ТИПОВЫЕ КОНСТРУКЦИИ, ИЗДЕЛИЯ И УЗЛЫ ЗДАНИЙ И СООРУЖЕНИЙ

СЕРИЯ 3.017-3

ОГРАЖДЕНИЯ ПЛОЩАДОК И УЧАСТКОВ ПРЕДПРИЯТИЙ, ЗДАНИЙ И СООРУЖЕНИЙ

выпуск 2

МЕТАЛЛИЧЕСКИЕ ЭЛЕМЕНТЫ ОГРАД рабочие чертежи

Ш00108-03

ТИПОВЫЕ КОНСТРУКЦИИ. ИЗДЕЛИЯ И УЗЛЫ ЗДАНИЙ И СООРУЖЕНИЙ

CEPNS 3.017-3

ОГРАЖДЕНИЯ ПЛОЩАДОК И УЧАСТКОВ ПРЕДПРИЯТИЙ. ЗЛАНИЙ И СООРУЖЕНИЙ

выпуск 2

МЕТАЛЛИЧЕСКИЕ ЭЛЕМЕНТЫ ОГРАД.

рабочие чертежи

PA3PABOTAHЫ ПРОЕКТНЫМ ИНСТИТУТОМ № 2 Гл. инженер ин-та Ди Б Л. АРОНОВ Гл. ИНЖЕНЕР ПРОЕКТАНИ МА.БЕЛЕЦКИЙ

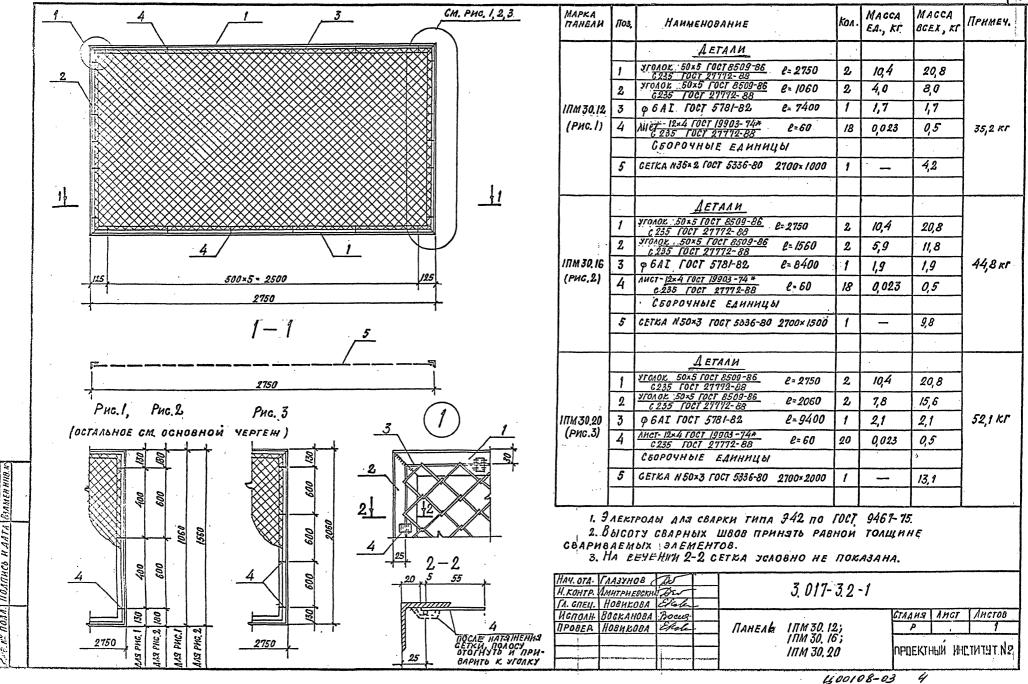
YMBEPHAEHOI YMPABACHUEN MPOCKMUPOBAHUA " NHHEHEPHUX NOHCKAHNN минстроя России письмо от 31.12.92 19-1/424 введены в действие TPOERMHUM NHEMNMYMONNS e. 01.03.93+ HPUKAS OT 10, 03,93. A25

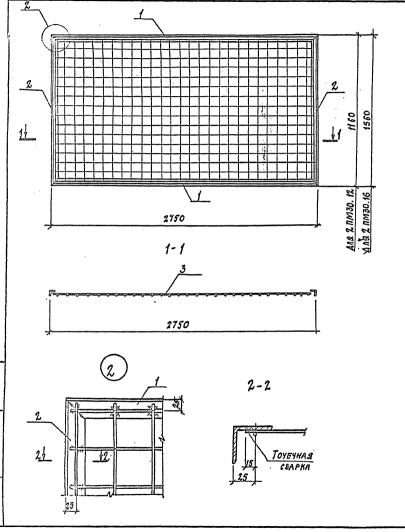
Û 503НЯЧЕНИЕ ДОКЧМЕНТА	Наименован	ME CTP		
3.017- 3.2 - TO -1 -2 -3	Техническое описание Панели 1ПМ30.12;1ПМ30.16 1ПМ 30.20 Панели 2ПМ30.12;2ПМ30.16 Панели 3ПМ30.11;3ПМ30.15			
		<u> </u>		
	·			
ALOTA IT AARYHOB ALOTA ITAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	3.017- 3.2	2		
EXHUK BOCKAHOBA BOCKS		CTARHS AHET AHETOR		

KONUPOBAA:

HEARINGAL HOADHES U AATA BARAGILAINAA

1. Нястоящий BUNYCK COAEPHUT PAGOYHE YEPTE IHU METANAHYECKUX *3NEMEHTO8* OFPAA. 2. CXEMU OFPAA U YKAJAHUS DO DPUMEHE-РЯСЧЕТУ КОНСТРУКЦИЙ ПРИВЕДЕНЫ В BUTYCKE 0 . 3. КАНДОМУ ТИПУ METALLUYECKUX SIEMEH-TOB TPHCBOEHO YCAOB HOE OBO3HAYEHUE (MAPKA). CTPYKTYPA MAPKH панели прината следующая: UHAEKC UBA,ENUS NO BANDAMEHUNO NAHEAU (CETKR NAETEHAS, CETKA CBAPHAS, TPYSW) HAUMEHOBAHUE HILENUS (NM- MAHEND METANNYECKASI) TABAPHTHUE PASMEPH HIDENHS 8 AEHHMETPAX PHMEP 1 TM 30.16 - MAHEND METANNUYECKAS ПЕРВОГО ТИПОРАЗМЕРА ДЛИНОЙ 3,0М ВЫСОТОЙ 1,6 М W. CETYATHE MAHENU COCTOST H3 CTANHOW РАМОК С НЯТЯНУТОЙ НЯ НИХ СЕТКОЙ. Ang MAHENEH (MM30.12; 1MM30.16 H 1M 30.20 THU MEH SHOT CTANEHYMO MAETERYMO CETKY H3 OLUHKO-ВАННОЙ ПРОВОЛОКИ С КВАДРЯТНЫМИ ЯЧЕЙКЯМИ Н35 X2 U N 50 x 3 NO FOCT 5336-80. NOCTH B ASEMUHO B PYADHAX шириной 1,0;1,5 и 2,0 м. 5. AAS THHERE 4 20M30. 12 4 20M 30.16 TPHHSTA CBAPHAS CETKA NO FOCT 23279-85 ИЗ ПРОВОЛОКИ ДИАМЕТРОМ 3,0 ММ С КВАДРАТНЫМИ ЯЧЕЙКАМИ 100 × 100 MM. 6. And PEWETYHTUX NAMENEU 3 MM 30.12 U 3 MM 30.16 ПРИНЯТЫ ТРУБЫ ДИАМЕТРОМ 20,0 ММ ПО ГОСТ 8734-75 %. 7. ПРИ ИЗГОТОВЛЕНИЕ МЕТЯЛЛИЧЕСКИХ ЭЛЕМЕНТОВ OFPAA HEOSXOLUMO BUNONHATH TPEFOBRHUA CHUN3.03.01-87 "НЕСУЩИЕ И ОГРЯНДАЮЩИЕ КОНСТРУКЦИЙ" 8. MAPKE CTENU ANS USFOTOBNEHUS METANNYECKUX SAEMEHTOB OFFAA PHHATA C235 NO FOCT 27772- 88%. 9. CBAPHAS CETKA U PAMKU NAHENEU DONHHU BUTS OKPAWERS MACRISHOU KPACKOU 3A 2 PASA 110 SPYHTY US WENESHOTO CYPHKA. HAY. OTA. I TA A3 YHOB JOO H.KOHT? /IMHTPUEPCERITED 3.017- 3.2-70 TA. CHEIL HOBHKOBA CYLL TEXHUK BOCKAHODA BOCCOS CTAAUS NUCT AHETOB MPOBER HOBIKOBA EACL EXHUYE CKOF OTHICAHUE DEDEKTHIN KACTATYT J 2


90PMAT


ВЗЯМЕН. ИНВ. М

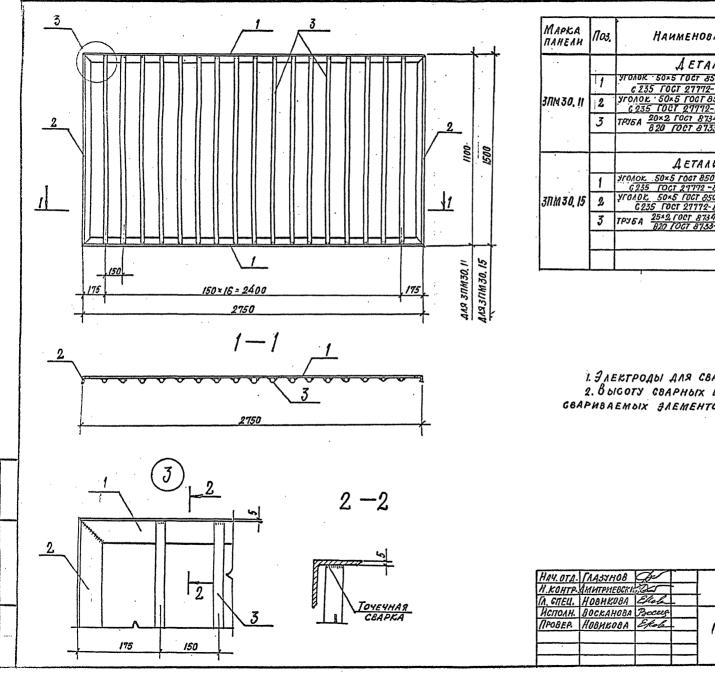
Подпись ид АТА

ив .Нъподл.

KONUPOBAN: 400108-03 3 SPOPMAT

подлись и дита Вздатек ина. В

Ma PKA NAHENU	Поз	Наименование	Кол.	Масса Един., кг	MACCA BCEX,HT	ПРИМЕЧ
2 П/M3O, 12	1	<u> </u>	2	10,4	20,8	
	2	Yronok 50x510ct 8509-86 &= 1160 C 235 10CT 27772-88	2	4,4	8,8	33,1 KT
	3	<u>СБОРОЧНЫЕ ЕДИНИЦЫ</u> 40 33PT-100 HOX 273 ГОСТ 23279 - 8 5	1		3,5	
2ЛМ30,16		<u>Детали</u>				
	1	VIONORL 50 X5 FOCT 8509-86 £= 2750	2	10,4	20,8	
	2	YEONOR 450X5 FOXT 8509-86 L= 1560 C235 FOCT 27772-88 L= 1560 C50POYMBE EAUMUUB	2	5,9	11, 8	31,3 KT
	3,	4C 38pt -100 150x173	1		4,7	


1. Э ЛЕКТРОДЫ ДЛЯ СВЯРКИ Э42 ПО ГОСТ 9467-75 2. Высоту СВЯРНЫХ ШВОВ ПРИНЯТЬ РАВНОЙ FORMUHE CBAPUBREMUX FAEMEHTOB.

НАЧ. ОТД. | ГЛАЗУНОВ В Н. КОНТР ДЛИПРИЕВСКИЙ В ГЛ. СПЕЧ, НОВИ КОВД ИСПОЛН ВОСКП НОВА ВОСИЯ ПРОВЕР: | ПОВИКОВЛ 3.017-3.2-2 CTAAHA AHET NHCTOB

2 MM30.12; 2 MM30.16 Панель

проектный илститет & 2

KONUPOBAN: 1300108-03 5 POPMAT

Марка Панели	Поз.	Наименовани Е	KOA.	MAGGA EAUH., KI	MACCA BCEX, KT	ПРИМЕЧ.
ЗПМ 3 <i>0</i> , II		A ETANN				The state of the s
	1	G 235 FOCT 27772-88 & 2-2750	2	10,4	20,8	
	2	YFONOK 50×5 FOCT 8509-65	2	4, 15	83	45,6 Kr
	3	TPV5A 20×2 FOCT 8734-75	17	0,97	16,5	
3NM 30, 15		AETANU				
	1	91010K 50×5 1001 8509-86	2	10,4	20,8	
	2	¥F01 <u>0K 50×5 F0CF 8509-85</u> €= 1500 C235 F0CF 27772-89	2.	5,66	11,32	60,85 KT
	3	TPY 5A 25×2 (OCT 8734-75 P=1490	17	1,69	28,73	

1. ЭЛЕКТРОДЫ ДЛЯ СВАРКИ ТИПА Э42 ПО ГОСТ 9467-75. 2. ВЫСОТУ СВАРНЫХ ШОВ ПРИНЯТЬ РАВНОЙ ТОЛЩИНЕ СВАРИВАЕМЫХ ЭЛЕМЕНТОВ.

H.KOHTP.	ГЛАЗУНОВ ФМИТРИЕВСКИ НОВИКОВА		3.017-3.2-3			
Исполн.	BOCKAHOBA HOBMKOBA	Bocus	NAHEA& 3NM 30.11	CTAAU9 P	ЛИСТ	1 1
			3 MM 30.15	TPOEKT	ный инг	בא דטמד.

\$ 00108-03 6