий, приведенными в ГОСТ 27108-86, настоящих указаний и рабочих чертем ей данного выпуска.
- 2.3. Плиты изготавливаются в с тальных формах, удовлетворямиих требованиям ГОСТ 25781-83. С ведения о формах приведены в выпуске О настоящей серии.
- 2.4. При изготовлении межколонных и пролетных плит пли зданий со слабо-и среднеагрессивными средами обязательно выполнение специальных требований, указанных в проекте конкретного здания.
- 2.5. Плоские арматурные сетки и каркасы следует изготовлять при помощи контактной точечной сварки по ГОСТ 14098-85 /тип сварки КІ-Кт/. При этом, сварже подлежат все места пересечения стержней.

Тавровые соединения анкерных стержней с пластинами следует выполнять под слоем флюса.

Электродуговая сварка элементов из сортового проката друг с другом производится электродами типа 342, 346 или 342A, 346A. Сварка арматурных стержней из стали класса А-I с сортовым про-катом производится электродами 342, 3 46,342A, 346A, а стержни из стали класса А-U с сортовым прожатом— электродами типа 342A, 346A, 350A. Выбор типа электродов из числа перечисленных для каждого класса стали производится на основании указаний СН 393-78 (раздел 2).

Электроды следует применять по ГОСТ 9466-75 и ГОСТ 9467-75. Размеры сварных швов должны соответствовать требованиям ГОСТ 14098-85 и ГОСТ 5264-80. 2.6. Монтажние петли следует изготовлять из горячекатаной арматурной стали класса A-I марок ВСтЗсп2 и ВСтЗпс2 и класса Ac-II марки IOIT.

В случае, если возможен монтаж плит при расчетной зимней температуре ниже минус 40° С, для монтажных петель не допускается применять сталь марки BCTSnc2.

- 2.7. Закладние изделия плит, предназначенных для эксплуатации в зданиях со слабо— и среднеагрессивной газообразной средой, должны быть защищены от коррозии в соответствии с требо ваниями СНиП 2.03.II—85 и указаниями, приведенными в проекте зпания.
- 2.8. Межколонные плиты армируются отдельными арматурными изделиями в следующей последовательности:
 - укладивается нижняя сетка ;
 - в предварительно напряженных плитах устанавливается предварительно напрягаемая арматура;
- устанавливаются закладные изделия МН15, плоские каркасы КР1...КР9, отдельные стержни поз. 12...16 и свариваются между собой в соответствии с чертежами, приведенными в данном выпуске;
- устанавливаются боковые сетки С 54...С56, привязываются вязальной проволокой к нижней сетке :
- устанавливаются закладные изделия, предназначенные для соединения межколонной плиты с пролетной, МН 16...МН25;
- устанавливается монтажные петли МН 26, МН 27 по чертежу, приведенному на листе I.420.I-25.4-4;
 - устанавливаются верхние сетки;
- устанавливаются заклацные изделия МНІ...МНІО, предназначенные для соединения межколонных плит с капителью.

Изделия МН I...МН IO должны особо тщательно и жестко закрепляться на форме, а допуски при установке этих изделий должны быть не более \pm I мм.

Пролетные плиты армируются о тдельными арматурными изделиями в следующей последовательно сти

- устанавливается нижняя сет ка ;
- устанавливается предварите льно напрягаемая арматура;
- устанавливаются боковые се тки С57 и привязываются вязальной проволокой к нижней сет ке;
 - устанавливаются монтажные плетли МН 26;
- устанавливаются закладние изделия МН II...МН I4 и привязываются вязальной проволокой к бюковым и нижним сеткам отдельными арматурными стержнями, которые затем привариваются к закладному изделию верхним одностюронним швом;
 - устанавливается верхняя сетка.

Закладние изделия устанавливаются с особой тщательностью и фиксируются на форме. Фиксация закладных изделий к опалубке производится с помощью фиксаторов, разработанных институтом Гипростроммаш Минстройдормаша / шифр 2892 "Оптимальные способы фиксации в опалубочных формах стальных закладных деталей типовых железобетонных конструкций"/.

Фиксация положения арматурных изделий и обеспечение требуемой толщини защитного слоя обеспечиваются применением пластмассовых фиксаторов или фиксаторов-прокладок из цементно-песчаного бетона. Применение стальных фиксаторов не допускается.

Допускаемые отклонения толщины защитного слоя для рабочей арматуры не должны превышать + 3 мм.

- 2.9. Внемку конструкций из опалубки разрешается производить за монтажные петли после достижения бетоном 70% проектной прочности.
- 2.10. Технические условия на изготовление плит следует принимать по ГОСТ27108-86 "Конструкции каркаса железобетонные для многоэтажных зданий с безбалочными перекритиями. Технические условия". с учетом приведенных ниже пополнений, относящихся к предварительно напряженным плитам длиной 6,0 м.

Изготовление предварительно напряженных плит следует производить в стальных силовых формах, рассчитанных на восприятие усилий натяжения напрягаемой арматуры.

Напрягаемая стегжневая арматура должна иметь по концам временние концевие анкеры для закрепления натянутой арматуры на упорах форм.

2.II. Натяжение напрягаемой арматуры классов A-Шв, A-IV и Ат-ІУК осуществляется электротермическим или механическим способами, с передачей усилий натяжения на упоры формы.

Значения принятых в расчетах предельных величин предварительного напряжения / 6 sp / допустимых отклонений / \pm P/ и усилий натяжения механическим способом напрягаемых стержней приведены в табл. І.

Контроль нам яжения арматуры должен осуществляться в соответствии с ГОСТ 22362-77.Величины напряжений /бсоп / в напрягаемой арматуре, контролируемые по окончании натяжения, принимаются равными величине предельных величин предварительного напряжения / б 5 р / за вычетом потерь от деформации анкеров, расположенных у натяжных устройств.

Таблица І

	•		натіяжения		
Класс арма-	Диаметр: стержня	Механический		Электротер	мический
тўры	. MM	предвар. + Р	Усилие натля. стержня. кН/тс/	: Величина предвар. : напряж. б _{sp} МПа :/кгс/см2/	:Допусти— мое откло- нение ± Р, :МПа :/кгс/см2/
AШв	I4 I6 I8 20 22 25 28	520/5200/ 26/260/ II	80/83,0/ 104/10,4/ 132/13,2/ 163/16,3/ 198/19,8/ 255/25,5/ 320//32,0/	460/4600/	90/900/
А—ІУ	I4 I6 I8 20 22 25 28	570/5700/ 28/280 / I	37/8,7/ 114//11,4/ 145//14,5/ 179//17,9/ 217//21,7/ 280//28,0/ 351//35,1/	510/5100/	90/900/

- 2.12. Отпуск натяжения арматуры необходимо производить плавно, применяя специальные приспособления или предварительный разогрев концевых участков стержней с последующей обрезкой их газовой или электросваркой.
- 2.13. Передаточная прочность бетгона R вр. при которой производится отпуск натяжения арматуры, должна быть не менее 70% от класса бетона по прочности на сжатие.

Поставка плит потребителю должна производиться после достижения бетоном отпускной прочности, равной нормируемой передаточной прочности в теплий период года и 85% от класса бетона по прочности на сжатие в холодний период года. Продолжительность теплого и холодного периодов принята по ГОСТ 13015.0—83.

- 2.14. Конци напрягаемой арматуры не должны выступать за торец плиты более чем на 5мм и они должны быть защищены слоем плотного цементно-песчаного раствора толщиной 10 мм.
- 2.15. Точность изготовления, качество поверхностей и внешний вид плит должны отвечать требованиям ГОСТ 27108-86.
- 2.16. Разница выгибов двух соседних предварительно напряженных плит не должна превышать 10 мм.
- 2.17. При изготовлении железобетонных межколонных и пролетных плит должен бить обеспечен систематический пооперационный технологический контроль на всех стадиях производства, а также систематический контроль прочности бетона и арматуры.

Испитания соединений арматурных и закладных изделий и оценку их качества следует производить по ГОСТ 10922-75. Арматурные и закладные изделия должны быть приняты техническим контролем предприятия-изготовителя в соответствии с ГОСТ 13015.1-81.

Значение нормируемой отпускной прочности бетона межколонной или пролетной плиты безбалочной конструкции должно соответствовать указанной в рабочих чертежах на конкретное здание и в заказе на изготовление конструкций согласно ГОСТ 13015.0-83^x и ГССТ 27108-86. Оценка качества сборных железобетонных изделий производится в соответствии с требованиями ГОСТ $13015.1-81^X$ и ГОСТ 27108-86.

В овязи с тем, что испытания нагружением элементов безбалочной конструкции в условиях завода-изготовителя весьма затруднены, текущий приемочный контроль качества изготовления плит в соответствии с п.10 ГОСТ 13015.1-81^X / изменение № 2/ следует производить с использованием неразрушающих методов с учетом требований указанных ГОСТов, а также требований ГОСТ 13015.0-83^X и ГОСТ 18105-86.

Каждую партию межколонных и пролетных плит, принятую техническим контролем предприятия—изготовителя, следует сопровождать документом о качестве в ссоответствии с ГОСТ 13015.3-81^X.

Документ о качестве должен храниться на строительной площадке, а по окончании строительства— у заказчика. Дубликат этого документа—на предприятии—изготовителе.

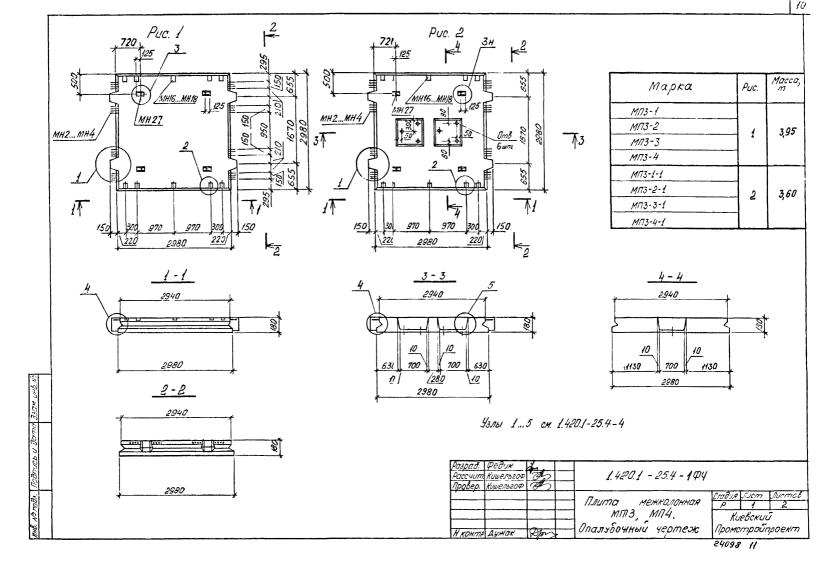
- Указания по приемке, хранению и транспортировке межколонных и пролетных плит
- 3.1.Приемка межколонных и пролетных плит должна производиться в соответствии с требо ваниями ГОСТ 13015—75^{XX}. ГОСТ 13015.1-81^X. ГОСТ 27108—86 и рабочими чертежами изделий.
- 3.2. Подъем межколонных и пролетных плит должен производиться в соответствии с требс ваниями СНиП 3.03.01-87, а транспортирование и хранение в соответствии с ГОСТ I3015.4-84.

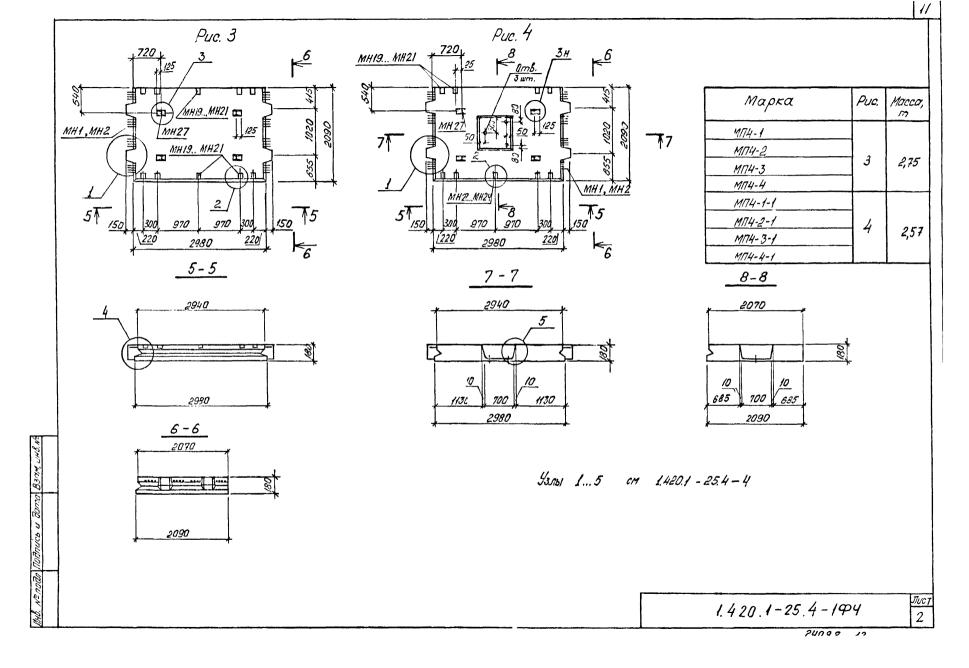
3.3. Готовне железобетонные изделия должны храниться в штабелях так, чтобы исключалась возможность деформации изделий, а также загрязнения и повреждения лицевых поверхностей. Во избежание повреждений изделий плит следует оставлять между смежными штабелями зазоры не менее 0,2м. Плиты следует размещать так, чтобы их заводская маркировка читалась со стороны прохода или проезда.

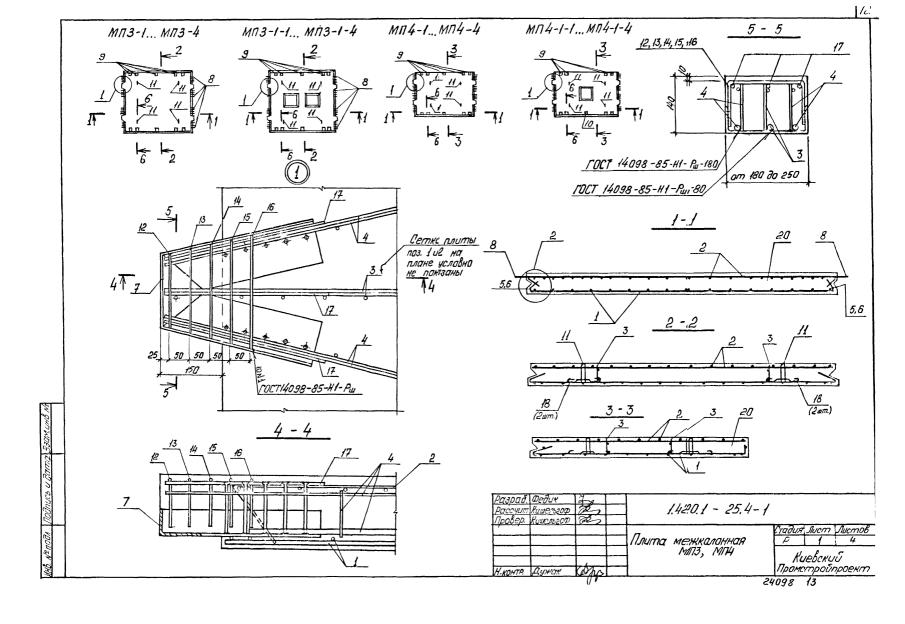
Плити следует укладивать в штабели плашмя, по высоте не более 6—8 ярусов, в зависимости от качества основания склада. Каждое изделие при хранении должно опираться на деревянные подкладки по предварительно выровненному и уплотненному грунту / основанию/.

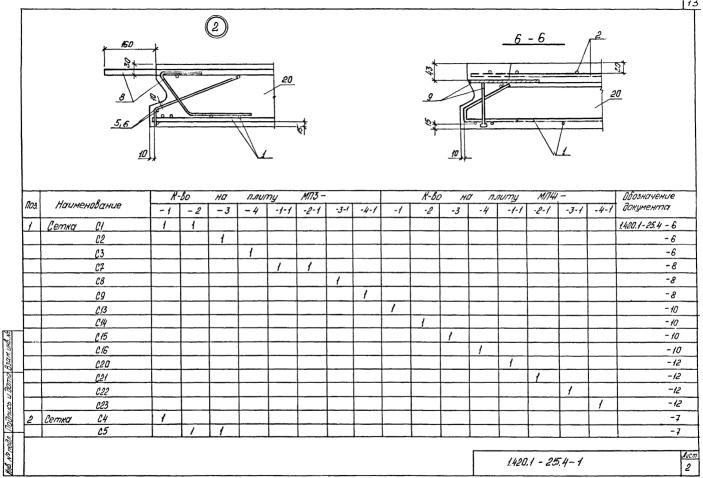
В зимнее время не допускается укладывать изделия на подкладки, покрытие льдом.

В жаркое время года изделия рекомендуется поливать водой не реже двух раз в сутки и покрывать мокрой рогожой.


3.4. При перевозке межколонных и пролетных плит автомобильным транспортом следует учитывать требования и рекомендации "Руководства по перевозке автомобильным транспортом
строительных конструкций" / Москва, Стройиздат, 1980 г/.

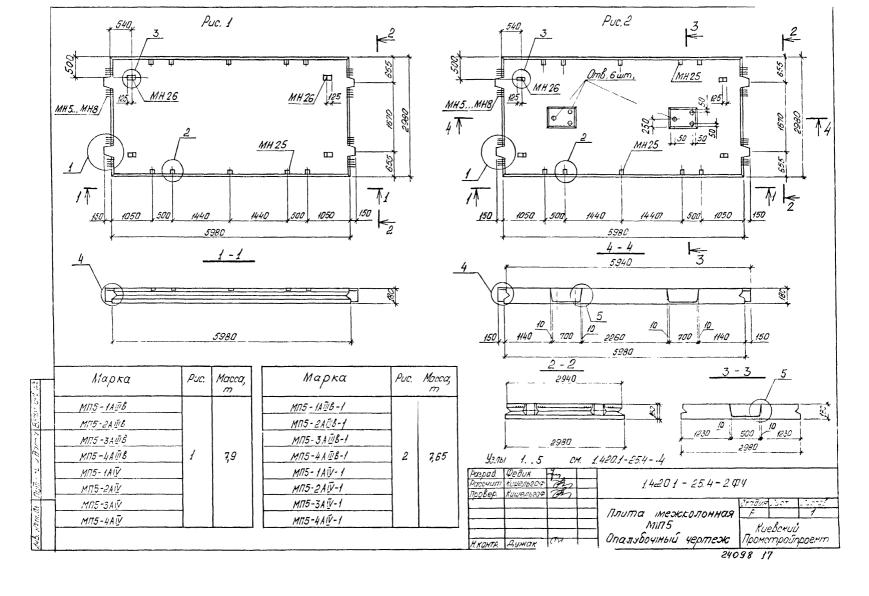

Автотранспорт должен иметь необходимые приспособления, обеспечивающие устойчивое положение изделий при перевозке.

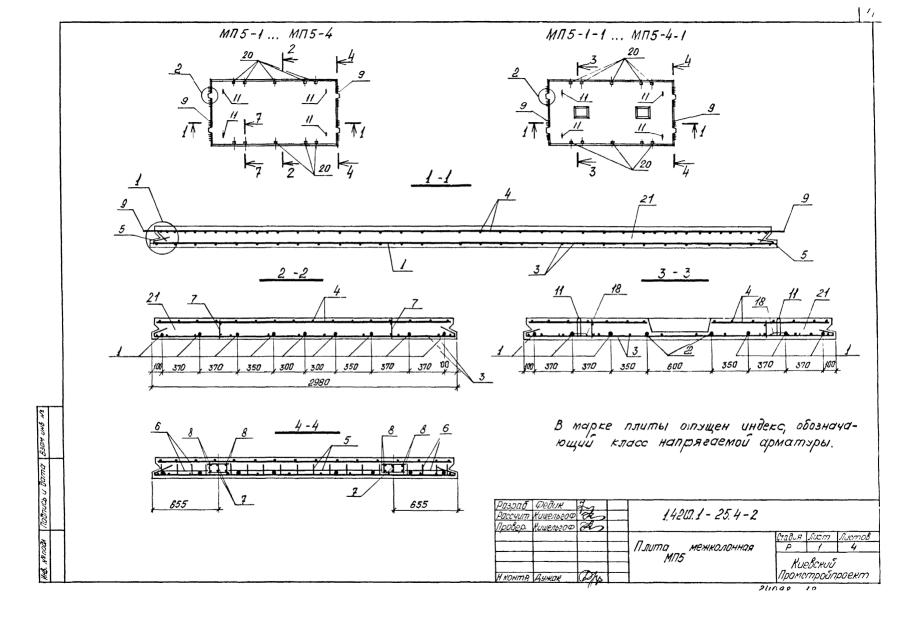

При перевозке межколонных и пролетных плит по железной дороге используются безбортовые платформы.

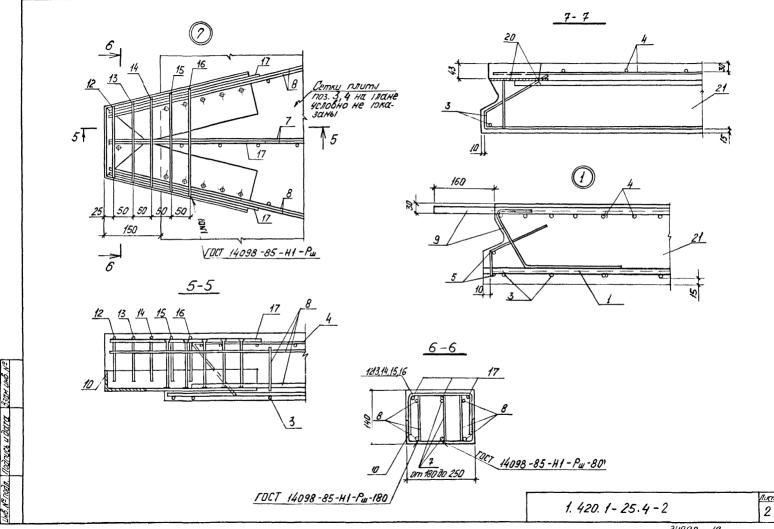

Перевозку межколонных и пролетных плит железнодорожным транспортом следует производить в соответствии с требования— ми и рекомендациями "Правил перевозки грузов" / Москва, издательство "Транспорт", МПС, 1985г/.

Проект перевозки плит железнодорожным транспортом и схемы закрепления плит на платформах должны быть согласованы с соответствующими организациями МПС.

703.	Наименование	K-	во	HO	חטונת		M/73	_		/	Y-80	HO	12/1	umy	M/714	/-		Обозночение
103.	TOUMERODURGE	-/	2	-3	-4	-1-1	-2-1	-31	-4-1	-1	-2	-3	-4	-1-1	-2-1'	-3-1	4-1	<i>документа</i>
2	Сетка Св		<u> </u>		1													1.420.1-25.4-7
	CIQ					1_												-9
	C11			<u> </u>			1	1										- 9
	C12	<u> </u>																- 9
	C17		<u> </u>	<u> </u>						1								-11
	C18	<u> </u>									1	1						-11
	C19	<u> </u>	J	<u> </u>									1					-11
	C24		<u> </u>											1				-13
	C25		ļ	ļ											1	1		-13
	C26		<u> </u>														1	- /3
3	Каркас Кр1	2_	ļ	ļ		2_				2				2				-25
	Hp2		2	2			2	2			2	2			2	2		-25
	<i>К</i> р3	ļ	ļ	<u> </u>	2			ļ	2				2				2	-25
4	Каркас Кр7	8_	1			8				8				8				-27
	Нр8		8	8	ļ	ļ	8	8			8	8			8	В		-27
	Кр9				8				8				8				8	-27
5	Сетка С55			<u> </u>	<u> </u>				L	2	2	2	2	2	2	2	2	-24
	C56	2	2	2	2	2	2_	2	2									-24
6	Сетка С54	4	4	4_	4	4	4	4	4	2	2	2	2	2	2	2	2	- 24
7	<i>Изделие закладное МНА</i>		4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	-34
8	<i>Изделие закладное МН1</i>		<u> </u>	 		-	ļ			32	32	32	<u> </u>	32	32	32		-30
	MH2	32	32	ļ	ļ	32	32	ļ		ļ	 		32				32	-30
	MH3	-		32	ļ		ļ	3!		ļ	ļ		 					-30
	MH4				32	ļ	<u> </u>		32	<u> </u>				ļ				-30
9	Изделие закладное МН16	5 10				10					<u> </u>			ļ				-3:
	MHT	7	10	10	<u> </u>	<u> </u>	10	14		ļ								-3:
L	MHIL	?			10	<u> </u>	L	<u> </u>	10	<u> </u>								-35
l	MHI	9		1	1	1	1			10	1	1		8	1			-30


1.420.1 - 25.4 - 1

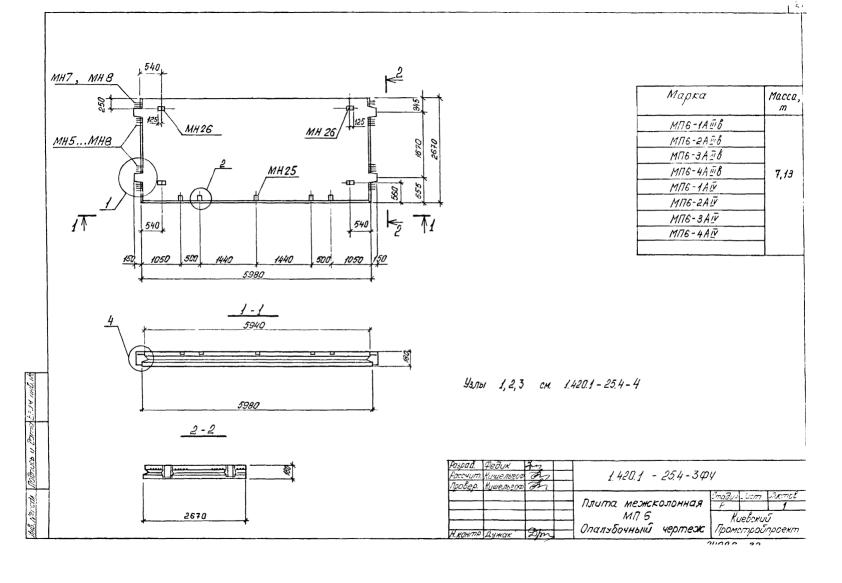

<i>1703</i> ,	Наименование	K-BO	HO	חתו	עוחון	MIT	3 –			K	-80	HO	MUI	אוד	M1741-			<i>Обозначение</i>
1100.	пиоменишище	-1	-2	-3	-4	-1-1	-2-1	-:-1	-4-1	-1	اع-	-3	-4	-1-1	-2-:1	-3-1	4-4-1	докуме н та
9	Изделие закладное МН20										10	10			8	8		1.420.1-25.4-36
	MH21												10				8	-36
10	Изделие закладное МН22													1				-37
	MH23														1	1		-37
	MH24																1	-37
#	<i>Изделие закладное МН27</i>	4	4	_4	4	4	4		4	4	4	4	4	4	4	4	4	-39
12	\$10AI, l=375; 0,23 KT	4	4	4	4	4	_4_	4	4	4	4	4	4	4	4	4	4	-29
13	10AI, l=400; 0,25 Kr	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	-29
14	10AI, l=425; 0,26Kr	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	-29
15	10AI, C=450; 0,28KT	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	-29
16	10AI, C=475; 0,29 KT	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	-29
17	10AU, C = 400; 0,25Kr	12	12	12	12	12	12	R	12	12	12	12	12	12	12	12	12	без черт.
18	BAI, L = 500; 0,2xr	<i>ઉ</i>	8	8	8	8	8	ó	8	8	8	8	8	8	8	8	8	1.420.1-25.4-29
20	Бетан класса 825,н3	1.58				1,44				1,10				1,03				
	Бетон класса ВЗО,м3	-,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1,58	1,58		1 11	1,44	1,44		.,,,	1,10	1,10			1,013	1,03		
	Бетон класса ВЗ5, м3				1,58				1,44				1,10		<u> </u>		1,03	

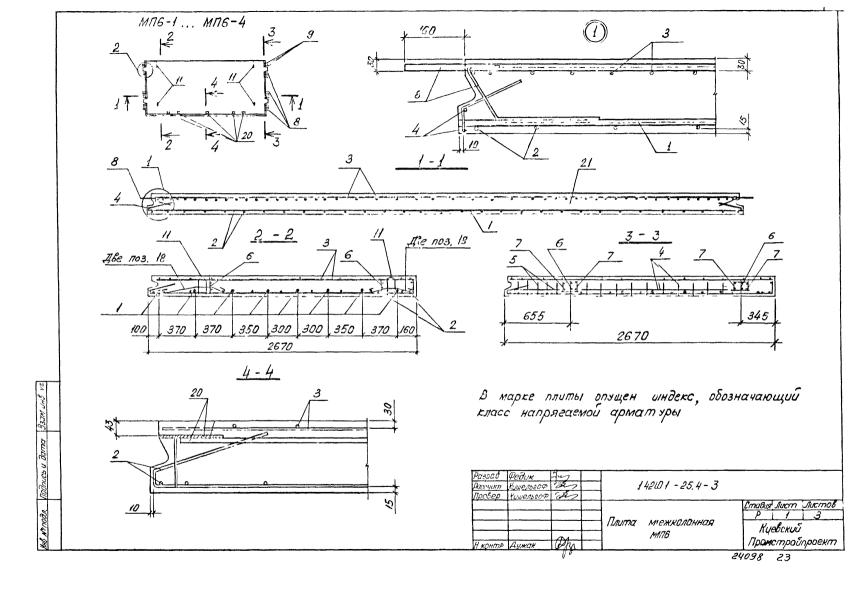

Ярматэра класса Я-I и Я-Ш по ГОСТ 5781-82

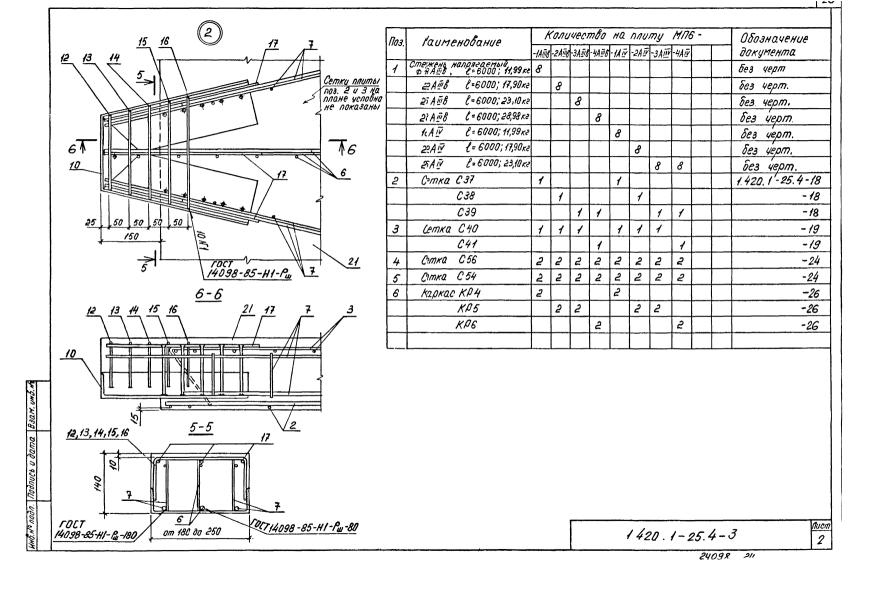
1,420:1-25.4-1

10c1 4

703. 1 c		1 1								14 M		,						Obosha yehue
1 0			2.41118	-3 AMB	-441118	-164	2018	-300	-4AIV	-1A981	-18001	-341161	-4A118-1	-1818-1	2417-1	-3AIV-1	-48·V-1	BOKYHEHMA
-	Стерэкень напрягаемый		<u> </u>															без чест
	\$ 14AIIB, L=6000; 7,25Kr	9								6								вез черт.
\bot	16A1116; l=6000; 9,47Kr		9								6							без черт,
	20.4 iii.b; l=6000; 14,80 Kr			9								6						без чеот
	22A mil &: l=6000: 17,90 Kr				9								6					без черт.
	14AIV: L=6000, 7,25KT					9								6				без черт.
	16AIV: L=6000; 9,47Kr						9								6			без чест,
	20 AIF, L=6000; 14,80Kr							9	9							6	6	без черт.
2 9	\$ 16A1116; l=6000. 9,47Kr									2								без черт.
	18AUTB - C=6000 11,99Kr										2							อ๊ยз черт
\top	22AUTS; L=6000; 17,90KF											2						дез черт.
	25.A <u>m</u> 8: l=6000: 23,10 kg												2					без чеот.
	16AIV; L=6000 9,47KT													2				без черт.
	18AIK: 6=6000; H,99Kr												ļ		2			без черт
	22AIT 6-6000 17,90KT															2	2	без черт.
3 (Cemra C27	1				1		L										1.4201-25.4-14
	C28		1				1											- 14
	C29		l	1	1			1	1									- 14
	C 32									1				1				- 15
	C 33										1				1			- 15
	C 34											1	1			1	1	-15
4 6	Cemra C30	1	1	1		1	1	1										-16
	C31				1				1									- 16
	C 35									1	1	1		1	1	1		-17
	C36												1				1	-17

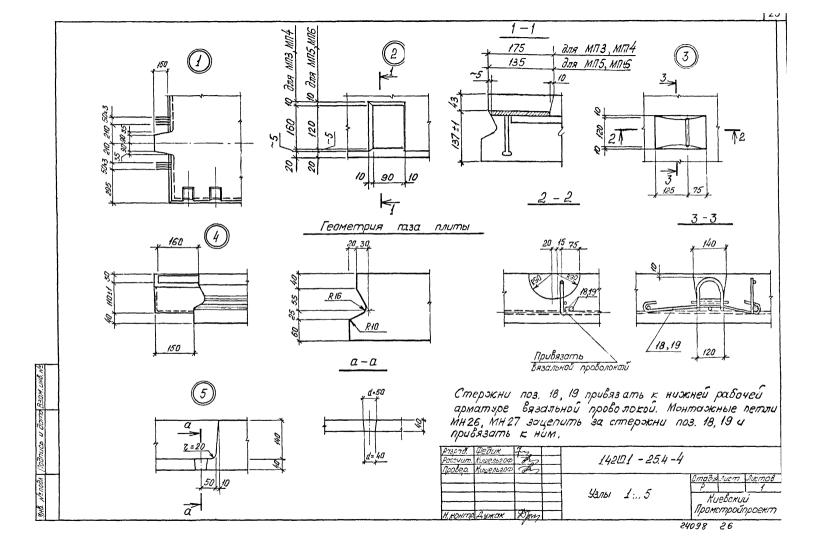

1.420.1 - 25.4 - 2

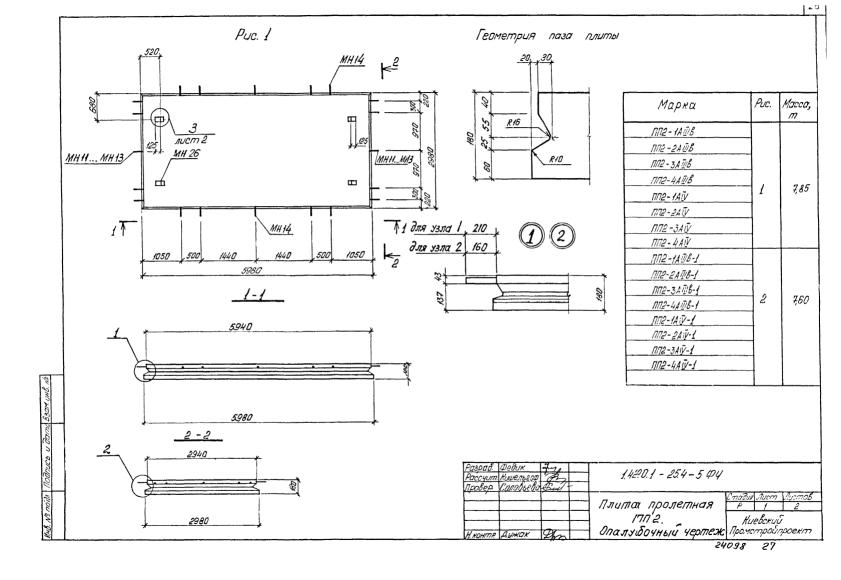

2 Juan 3

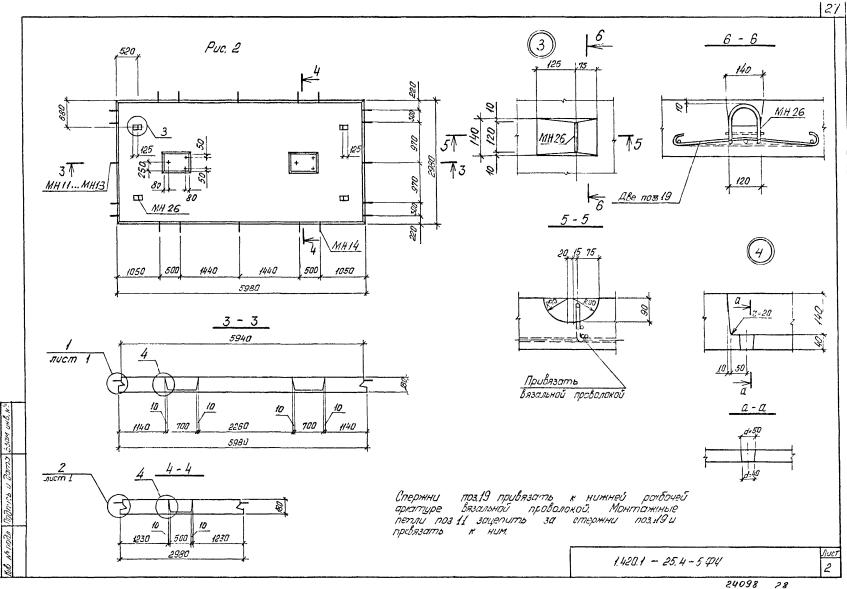

UNS Nº
взан
u dara
MODINGS
Produ

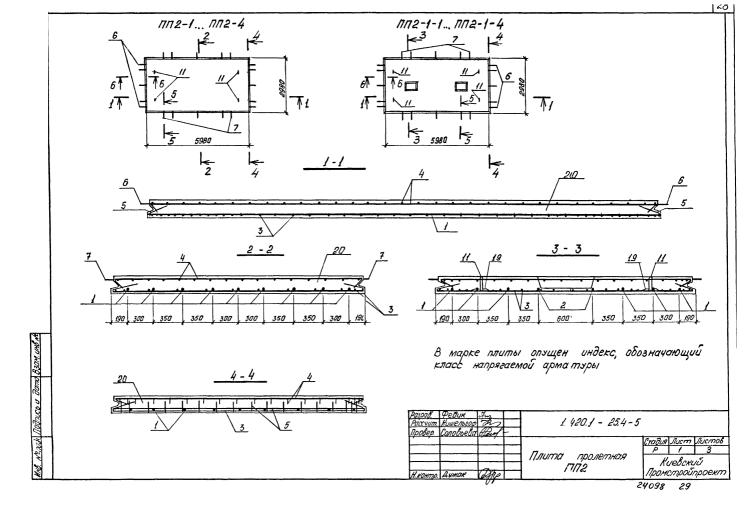
,	11 2				KO	חעינו	cm8o	Нα	nsul	ny M	75-							Обозначение
103.	Наименование	-14118	-241118	-3AIII8	-4AIIIB	-1AIV	-ZAIV	BAIV	-4AIV	-1A_18-1	-2A1118-1	-3AUB-1	-4A1118.1	-1411-1	-2AIV-1	-33AIV-1	-4AIV-1	Вокумента
5	Сетка С56	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	1.420.1-25.4-24
6	Cemra C54	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	- 24
7	Καρκας ΚΡ4	2				2		<u> </u>		2				2				-26
	KP5		2	2			2	2			2	2			2	2		-26
	KP6				2				2				2				2	-26
8	Kapkac KP7	8				8				8				8				-27
	KP8		8	8			8	8			8	8			8	8		-27
	KP9				8				8				8				8	-27
9	Изделие закладное МН5	32				32				32				32				-31
	MH6		32				32	<u> </u>		<u> </u>	32		<u> </u>		32			-31
	MH7			32				32				32	<u> </u>			32		-31
	MH8				32				32				32				32	-31
10	Изделие закладное МН 15	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	- 34
11	<u>Изделие закладное</u> МН26	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	-39
12	\$10.AI, l=375; 0,23 KT	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	ود
13	10AI; l=400, 0,25Kr	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	-25
14	10AI, l=425; 0,26 Er	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	-29
15	10.71; l=450; 0,28 KT	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	-29
16	10AI; l=475; 0,29KI	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	-29
17	10AIII; &= 400; 0,25 KT	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	без черт.
18	8AI; l=500; 0,2 KT	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	1.420.1-25.4-29
20	<u>Изделие закладное МН25</u>	10	10_	10	10	10	10	10	10	10	10	10	10	10	10	10	10	-38
21	Бетон класса 825, м3	3,2	3,2	3,2		3,2	3,2	3.2		3,1	3,1	3,1		3,1	3,1	3,1		
	Бетон класса В 30, м3		1		3,2	ŀ			3,2		1		3,1	l		1	3,1	

1.420.11 - 25.4 - 2

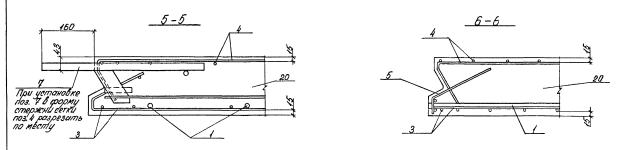


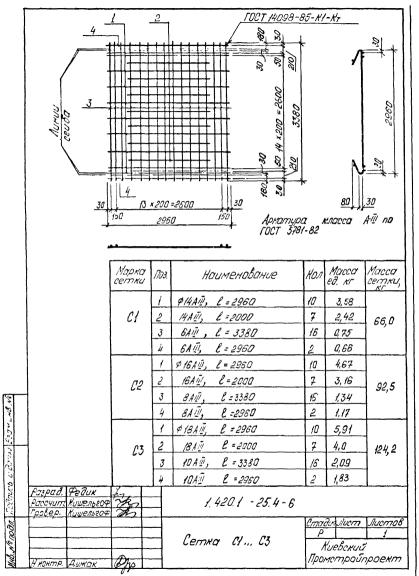

Поз	Наименование	K	014	vecn.	80	HQ 1	nnun	ny	MIT	s -	<i>Тбозначение</i>
1103,	Traumenouanue	-IA!IIB	-2AMB	-3A.116	-4A.III	-1A_IV	-2A_IV	-3AIV	-4A <u>I</u> V		Гокумента
7	Kapkac KP7	8				8					1.420.1-25.4-27
	KP8		8	8			8	8			-27
	KD9				8				8		-27
8	Изделие закладное МН5	24				24					-3/
	MH6	<u> </u>	24				24				-3/
	MH7			24				24			-3/
	MH8			L	24				24		-3/
9	Иэделие закладноеМН7	6				6					-31
	мн8		6	6	6		6	6	6		-3/
10	Изделие закладно е МН 15	4	4	4	4	4	4	4	4		-34
11	Изделие закладное МН26	4	4	4	4	4	4	4	4		-39
12	Ø10 AI. €= 375; 0,23 Ke	4	4	4	4	4	4	4	4		- 29
13	10AI, 8=400; 0,25 KZ	4	4	4	4	4	4	4	4		- 29
14	10AI, 8=425; 0,26 KZ	4	4	4	4	4	4	4	4		-29
15	10AI, 8=450; 0,28 KZ	4	4	4	4	4	4	4	4		-29
16	10AI, l=475; 0,29 Ke	4	4	4	4	4	4	4	4		- 29
17	10ATI, C=400; 0,25 x2	12	12	12	12	12	12	12	12		из черт.
18	8AI, l=500; 0,20 K2	8	8	8	8	8	8	8	8		1.420.1-25.4-29
20	Изделие закладное МН25	5	5	5	5	5	5	5	5		-38
	5										ļ
21		2,85	2,85				2,85	2,85			
	Бетан класса ВЗО, м3		1		2,85			ŀ	2,85		1

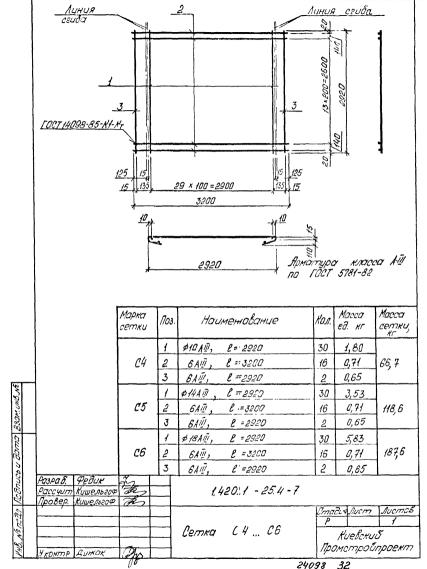

инб. н. подп. подпись и дата Взам. инб. н.

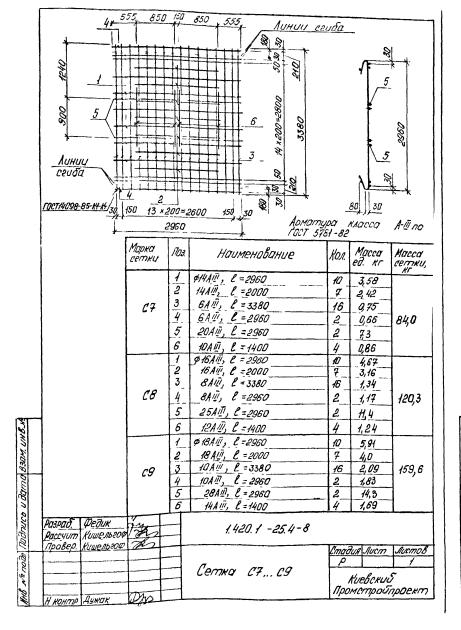

1.420.1-25.4-3

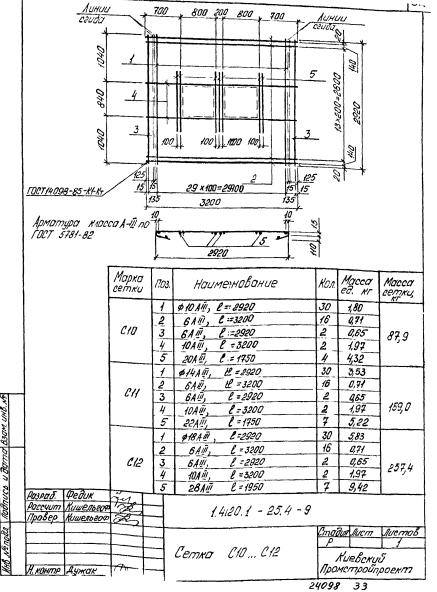
Лист З

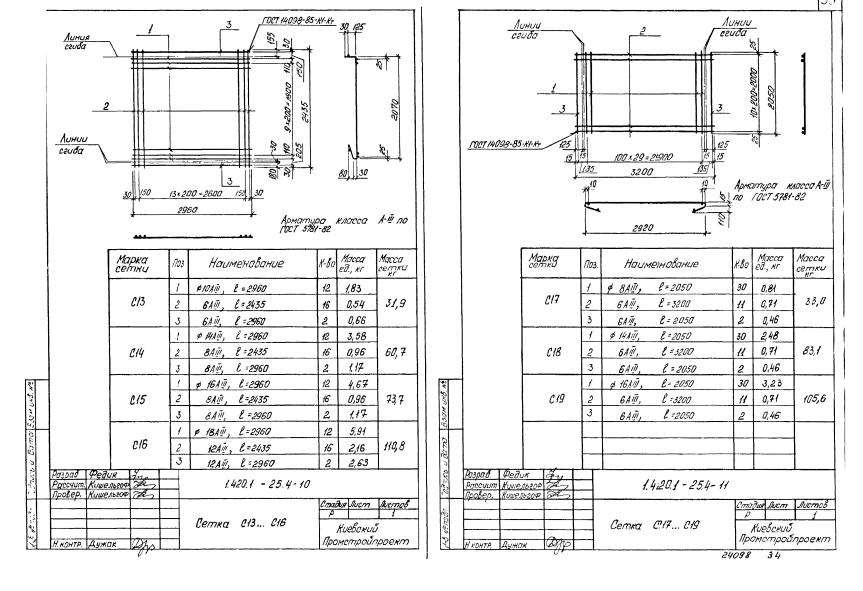


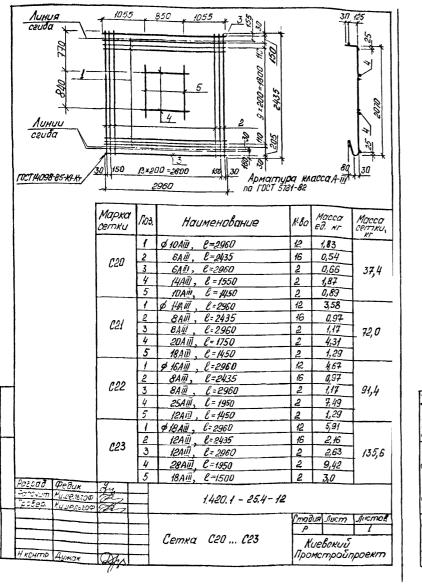


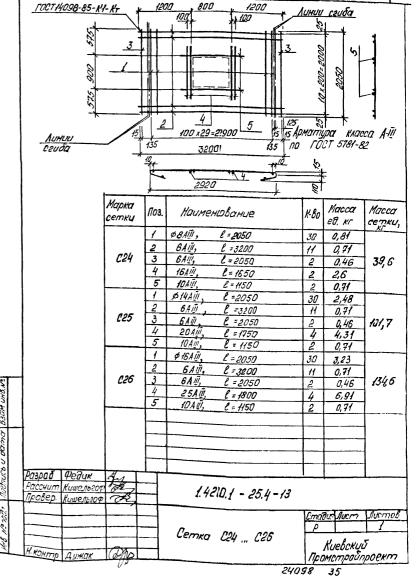


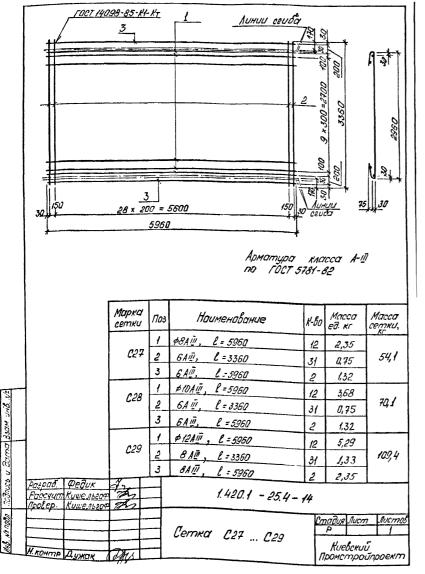

<i>Поз.</i>	Наименование						משעעעע											Обозначение
////3.	Haumehooahue	-1A 🗆 B	-2AŪB	-3A W B	-4A !! B	-/AIY	-2A II	-3A IP	-4ALP	-1A 🗓 B-1	-21 mB-1	-3A <u>11</u> 8-1	-4ABB-1	-/AUP-/	-PAIP-1	-3MIP-1	-4AIY-1	Вокумента
1	Стержень напрягаемый																	без черт.
	\$16AUB, l=6000; 9,47KP	9								6								bes yepm.
	18A EB, L=6000, 11,99×1		g								6							без черт.
	22A TB, l=6000; 17,90KT			g								6						без чергп.
	25 A III B, l=6000; 23,10×17				g								6					без черт.
	16ALT, 6=6000; 9,47KT					9								6_				без чергп.
	18AIF, L=6000; 11,99KP						g			L					6			без черт.
	22AV, L=6000; 17,90KT							9		l						6		без церт.
	25AIF, L=6000; 23,10KP				L				g								6	без черт.
2	\$18A IB, L= 8000; 11,99x1									2								без черт.
	20A 116, l=6000; 14,80 x1		<u> </u>								2							без черт,
	25 A E B, L= 6000; 23,10 KT		<u></u>								<u> </u>	2	ļ					без черт
	28A II b, L=6000; 28,98×1		<u> </u>	ļ									2					без черт.
	18 A IV, C=6000; 11.99KT			L		 							L	2				без церт.
	20 NIV, L=6000; 14,80 KT												L		2			без черт.
	25 A W. L=6000; 23,10 KT								<u> </u>			<u> </u>				2		без черт.
	28AIV, L=6000; 28,98KI			l	<u> </u>	<u> </u>			<u> </u>		<u> </u>				L	L	2	без черт.

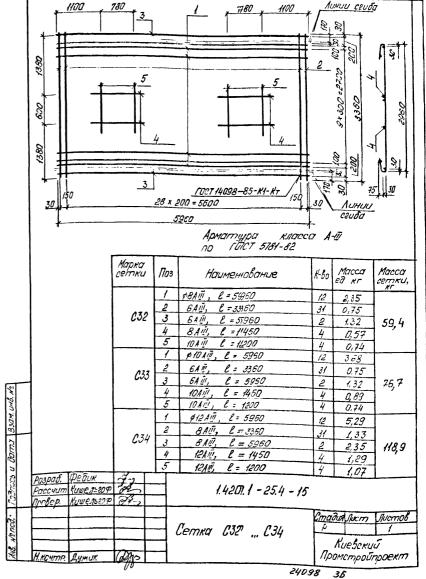

1.420.1-25.4-5

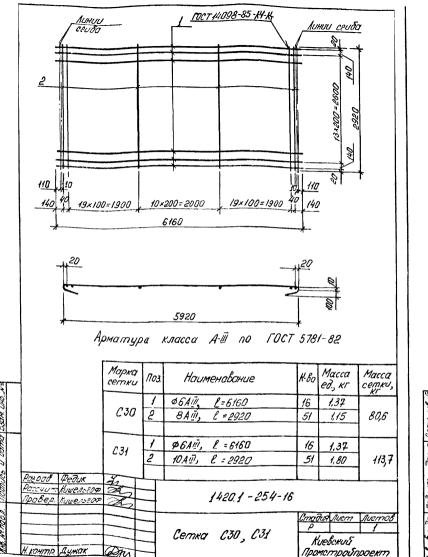

703	Наименование	INTE	01.77	-3A™B	- 1: 4 iii A	14.75	KONU -2AIV	14000	OBO H	a ns	MANA	11/12	7 -	-110 /	01/5/	-3 M I V-1	445.7	Обозначение
		7,400	ZAMO	-OAMD	4 AM D	1/1/11	ZAU	AU	-4 ALF	-1AUU-1	*ZNOU-1	- 3A E-U-1	4AWU-1	7AU -1	ZAU-1	-SMU-1	TWALE-1	BOKYMENITIA
3							-	_										1.420.1-25.4-20
\dashv	C43		-	-,-			1		-,									-20
	C 44			-1	1			<u> </u>						- , -		-		
	£48													-				-22 -22
	<u>C49</u>										1				1	 , 	,	-20
_	C50					,							/			-	-1	
4	Сетка С45	_/				_1_	-,										-	-21
	C46		1															-2: -2:
	C47				1					-								
-	C'51									1						ļ		ج-
	C52						-					/_						-2
	C53												1	<u> </u>			/	-2:
5	Gernka C57	2	2	2	2	2	2	2_	2	2	2	2	2	2	2	2	2	-20
6	<u>Изделие закладное МНН</u>	10				10				10				10				-3,
	MH12		10	10			10	D			10	10			10	110		-32
	MH 13				10				10	<u> </u>	ļ		10				10	-3,
	<i>Цзделие закладное МН 14</i>	10	10	10	10	10	10	0	10	10	10	10	10	10	10	10	10	-3.
	Изделие закладное МН 26	4	4	4_	4_	4	4	,	4	4	4_	4	4	4	4	4_	4	-3
19	\$8AI, 6=700; 0,28 KM	8	8	8	8	8	8	?	8	8	8	8	_8	8	8	88	8_	-2
20	Бетон класса ВЗО, м 3	3,14	3,14	3,14		3,14	3,14	3/4		3,04	3,04	3.04		3,04	3,04	3,004		
	Бептон клосса В 35, м3				3,14				3,14				3,04				3,04	
										L	<u> </u>							

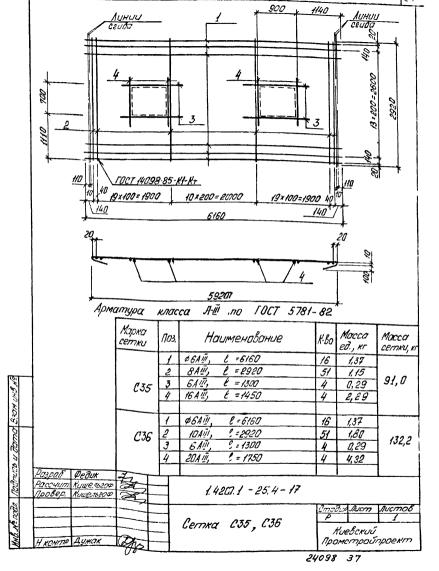


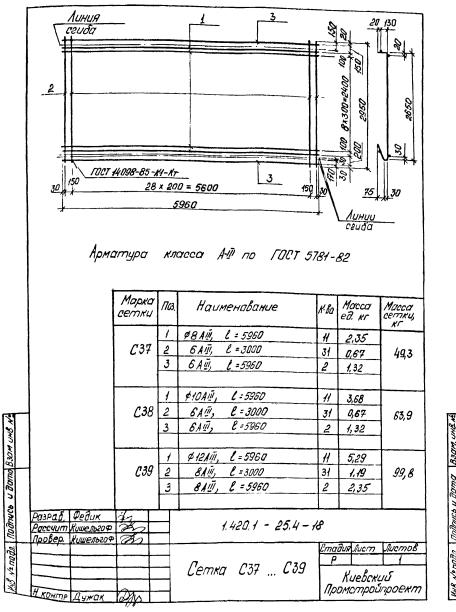


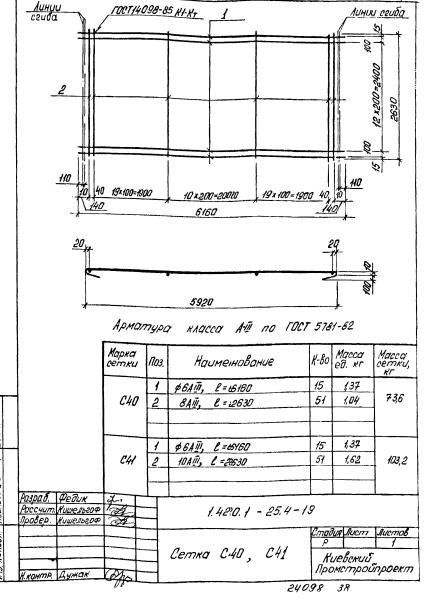


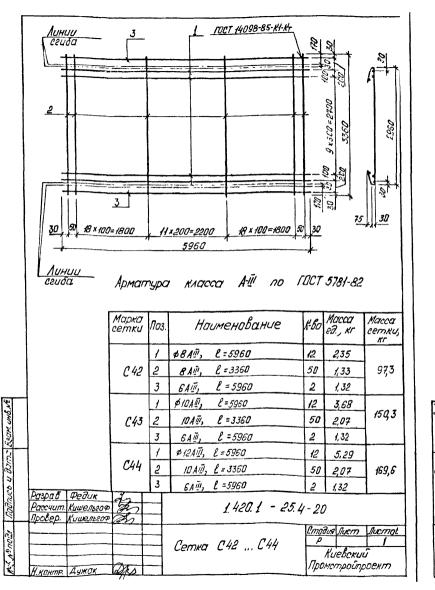


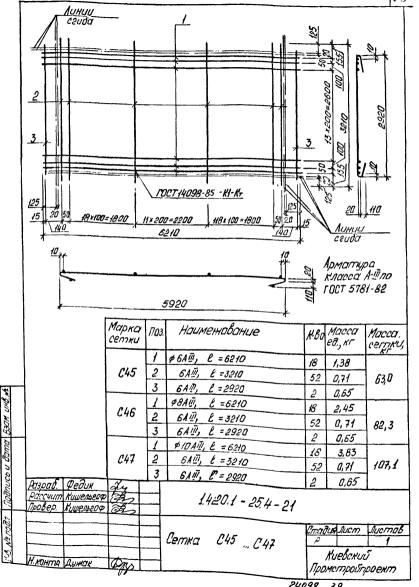


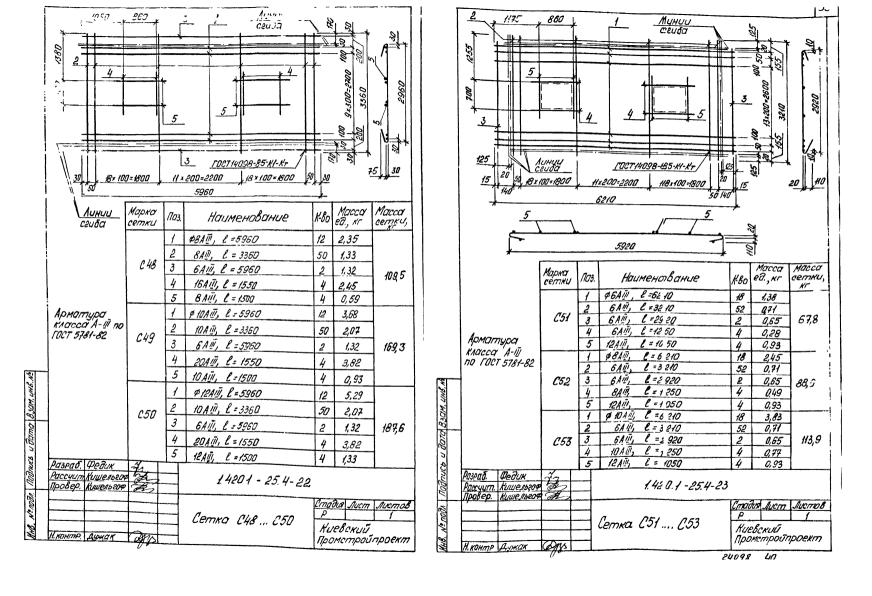


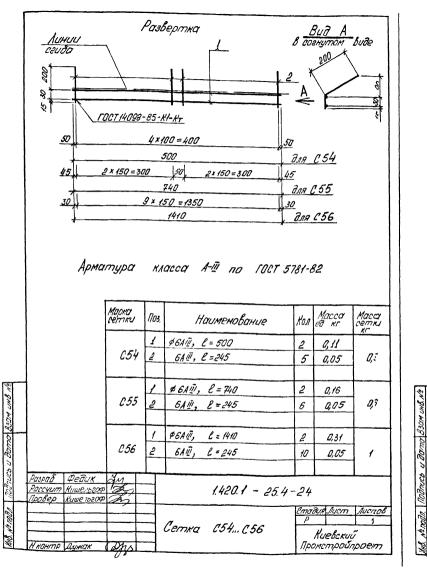


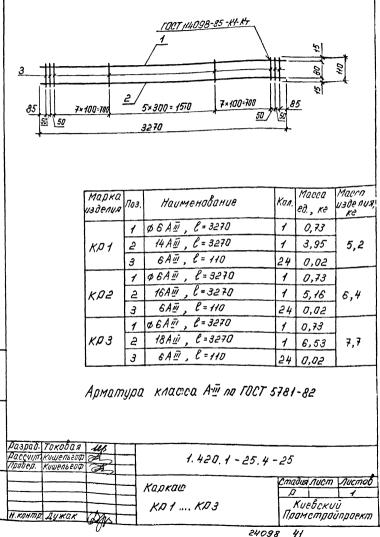


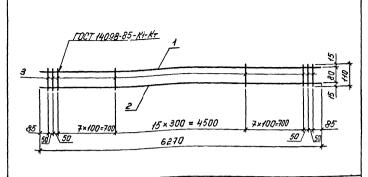


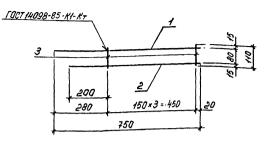






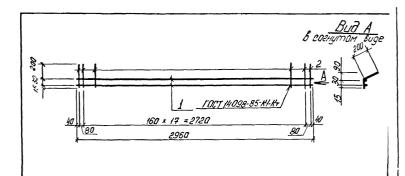






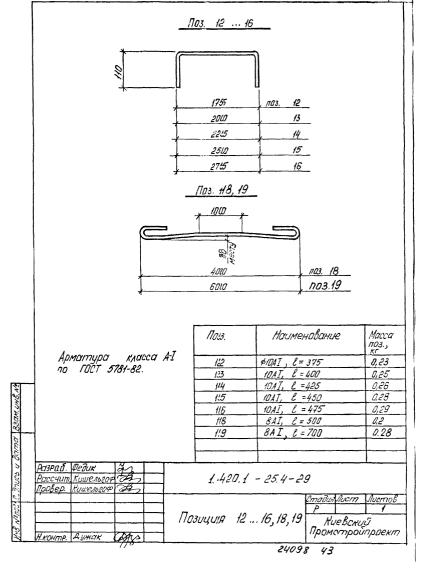
Марка изделия	Поз.	Наименование	Kon.	Macca ed., Ke	Macca usdenu Ke
	1	\$6A !!! , L=6270	1	1,40	
KP4	2	16 A.T., C= 6270	1	9,89	12,0
	3	6A!II, l=110	34	0,02	
	1	\$6 A m. l=6270	1	1,40	
KP5	2	18A III , L=6270	1	12,53	14,6
	3	6A 11, C=110	34	0,02]
	1	Ø6A m, €=6270	1	1,40	
KP6	2	20 A iii , C = 6270	1	15,50	17,6
	3	6 A III , C= 110	34	0,02	1

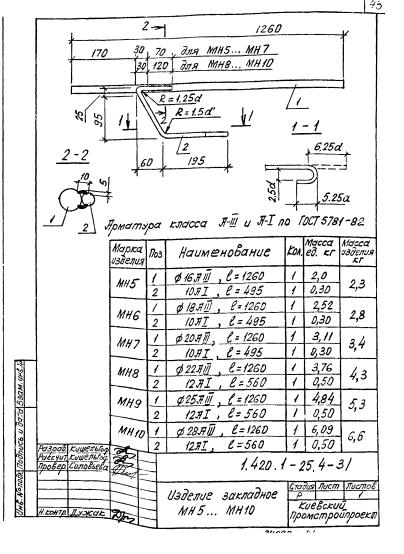
ADMAMUDA KAACCA A-TO NO FOCTS781-82

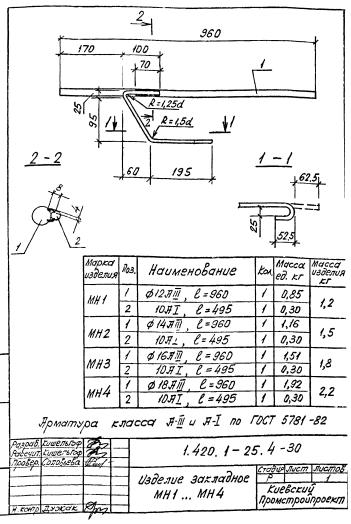

0300			πμΜαν	πιγρα	KNACCU A-M NO TOC	./5701-62
3			_			
	Разраб.	Τοκοδαλ	145			
	Dacquum.	Кишепьгор	The		4	F # 00
_	Mpooepun	KUWENSZOP	do		1.420.1-20	0.4 - 26
	1					Cmadus Auem Auem
	—			\vdash	Kapkac	P
				\vdash	KD 4 KD6	Киевский
1	Н. КОНТО.	Дужак	Bris		/, /X	Прамстрайпраек

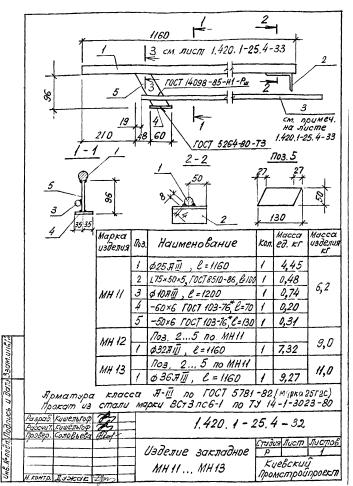
Марка изделия	//o3.	Наименавание	Кол.	Macca ed., ke	Macca usdenua Ke
	1	φ6A ū, l=750	1	0,17	
KP7	2	14 A M, C= 6 70		0,81	1,1
	3	6 A , l=1+10	4	0,02	1 ''
	1	Ø 6A. Ū, l=750	1	0,17	
KP8	وے	16A !!!, l= 670	1	1.11	1,4
	3	6AM, L= 110	4	0,02	1
•	1	Ø 6A™, C=7750	1	0.17	
KP9	ع	18 A™, l=6670	1	1,34	1,6
	3	6Am, l=1110	4	0.02	1

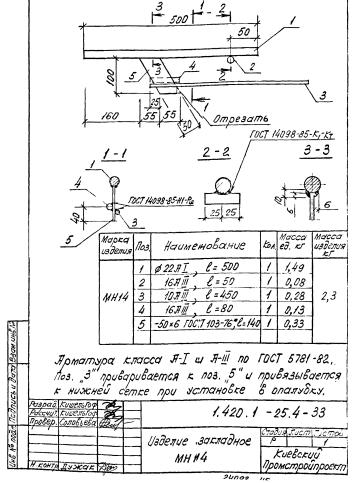
Арматура класса А-ії по ГОСТ 5781-82

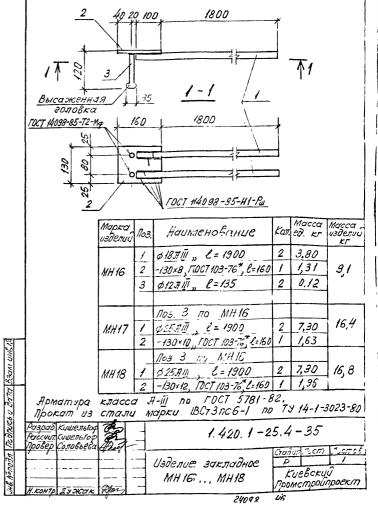

3	Разраб. Токовия ИВ			
	Paccyum Kuwenszap A	1.420.1-25.4-2	7	
		A.V. C.	Cmadus Slucm	Пистов
	Н. контр. Дужак	KD7 KID9	Киевский	_/
	08		Прометрой	праект

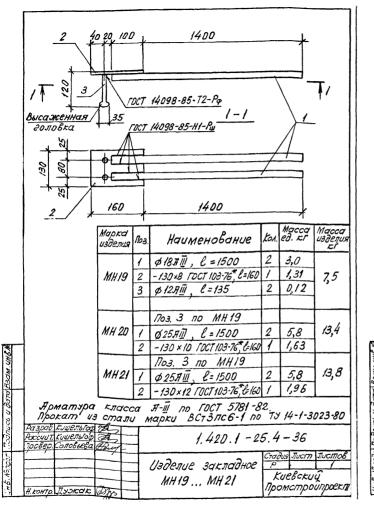


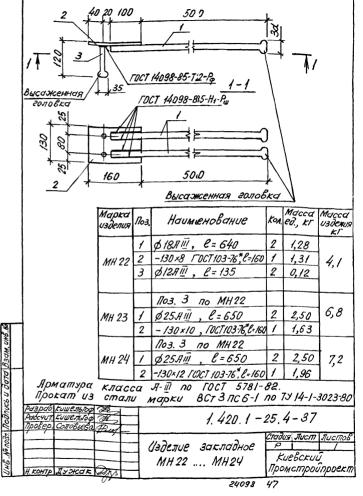

Марка сетки	Поз.	Наименавание	K-80	Масса ед. кг	Масса сегпки,
	1	\$ 6A !!! , L = 2960	2	0,66	
C57	2	6A Ū, l=245	20	0,05	2,3

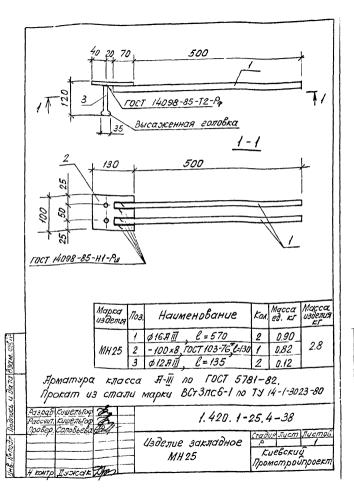

Арматура класса A-<u>i</u>ii по ГОСТ 5781-82

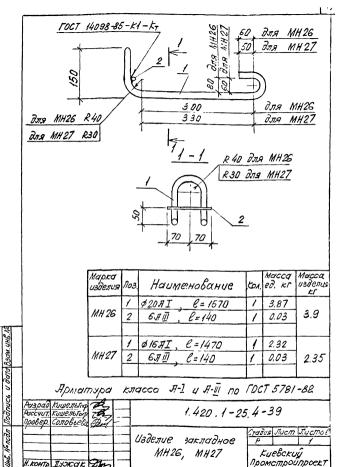

Разрад. Федик фу Рассчит Кишельгот 1420.1 - 25.4 - 28 TOOSED, HUWESSZOP กลสินห ใบเรา ใบเราเอร Cemra C57 KueBckuű Прамстробпраент Н. контр. Дижак











Apmamupa knacca A-1 u A-III no FDCT 5781-82

Разрад Кишельгор В Рассуит Кишельгор В Провер Соловьева Вы 1.420.1-25.4-39 Tradus Juem Juemos Изделие закладное MH26, MH27 KueBokuû Промстройпроект H. KOHTP. ILYSKOK ZIM 24098 48

				_	1/3	des	пия	0	PM	an	DYP	H6/	e				1/3	делия	30	KKJIC	7 <i>0</i> H6/0	9
					A	PM	aт	yp.	α	۲.	ndo	cca	ζ					MPO KO				
Марка		<i>F-1</i>							A-1	77						0	BCT3	nc 6 -1				
NJUM61	TOCT	578	1-82					10			81 -	-			 ,	Всего	FOCT 85	510-85	/	<i>F0CT</i>	103	-76*
	\$8	\$10	11000	06	98	\$10	Ø12	\$14	\$16	\$18	\$20	Ø?2	Ø25	Ø28	UT050		L100×63×8	1/10/	-1304	9 130×10	-130×12	UTOFO
млз-1	1,6	5,2	6,8	35,0		57,0		67,1							159,1	165,9	37,2	37,2	13,0	4		13,0
M13-2	1,6	5,2	6,8	35,0		3,0		158,6	19,2						 215,8	222,6	37,2	37,2		16,0		16,0
M/73-3				21,7	23,7	3,0		105,9	88,0						 242,3	249,1	37,2	37,2	2	16,0		16,0
и <i>п3-4</i>	1,6	5,2	6,8	21,7		40,1				285,4		L			 347,2	354,0	37,2	37,2	?	<u> </u>	20,0	20,0
M173-1-1	1,6	5,2	6,8	35,0		64,3		67,1		Ĺ <u>.</u>	31,9				198,3	205,1	37,2	37,2	13,0		\sqcup	13,0
МП 3-2-1	1,6	5,2	6,8	35,0		10,3		1586	19,2		14,6	31,5			 274,2	281,0	37,2	37,2	1	16,0	\sqcup	16,0
M73-3-1	1,6	5,2	6,8	21,7	23,7	6,9	5,0	105,9	88,0			37,5	22,8		310,5	317,3	37,2	37,2	?	16,0		16,0
1.73-4-1	1,6	5,2		21,7	W Accession	44.0	- A	6,8	"		I -			94,5	452,4	459,2	37,2	37,2		<u> </u>	20,0	20,0

Продолжение ведомоспи

			43	де.	11 48	7	3Q 1	t no	ZOH	ые				
L			AK	MO	2m	YPO	γ	KJI	$\alpha c c$	α				Οδιμού
_	J	<u> </u>					Я.	- /]]					Brero	рагход
-	roc.	578	7-82			10	CT	578	3/ -8	2			000.0	,,,,,,,,,,
2	\$10	ø16	11010	\$6	ø8	\$10	Ø12	ø14	\$16	\$18	Ø25	UTOFO		
L	9,6	9,3	18,9	0,1	1,6	1,6	2,0	38,4		76,0		119,7	188;8	354,7
L	9,6	9,3	18,9	0,1	1,6	1,6	2,0	38,4			146,0	189,7	261,8	484,4
-	9,6	9,3	18,9	0,1	1,6	1,6	2,0		48,0		146,0	199,3	271,4	520,5
L	9,6	9,3	18,9	0,1	1,6	1,6	2,0			60,8	146,0	2/2,1	288,2	642,2
4	9,6	9,3	18,9	0,1	1,6	1,6	20	38,4		76,0		119,7	188,8	3£ 3 ,9
Ĺ	9,6	9,3	18,9	0,1	1,6	1,6	2,0	38,4			146,0	189,7	261,8	512,8
L	9,6	9,3	18,9	0,1	1,6	1,6	2,0		48,0		146,0	199,3	271,4	518,7
	9,6	9,3	18,9	0,1	1,6	1,6	2,0			60,8	146,0	2/2,1	288,2	747,4

Разрад Кишельгоф Провер Дужак	Agys .	1,420,1-25.4-PC
Н. контр. Дужак	(2A)	Ведомфсть расхода Стадия Лист Листор Стали Киевский Промстроипроект

24098 49

° подп. Подпись, и дата Взам. инв. N

Ведомость расхода стали на плиту, кг

1		4	130	ели	18	a	OMO	z ms	PH	6/6	•					1/3	denu.	9 3	ax KJ	adH6	e
!		J	DM	an.	YP	α	K.	πα	cca	:											
-	H - 7	7	1				Ħ	-111							Всего			70			
						10	CT 5	781	-82									4-			
18	610	Утого	ø6	ø8	\$10	\$12	014	ø16	\$18	\$20	Ø25	\$28		47010		L100×63×8				130×/2	47010
7-		-	+	243	25.0		14.4							89.3	96,1	37,2	37,2	13,0	1	\vdash	13,0
														173,0	179,8	37,2			16,0		16,0
								and the second	_					186,0	192.8	37.2	37.	2	16,0	\bot	16,0
			t- ~-											249.8		372		1		20,0	20,0
			1						0,,0		-										11,7
	-									258									14.4		14,4
		6,8	15,1	1/3/	4,4	2,6	7//	75.0				_			-			-	-11	T	14,4
																		-	1.7.		18,0
	700. \$8 1,6 1,6 1,6 1,6 1,6 1,6 1,6	TOCT 576 #8 #10 1,6 5,2 1,6 5,2 1,6 5,2 1,6 5,2 1,6 5,2 1,6 5,2 1,6 5,2	# - I F - I	# P P P P P P P P P P P P P P P P P P P	# D MQ /7. # - I 7057 5781-82 # 8 # 9 # 1000 # 6 # 6 52 68 256 24,3 # 6 52 68 15,7 # 7 7 7 # 7 7	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	# P M Q M Y P Q A B P A	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	# P M A M Y P A	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	# P M \alpha (TT Y) \alpha \text{ K T A C C A} \\ # - \frac{1}{7007} \frac{5781 - 82}{5781 - 82} \text{7007} \frac{5781 - 82}{5781 - 82} \text{80} \te	# P M A M P P A	# P M Q M P P Q K P Q C Q # - I FOCT 5781-82 # A W Who ro \$\phi \$\text{ \$\te	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					

Продолжение ведомости

				U3A Apn					100		e			0อันเบบ
		100	# 7 5					FOCT	- <u>iī</u> ī 578	1-8	22		Всего	расход
			016	1/10/0	ø6	08	ØIC	\$12	ø14	Ø18	ø25	U1016		
1	5	9,6	9,3	18,9	0.1	1.6	1,6	30,8		60,0		94,1	163,2	259,3
	П	9,6	9,3	18,9	0.1	1,6	1.6	30,8			116,0	150,1	22?,2	402,0
	-	9,6	9,3	18,9	0,1	1,6	1,6	30,8			116,0	150,1	222,2	415,0
		9,6	9,3	18.9	0.1	1,6	1,6	2,0	38,4		116,0	159,7	235,8	492,4
		9,6	9,3	18,9	0.1	1,6	1,6	30,6		50,6		84,5	152,3	260,5
		9,6	9,3	18,9	01	1.6	1.6	30,6			97,8	/3/,7	202,2	411,9
19		9,6	9,3	18,9	0,1	1,6		30,6			97,8	/3/,7	202,2	431,3
	Н	96	9,3	18.9	0.1	1.6	1,6	1,8	38,4		97,8	141,3	25,4	525,8

инв. Ивподп. Подпись и дата Взам, инв. Л

1.420..1-25.4-PC 2

Ведомость	расхода	ហាαរាប	Ηα	NAUMY,	KT
-----------	---------	--------	----	--------	----

	HO	ובסחי	eaer	uci a	don	ans	/D//	FROI	cca						здел			oma	my	PHE	6/E		
44	// 4	.,,,,,,,,			4/5	2,,,,,	/~ ~	~0,0						J /	omo	my	pa	~	J10/ C	ccd]
Mapea		#-	11/8				<i>Я-1</i> √					H-I					,	H-111					Bcero
0.71417161						TOC	7 57	781 -	92	Boelo	roc.	T 578	1-82			/	OCT	578	1-6	2			
	Ø14	\$16	Ø20	Ø22	17050	Ø14	Ø 16	\$20				\$10			\$8	\$10	Ø12	ø14	\$16	\$18	020	UTOFC	l
M175 - 1.4 1118	65,3				65,3					65,3	1,6	5,2			86,9			6,4	19,6			174,7	181,5
M175 - 27 1116		85,2			85,2					85,2	1,6	5,2	6,8	58,6	58,7	47,2			8,8	25,0		198.3	
M75 - 37116			133,2		133,2					133,2	1,6	5,2	6,8	32,7	104,6	3,0	63,5		8,8	25,0		237,6	
MN5-47118				161,1	161,1					161,1	1,6	5,2	6,8	32,7	45,9	94,8	63,5				31,0		285,
M175 - 1717						65,3			65,3	65,3	1,6	5,2	6,8	58,6	86,9	3,0		6,4	19,8		7.5		181,5
M115-271							85,2		85,2	85,2	1,6	5,2	6,8	58,6	58,7	47,2			8,8	25.0			205,1
M75 - 3.7 1.								/33,2	133,2	133,2	1,6				104,6				8,8	25,0	_ 1		
M∏5-4FI¥								133,2	133,2	133,2	1,6	5,2	6,8	32,7	45,9	98,8	63,5				31,0		244,4

Продолжение ведомости

			-	1/30	de s	105	7		30	たカ	a 0	H61	<u>e</u>					
1		J P	MC	א חח	V P	d	t	Лd	CC	7				okam	MOL			Общий
Ι.	H-T	<u> </u>				H	<u>-177</u>						BC73110	cs -1 no i	TY 14.	1-3023-80	Всего	pacxod
170	OCT S	5781-	82			roc	7 5	781	-82				TOCT 8	51 <i>0-8</i> 6	TOC.	T 103-76*		ľ
010		620		ø6	ø8	\$10	\$12	ø16	Ø18	\$20	Ø22	1/1010	L100×63×8	Итого	-100±8	11010		
9,6	1	15.5		0.1	1,6	1,6	2,0	82,0				87,3	37,2	37,2	8,0	8,0	157,6	404,4
9,6		15.5		0.1	1.6	1,6	2,0	18,0	80,0			103,3	37,2	37,2	8,0	8,0	173,6	463,9
9,6		15.5			1-	1,6		18,0		99,2		122,5	37,2	37,2	8,0	8,0	192,8	570,4
ان ب					1,6			18,0			121,6	144,9	37,2	37,2	8,0	8,0	221,6	667,8
3,6		15.5	25.1	0.1	1,6	1,6	2,0	82,0				87,3	37,2	37,2	8,0	8,0	157,6	404,4
9,6				0,1	1,6	1.6	2,0	18,0	80,0			103,3	37,2	37,2	8,0	8,0	173,6	463,9
9,6	_			0,1	1,6	1,6	2,0	18.0		99,2		122,5	37,2	37,2	8,0	8,0	192,8	570,4
		15,5		-	1,6	1,6	2,0	18.0			121,6	144,9	37,2	37,2	8,0	8,0	221,6	639,9

1420.1-25.4-PG

	4	lan	20	NPM	~ a	an	мал	7.V D	~	<i>CJ</i> Q	100	~					43	3∂e	JU.	Я	Фp	Ma	m.	YP A	16/6		т
Mapka	′	i Cin	176	<i>acm</i>		عرب	man.					-					FP	ma	MY	pa		た川	a c	cơ			1
กสนเทย			JF-1	17 B					A	-/▼					J	7-I					7	7-1111					$\int_{\mathcal{B}} \mathcal{B}$
								/	00	T 5	781	-82		Bcero	TOCI	578	1-82			1	OCT	55	781 -	-82			1
	Ø14	016	ø18	Ø20	\$22	Ø25	Итого	Ø14	ø16	Ø18	\$20	Ø22	17010		08	\$10	UTOTO	Ø6	Ø8	\$10	Ø12	Ø14	\$16	\$18	Ø20	1/1010	
M175 - 1AIII 6-1	43,5	18,9					62,4							62,4								6,4				190,4	
M <i>П5-24 <u>III</u>8-1</i>		56,8	24.0				80,8							80,8										25,0	_ T	215,3	1 3
M175-3A <u>111</u> 8-1				88,8	35,8		124,6							124,6									-	25,0		257,5	1 7
МП5-4HIJB- I					107,4	46,2	153,6							153,6											48.3	306,3	3 3.
M175-1A1V-1								43,5	18.9				62,4	62,4									29,0	1	1	190,4	1,4
MN5 - 2719-1									56,8					80,8									_	25.0		215,3	
M∏5-37∏-1												35,8	1246	124,6	1,6	5,2	6.8	33,9	1046	3.0	73.0		-	25,0	-	257,5	
M175-4718-1														124,6											48.3	306,3	

Продолжение ведомости

								US	7	3	Q K	J/ C	H GY	618						
Γ			\$	OMO	7 17	7 Y	pd		E1	de	cd				POOK		Map.			Общий
L		A	<u>-I</u>		\bot				Я	-117					BC+311C	6-1 110 7	Y14-1-3	023-80	Всего	pacxoo
L	<u></u>	CT		1-82	\perp			TOC	:7	5 78	1-8	2			TICT 8510			103-76*		Y
Q	510	ø12	\$20			ø6	08	\$ 10	6/2	Ø16	018	\$20	\$22	UTOTO	L110 ×63×8	41010	-100×8	UTOTO		[
3	3,6		15,5	2	51	0,1	1,6	1,6	2,0	82,0				87,3	37,2	37,2	8,0	8,0	157,6	417,2
5	3,6		15,5	2	51	0,1	1,6	1,6	2,0	18,0	80,0			103,3	37,2	37,2	8,0	8,0	173,6	476,5
9	,6		15,5	25	-	0,1	1,6	1,6	2,0	18,0		99,2		122,5	37,2	37,2	8,0	8,0	192,8	581,7
L		16,0	15,5	3,	1,5	0,1	1,6	1,6	2,0	18,0			121,6	144,9	37,2	37,2	8,0	8,0	221,6	688,3
3	1,6		15,5	2	5,1	0,1	1,6	1,6	2,0	82,0				87,3	37.2	37,2	8,0	8,0	157,6	4/7,2
9	6		15,5	25	51	0,1	1,6	1,6	20	18,0	80,0			103,3	37,2	37,2	8,0	8,0	173,6	476,5
9	7,6		15,5	2	4	0,1	1,6	1,6	2,0	18,0		99,2		122,5	37,2	37,2	8,0	8,0	192,8	581,7
		16,0	15,5	3,	15	0,1	1,6	1,6	20	18,0			121,6	144,9	37,2	37,2	8,0	8,0	221,6	659.3

1.420.1-25.4-PC

ведомость расхой стали на плиту, кг

	U	~~	021	TOM	d9 0	ZOM	2/17.Y	pa	кла	cca					1/30	e 11	UA	91	MC	700	УP	HOIC	•	
Μαρκα	7		ے ہو	7 C M	4,4 0	70,,,,,	******	,						,	Ap.	Mal	77 4/				1 60			
NAUM6!		Я.	IIIB				77-1			8.05		H-						J	7-111					BCETO
							7 5		-02	Всего	10	C. 3	781	-82				roci	57	81 -	8:2			DCEIG
	Ø18	\$22	\$25	Ø28	15050	ø18	Ø22	ø25	(toro		Ø8	910		UTOTO	Ø6	<i>p8</i>	\$10	\$12	Ø14	\$16	\$18	\$20	47010	
MM6 - IAIIIG					95,9					95,9	1,6	5,2		6,8	53,8	78,9	3,0		6,4	19,8			161,9	168,7
M176 - 2# 1118		143,2			143,2					143,2	1,6	5,2		6,8	53,8	53,0	43,5			8,8	25,0		184,1	190,5
M176-371116		75,	1848		184.8					134,8	1,6	5,2		6,8	30,4	94,6	3,0	58,2		8,8	25,0			226,8
M176-471118					231.8					231,8	1,6	7,2		6,8	30,4	41,6	85,6	58,2			110,4	31,0		264,0
M176 - 1711						95,9				95,9	1,6	.,2		6,8	53,8	78,9	3,0		6,4	19,8			161,9	168,7
M116-271V							143,2		143.2	143,2	1,6	5,2		6,8	53,8	53,0	43,5			8,8	25,0		184,1	190,9
M76-371										184,8		5,2		6,8	30,4	94,6	3,0	58,2		8,8	25.0		220,0	226,8
M116 - 471V								184,8	184,8	184,8	1,6	7,2		6,8	30,4	41,6	85,6	58,2			1:0.4	31,0	257,2	264,0

Продолжение ведомости

					<i>U 3</i>	76	270	J A		39	た.	700	HUE							
				J A) M	an	7 8	pa	K	:110	100	:a			Προκαι		100			Общий
		A-	Ī							7-11					BCT3 nc 6	-/ nc	TY /	4-1-3023-80	Всего	pacxwd
	10	CT :	5781	-82				OCT	57	81 -	82				TOCT 8510	-86	roc7	103-76*]	
	Ø10	<i>d1</i> 2	\$20	41010	ø6	Ø8	\$10	Ø12	\$16	Ø18	\$20	Ø22	Ura	0/6	100×63×8	1/10/0	-100x8	Umoro		
	9,0		155	24,5	0,1	1,6	1,6	1,0	57,0		18.6		79	9	37,2	37,2	4.0	4.0	145,6	410,2
	7,2	3,0	15,5	25,7	0,1	1,6	1,6	1,0	9,0	60.0		22.8	96	5, 1	37,2	37,2	4,0	4,0	163,0	497,1
	7,2	3,0	15,5	25,7	2.1	1,6	1,6	-				22,8	110	0,5	37,2	37,2	4,0	4,0	177,4	589,6
-		15,0	15,5	30,5	0.1	1,6		1,0				114.0	12.	7.3	37,2	37,2	4,0	4,0	199,0	694,8
	9,0			- / -		1,6	1,6	1,0	57.0		18,6		79	1.9	37,2	37,2	4,0	4,0	145,6	410,2
	7,2	3,0	15,5	25,7	0,1	1,6	1,6	1,0	9.0	60.0		22.8	96	5./	37,2	37,2	40	4,0	163,0	497,1
	7,2			25,7	0,1	1,6	1,6	1,0	9.0		74,4	22.8	110	2,5	37,2		4,0	4,0	177,4	589, 0
╀		15,0	15,5	30,5	0,1	1,6	1,6	1,0	9.0			114.0	12:	7,3	37,2	37,2	4,0	4,0	199,0	647,8

1.420.1-25,4-PC

		Han	7920	e Ma C	apr	40 M//	חח צו	10000	,					Иэде	ภบล	apr	1amy,	DHble		
Μαρκα		, , w,,,	mea	crian	u _p pr.	,amg,	ou no	/uccu	•					Ap	Mamy	IPQ K	nacci	7		
naUM61		A-	īī B				/	4- <u>1</u> v					A=T				A-III	;		Bceaa
						1	OCT 5	781-	82		Bceo	roc7	5781	- 82		F007	5781	- 82		Decet
	ø 16	φ18	ø22	Ø25	Итого	Ø 16	Ø 18	ø22	Ø 25	Итага		Ø8		Итага	ø6	Ø8	Ø 10	Ø 12	HIMOEO	
ПП2-1A !! В	85,2				85,2						852	2,2		2,2	70,2	94.7			1549	167,1
17.72-2A !! B		107.9			107.9						10:9	2,2			45,4			1		239,4
ПП2-3A <u>ш</u> 8			161,1		161,1						1611	2,2		2,2	45,4	44.1	103,5	63,5	2 56,5	258,7
MA2-4A III B				207,9	207,9						2019	2,2			45,4			63,5	281,3	283,5
17.17.2-1 A IV						85,2				85,2	852	2,2		2,2	70,2	94,7			16 4,9	167,1
ΠΠ2-2A IV							107,9			107,9	1019	2,2		2,2	45,4	44,1	147,7		237,2	239,4
7172-3 A IV								161,1		161,1				2,2	45,4	44,1	103,5	63,5	2 56,5	258,7
ΠΠ2-4AIV									207,9	207,9	2019	2.2			45.4			63,5	2 81,3	283,5

Прадалжение ведамасти

П							H3C	дели,	я эакл	падные							
П			Армат	γρα	KAQ	cca					1	рокат	Map	KU			
П		A-Ī				A	1-111				BC-3 nc	6-1 no	TY1	4-1-302	23 - 80	0	Общи й
1	10	OCT 578	1-82		/	OCT	5781	-82				510-86	10	007 103	- 76 *	Breea	pacz ob
П	Ø20	Ø22	Итого	Ø6	Ø 10	ø 16	Ø25	φ32	φ36	Нтого	175× 0.5	Итого	-50×6	-60×6	Итого		
	15,5	15,0	30,5	0,1	10,0	2,0	45,0			57,1	5,6	5,0	6,0	2,0	8,0	100,6	352,9
П	15,5	15,0	30,5	0,1	10,0	2,0	l	73,0		85,1	5,0	5,0	6,0	2,0	8,0	128,6	475, 9
	15,5	15,0	30,5	0,1	10,0	2,0		73,0		85,1	5,8	5,0	6,0	2,0	8,0	128,6	548,4
[15,5	15,0	30,5	0,1	10,0	2,0			93,0	105,1	5,C	5.0	6,0	2,0	8,0	148,8	640,0
	15,5	15,0	30,5	0,1	10,0	2,0	45,0			57,1	5,0	5,0	6,0	2,0	8,0	100,6	352,9
	15,5	15,0	30,5	0,1	10,0	2,0		73,0		85,1	5,0	5,0	6,0	2,0	8,0	128,6	475, 9
	15,5	15,0	30,5	0,1	10,0	2,0		73,0		85,1	5,0	5,0	6,0	2,0	8,0	128,6	548,4
	15,5	15,0	30,5		10,0	2,0			93,0	105,1	5.6	5,0	6,0	2,0	8,0	148,6	640,0

инб. Ке подл. Подпусь и дата Вза**н**, инб. Кэ

1.420.1-25.4-PC

Sucm 6

		Hai	פ קד	20	e Mc	y a	Q.D	Md	77 Y	ρα		70	200	,					nai				7/17 <u>2</u> 17 9 9	PHO	<u>le</u>	
Марка плиты			/ / -				-/-			J	-/V						A-I	/				A - <u>II</u>				Всего
,, 0, 0 , ,, 0,									T	OCT	57	81-	82		Всего	TOCT	<i>578.</i>	1-82		/	OCI	5	781 -	-82		1
	Ø16	Ø18	\$20	\$22	\$25	628	UTOTO	Ø16						11010		8FI		Итого	Ø6	Ø8	\$10	\$ 12	\$16	\$20	UTOFO	
ПП2-/A <u>П</u> В-1					/	1	80.8					ŕ				2,2		2,2	71,3	97,1		£,7	9,8			184,1
772-2AIIB-1			29,6			 	101.5				_	\vdash				-						3,7		15,3	261,9	264,1
ПП2-ЗЯШВ-1				107,4	462		153,6					1	_		153,6		1	2,2	45,4	46,1	103,5	69,9		15,3	280,2	282,4
772-4A1118-1				107,7			196,6					_			196,6		1	2.2	45,4		175,5	69,9		15,3	306,1	308,3
17.12-1.FIV-1				-	10,0	00,0	100,0	56,8	240			\vdash		80,8	80,8	2,2			71,3			3.7	9,8		181,9	184,1
772-271¥-1		_			 			00,0	71,9		-	 			101,5						1514			15,3		264,1
772-3#1 <u>X</u> -/				-		 			,0		107.4	462		153.6	153,5	2,2						6 9,9		15,3	280,2	282,4
Th. 2-4514-1				_	-	├─		-			,	1386			196,6				45,4			6 9,9		15,3	306,1	308,3

Продолжение ведомости

ł													,							
				U	300	270	19	3	d F	110	дн	61C								
		v	API	nd.	777 5	PC	γ.	ヒカ	200	ca		,	700	ca	77		PEU			Общий
	J7	I					H-1 <u>11</u>	7				BC	731	c6-1	חס ו		-1-30		Всего	pacxod
10	CTS	781	-82		/	TOC.	7 3	578	1-8	82		FOCT	8510	86	100	:7	103 -	76*		(
£20	\$22		1/1010	Ø6	\$10	\$16	\$25	\$32	ø36	1	100	L75×50+5		4010	-50×6	-60×6		11000		
15,5	15.0		30,5	0.1		 					57,1	5,0		5,0	6,0	2,0		8,0	100,6	365,5
15,5	1		30,5	0,1		 		73.0			85,1	5,0		5,0	6,0	2,0		8,0	128,6	494,2
15,5	15.0				10.0		1	73,0		1	85.1	5,0		5,0	6,0	2,0		8,0	128,6	564,6
15,5			30,5		10,0		\vdash		930	,	105,1	5,0		5,0	6,0	2,0		8,0	148,6	653 ,5
15.5			30.5				450				57.1	5,0		5.0	6,0	2,0		8,0	100,6	365,5
_	15,0		30,5		10,0			73,0			85.1	5,0		5,0	6,0	2,0		8,0	128,6	494,2
	15,0		30,5	_	10,0	_	T	73,0			85,1	5,0		5,0	6,0	2,0		8,0	128,6	564,6
	15,0		30,5		10,0			- 3-	93,0		105,1	5,0		5,0	6,0	2,0		8,0	148,6	653,5
1.0,0	1/-					1-/-		1												

1.420.1-25.4-PC