типовые строительные конструкции, изделия и узлы зданий и сооружений

СЕРИЯ 1.862.1-8.94

БАЛКИ ЖЕЛЕЗО БЕТОННЫЕ ОДНОСКАТНЫЕ ПРОЛЕТОМ 6:7,5;9 и 10,5 м для покрытий Сельскохозяйст венных 3даний с уклоном кровли 1:4

> ВЫПУСК 1 виволог эниеские условия. Рабо чие чертежи

ц00306

ІМПОВЫЕ СТРОИТЕЛЬНЫЕ КОНСТРУКЦИИ, ИЗДЕЛИЯ И УЗЛЫ ЗДАНИЙ И СООРУЖЕНИЙ

СЕРИЯ 1.862.1-8.94

БАЛКИ ЖЕЛЕЗОБЕТОННЫЕ ОДНОСКАТНЫЕ ПРОЛЕТОМ 6:7.5:9 и 10,5 м для покрытий сельскохозяйственных зданий с уклоном кровли 1:4

> вылуск 1 ва аки. Технические условия. РАБОЧИЕ ЧЕРТЕЖИ

DASDAGOTANHI:

ИНИИ ЭП С ВАБ СТРОЙ

ЗАМ. ЛИРЕНТОРА ЗАВ. ЛАБОРАТОРИЕЙ НЕСУЩИХ

KENE 30 BETOHHЫХ KONCTONKLING

YTBEPHLE HO

Тальпроектом Минстроя России, письмо от 13.10.94 N9-3-1/138.

BREACHO B ACUCTONE COL. 11.94. HONKA'S LINNATICEASCTPOS AT NY 10.94 \$50-P

АТНЭМЕХОД ЭИНЭРАНЕОТО	ВИНАВОНЭМИАН	ETP.
1,862.1 8.94.1 113	ПОЯСНИТЕЛЬНАЯ ЗАПИСКА	3
1,862.1-8.94.1 - T4	Технические эсловия	5
1.862.1-8.94.1 HN	Наменклатура наделий	10
1.862.1-8.94.1-144	Балка БСБ, Чертеж формы	- 11
1.852.1 - 8.94.1 -1	BANKA GC 6-1 6C6-4, LP MUPOBAHNE	12
1.862.1 - 8,94.1 - 244	балка БСЧ.5, Чертеж формы	13
1.862,1 - 8.94.1 - 2	BANKA BC7.51BC7.5-4, APMUPOBAHUE	14
1.862.1 - 8.94.1 - 344	Балка БСЭ, Чертеж формы	15
1.862.1 - 8.94.1 - 3	BANKA 609-1 609-4, APMUPOBAHUE	16
1.862.1 - 8.94.1 - 4 44	Балка 6010,5, Чертеж формы	17
1.862.1 - 8.94.1 - 4	6AARA 6640,5-1 6610,5-4, APM NPO BAHNE	18
1.862.1 - 8,94.1 - 5	KAPKAC KP1KP4	20
1,862.1 - 8,94.1 - 6	KAPKAC KPSKP8	21
1,862.1 - 8.94.1 - 4	KAPKAC KP9 KP11	22
1,862.1 - 8.94.1 -8	Стержень арматурный Ст1 Ст40	23
1.862.1 - 8.94.1 - 9	KAPRAC KP12.;.KP14	24
1.862.1 -8.94.1-10	CETRA C1C3	24
1.862.1 - 8.94.1- 11	KAPRAC KP15	2.5
1.862.1 - 8.94.1 - 12	KAPKAC KP46	25
1,862,1 - 8.94,1-13	KAPKAC KP17	26
1.862.1 - 8, 94.1 - 14	KAPKAC KP18, KP19	26
1.862.4 - 8.94.1-15	Изделие закладное М1М3	23
1.862.1 - 8,94.1-16	NEME SAKAAAHDE M4, M5	24
1.862.1 - 8.94.1-17	NETAR MG	28

Обозначение документа	НАИМЕНОВАНИЕ	973	٠.
1.862.1 -8.94.1-18	ЗАКЛАДНОЕ ИЗДЕМИЕ: МЧ	28	_
1.862.1 - 8.94.1 -19	LUDAVP EUT	29)
1.862.1 -8.94.1-20	изская хинналатносного кинажолого амахя		
	АЛЯ ЗДАНИЙ С ПРОГОНАМИ. ПРИМЕР РЕШЕНИЯ	30	1
1.862.1 -8.94.1 - 21	УЗЛЫ ОПИРАНИЯ БАЛОК НА ТИПОВЫЕ КОЛОННЫ	31	[
1.862.1 - 8.94.1 - 22	РАЗБИВКА ЗАКЛАНЫХ ИЗАЕЛИЙ ДЛЯ КРЕПЛЕНИЯ	35	2,
	РИТИРАННЯ	33	3
1,862,1 -8.94.1 - PC	BEADMOCTAPACXDAA CTANN	34	
1.862.1 - 8.94.1 - 23	СТОЛИК. ОПАЛУБОЧНЫЙ ЧЕРТЕН.АРМИРО-	•	
	BAHNE	36	;
1.862.1 - 8.94.1 - 2.4	NSAEANE SAKAAAHOE M8; M9	36	_
			_
			_

1.862.1-8.94.1 TAB. AABOR HASAPEHKO
FUNI HASAPEHKO
CT. H. COTP. AABOEHTUE OR ALOUM
NHHEHEP AHTOHOBA MOTOR
NOBEP. HASAPEHKO CTARNA AHET AHETOB 3NHAHG3103 иочтовкаэПENNHU Ц00306

HHB.Nº NOLL MOLTINCS WARTA BEAM. WHB.Nº

4 OBMINE CREVEHNA

- хиннотадоезья ижетеры вировая тижеваро кире жыкотов. 1. 1 GANDE BES TREABARNTEACHORD HATPRIMERING TRADECTOM 6: 7.5; ON IT THE ABARRED BANDE HA-TIPS WEHHEL & BANCK TIPO LETOM 10.5M ALS TOKPHITHN CENECKONDANICT BEHHELY BANHIN C YKADHOM KODRAN 1:4.
- 4.2. BAARU PASPAGOTAHЫ ПРИМЕНИТЕЛЬНО К ГАБАРИТНЫМ СХЕМАМ ЗДАНИК nn TDET 23838-89.
 - 2. Типы, конструкция, обозначение
 - 2. 1. BANKH RPHHATH YETHPEX THROPASMEPOR:

BC 6 - BANKA OLHOCKATHAN SPONETOM BM:

BC 7.5 - BANKA DAHOCKATHAS RADAETOM 7.5M;

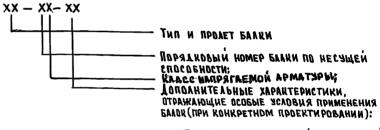
GE 9 - BANKA DAHDCHATHAN APONETOM 9 M;

BC10,5 - BANKA DAHOCKATHAN RODAETOM 10.5 M.

- 2. 2. BANKN NMEHOT TABPOBOE CEHEHNE C REPEMEHHON BUCDTON B RPEела итоар *понропо изнин* аторые имктрар иминопо важэм атэлооп халэд - BANDER - MEJOH MALAF BANKU 9 M - 400 MM, AAR BANKU 10.5M - 420 MM. BU-COTA BEPXHEN DROPHON YACTN AAR BAADK & NI.SM DEYCADBARHA HEDEXDANMOCTHO мм он такаватоо и имамара иминикопрада иминотававаная з контарио LAR BAAR 9M - 1000 MM. AAR BAARK 10.5 M - 840 MM.
- 2.3. KPERNEHNE BANDR K THROBLIM WELESOBETOHHUM KONOHHAM DCY-MRNABLEN MICHALANAE Y YORG NINGLEN XICHALANAE NYGABURI MATEN ROTARATOBLE KOROHH (CM. AOKYM. 1. 862.1-8.94,1-21).

MRNABLEN MICHALARIZE X ROTHADDENOGN RHILDGROOD BOHODOON THAT BUHBANBAR BANDE COTAACHO CEPNA 2860-6 N 2060-1 B.2.

PASENBRY SAKAAAHUX NSAEANN CM. ADRYM. 1.862.1-8.94.1-22.


2. 4. YCTONANBOCTP ENVOR B STAHNAX C UOKAPILNEM NA MEVE 302ELOHHPIX TANT OBECTEUN BAETCA MECTRUM ANCKOM NOKPHITHA, OGPASSEMHIM TIPUBAPKON TANT

K BARRAM N JAMDHDANUNBAHNEM WBDB MEHLY NANTAMN.

SCHONUNBOCTO BAADE B SAAHHAX C WELESOBETOHHUMM RPOFOHAMM OBECRE-NOT. (RNHAAE AYDAG OTDYGENMUNE NAN CENEMANN) TO THE TAGETHER STALL MOHAD & MEMNHAM) TREWIGE OF WARD SHE (RNHALE JADA) HOTOGE AH BUANDE BOHJAATHOENGOT MOTE BEANGUALDI, YKASAHHON B CEPNN 1. 462-14 BLID. \$ 192.

KONCTPUKTUBNOE PEWENNE CBROEN NO NOKPLITURO PASPAGATUBAETCA B R NMICH SALERY TO THE STATE OTO THE SECOND STATES OTO THE SECOND AOK. 1.862.1-8.94.1-20

2.5. B CONTRETCTBNU C FORT 23009-48 ACTAHOBAEHA CAEAMHOWAS CTPAK-TYPA MAPKUPOBKU SAAOK:

CTETEHS APPECCUBATO BOSAENCTBUR TASOBON - IdAaqa

H - BETOH HOPMANHON SPOHNLLAEMOCTN! П - ВЕТОН ПОНИЖЕННОЙ ПООНИЦАЕМОСТИ; HAANUE ADROAHNTEADHDIX JAKAAAHDIX NAAEANN (AAN NEERBS, BOHOTOGR, TNAN RNHAMBAN RAL) OBD 3 HAUAETCA BYRBEHHLIMN NHAEKCAMN A.B.B ...

MANYE ACYDEHOLO DEOSHAREHNY EYKN:

BCG-2-HB - BANKA THIR BCB RODNETON BM, BTOPON HECYLLEN CHOCOBHOCTH, NO BETCHA HOPMANHON ROPHHULAEMOCTH C HORPHTHEM HO MENERO-

SAB. NAGDR.	Назаренко	30	20	1.862.1-8.94.1	-П3		
rua	HAZAPEHKO	B	1/2		CTARNS	ANCT	ANCTOB
Ct.H. Cotp.	NABPEHTLEBA	(leale)		ПОЯСНИТЕЛЬНАЯ ЗАПИСКА	b	1	2,
HHMEHEP	Антонова	AUTOR	1	HAJINIAC KAMBREINNIKA			
NPOBEPUA	HAJAPEHKO	Bezz	3		MNHA	JUCEVP	NOGT3

манилади Мідннатэд

60 10.5-3A III 8-H-BAAKA TURA 60 10.5 TIPOAETOM 10.5 M. TPETSEN HECYMEN CROCOS-HOCTH, C TIPEABAPHTEACHD HATTPRIKEHHON APMATYPON KAACCA ATT 6. NO SETONA HOPMAND-НОЙ ПРОНИЦАЕМОСТИ.

3. DENACTO ROUMEHEHUS

- 3. 4. Бааки предназначены для покрытий сельскохозяйственных зда-HWW C REDBAFY NO ACCEPTALEMENTHINX AUCTOR THE MARCHE 25%:
- -BOSBDANMLIX & I... I PEOTPA-MUECKNX PANOHAX TO BECY CHEFOBOTO TORPO-BA;
 - -C HEATPECCUBHON, CAAGO N CPEAHEATPECCUBHON TASOBON CPEADN:
 - ABT DEBLUHLIX YCADBN N CTPONTEALCTBA:
 - C PACYETHON CENCHUNUHOCTHO AO 9 BALADA BRAHDUNTEALHO.
- 3 2. ADMYCKAETCH MPHMEHEHNE BANDK HA DTRPHITOM BOJLYKE N B HE--IAB ON \$4-10.60.2 IN HI WHAAGOBEH NN TPEBOBAHNN CHN12.03.01-84* EDPY KNALEDB W MAPOK CTANEN LAS APMATYPHIN W JAKNALHLIX WJLENNN. KNALE N MAPRA CTAREN, TPEBOBAHNS: R MAPRAM GETOHA TO MOPOSOCTONROCTH N BO-ADHERPOHNULAEMOCTH YKASHBAIDT B KOHKPETHOM RPDEKTE SLAHNA.
- 3. 3 BANKU JAHHON CEPNU DTHECEHN K KOHCTPYKILNAM C RPEZENOM REHECTONROCTH - 0.5 YACA.
- 3.4. BANKN MOLAL PPINE UDNWEHEHPI B LOKAPILAN G KAPITHPIWN BEHLN-ASTOPAMU, SCTANDACHHUMN HA THROUGH WEACOBETHHUE MANTO! (HE GOARS ENAME HA ENERGIAN SALVAS MOTE B (CHARA BH STEPSAR B BOROTRANTHES KESA АН ЭХЕКЧТАН ЙОННЭХЭДЭЧПІАФ ОНЧЭМОНВАЯ ЙОНТНЭХАВИВИЕ ОП ТОЯКАВДЭПО MANTH, KOTOPAS HE ADAWHA MPEBHWATH HECHWEN CHOCOBHOCTN BANKU.

4. YCADBNA PACUETA

4. 1. PACHET BANOK PRONBELEH & COOTBETCTBNN C MOND HEHNEM

CHUT 2.03.01-84*

4.2. BARRN PACCUNTAHLI HA YHNANLINPOBAHHLIE HAFPYSKN 1500, 2100, 2400 N 2700 RTC/M.

NON PACUETE BANOK HA YKASAHHDIE HALDASKH ANTEH KOSOONILNEHT HAлежирсти по назначению $\chi_0 = 0.95$.

NON NENDADOBAHNA BAROK B NORPHITMAX SAAHNN C NOHNWEHHON CTENEHHO OTBETCTBEHHOCTH (HABECH, CRAALH), KOHKPETHYHO HALPYSKY TO KOTOPON BYLYT TOL-ENPATECS BLAKN, HEDBADAMO SMHOMNTH HA KODOONULNEHT K = 0,9/0,95.

4.3 NO TPEMMHOCTONKOCTN BANKN OTHECEHN K III KATEFOPNN.

LONGTOND B ATRHNON HIMMET RICHARDAG AHNOND RAMITERIOL CO CHUI 2.03.4-85 "BAMMTA CTPONTEABHDIX ROHCTPARMINN OT KOPPOSHN" N TABANLLEN 4 "PYROBOLETBA TO ROMTAERCHON SAWNTE WERESOGETONHIN KONCT-PYRUNN MUBOTHOBOAYECRNX N TITNILEBOAYECRNX ROMTAERCOB, DEPM, BLAHNN N CODPYWEHNN OT BOSLENCTBUS APPECCUBHLIX CPEA " (MOCKBA . 1981).

S. MOHTAW BANDE

6, 1. TON POUSBOACTRE MOHTAMHOUX PAGOT CAEAYET PYKOBDACT-BOBATHER TARBON CHAIT 3.03.01-87. HECHINE N OFFAMARIGINE KONCTPYRIANN и СНиП \underline{m} -4-80*, Техника безопасности в строительстве."

HACTORILINE TEXHINGECKIE YCADONR PACTODOTRAHATOTOR HA GARKI TIPOLETON 6: 4.5: - рапан оналэтичаваэч мд. М мотэлоч имлав и кинэжрчпан отоналэтичаваэч сэв мв и WEHHALE. BANKN MOTOT THOMMENATURA B TOMELLEHNAN C HEATPECCHAHON, CARGO - N CREAKE-APPECCUBHON TABOBBIMN CPELAMN.

1. BETOH

- 1.1. MATEPHANDI, ПРИМЕНЯЕМЫЕ ДЛЯ ПРИГОТОВЛЕНИЯ БЕТОНА, ADAMHDI CO-ОТВЕТСТВОВАТЬ ДЕЙСТВУЮЩИМ СТАНДАРТАМ ИЛИ ТЕХНИЧЕСКИМ УСЛОВИЯМ НА ЭТИ МАТЕРИАЛЫ.
- 1.2. БЕТОН ПО ПРОЧНОСТИ НА СМАТИЕ ДОАМЕН СООТВЕТСТВОВАТЬ КЛАССУ ВАБ, B20. B22.5 NB25 B BABNICHMDETH OT TIPONETA N HECHWEN CHOCOBHOCTH BANGK.
- 1.3. BETON DO MOPOSOCTONKOCTH N BOADHEDPONNUAEMOCTH ADAMEN COOTBET-CTBOBATH MAPRAM, HASHAHEHHUM B RPOEKTE SARHNN CORACHO CHUIZ. 03.01-84* B SABN-СИОЛАЯ ИНВОЛУ ХИХЗЕНТАМИЛЯ И КОНСТРИКЦИЙ И КЛИМАТИЧЕСКИХ УСЛОВИРА В НОВОМИТЕЙ В НЕВОВИТЕЙ CTPONTENECTBA.
- 1.4 BETOH BANDK, RPEAHASHAUEHHLIX AAR PABOTU BYENOBHAK HEAFPECCHBHON CPE-- ALAMADHATIAR HAHADA IARAS NOBOKAT RNATSNALGOB NHAHATA NOBOKAT NAN IAA HOW (H) RPOHNLLAEMOCTN. BETOH BAROK, RPEAHABHAYEHHAIX ARR PABOTAL B YCROBHRX CPEAHEAR-РЕССИВНОЙ СТЕПЕНИ ВОЗДЕЙСТВИЯ ГАЗОВОЙ СРЕДЫ ДОЛЖЕН БЫТЬ ПОНИЖЕННОЙ (П) ПРОНИЦАЕМОСТИ.

MOKASATEAN MPOHNULAEMOCTN GETOHA LOAMHU COOTBETCTBOBATH TREGOBAHNAM TAGA. CHun 2.03.41-85.

APKTAMAA .S

- 2.4 B RAYECTBE APMATYPHI CBAPHHIX KAPKACOB W CETOK TIPEAYCMOTPEHA CTEP-WHEBAR APMATUPA RAACCA A-III NO FORT 5781-82.
- 2.2. B KAHERTBE HARDATREMON APMATAPHI CRELIET RONMEHATH CTEPHHEBYH APMATYPY KNACCA ATT B TO TOCT 5781-82 N KNACCA ATTVK TO TOCT 1084-81.
- 2.3. APMATYPHISE CTEPHHN LOANHI GUT OUNGEHU OT PHABUNHU, MACARHUX И ДРУГИХ ЗАГРЯЗНЕНИЙ И ВЫПРАВЛЕНЫ.
 - 2.4 Марки сталей для арматурных изделий следует назначать с учетом

экспачатационных и монтанных условий согласно СНи П 2.03.01-84.

2.5. APMATYPHILE CETRU N KAPRACII ADAMHI NSTOTOBARTICS HA KOHAYKTOPAK "СОВДИНЕНИЯ СВАРНЫЕ АРМАТУРЫ И ЗАКЛАДНЫХ ИЗДЕЛИЙ ЖЕЛЕЗОВЕТОННЫХ КОНСТРУКЦИЙ. ТИПЫ КОНСТРУКЦИЙ И РАЗМЕРЫ.

CBAPKY KSAENHU RPONSBOANTH BO BCEX TOURAX REPECEUEHNA CTEPHHEN. AO HAUANA NTSBENDAR TELLESS NORGARS NORHERDT NORTHARTHOR BOSANAR XNXSOAR TELLESS B COOTBETCTBAN C TOLT 1022-90 ACTINTALME CBAPHOLX RECTORDADAMIX CDEAMHEHAN APMA-TYPH HA CPES N OCAABAEHNE.

HA YEPTEMAX PASMEPUI CETOK N KAPRACOB LAHLI NO DCAM N TOPLLAM CTEPHHEN, B 3ABNCHMOCTH OT PACYETHON TEMPERATURE HAPYHHOLO BOSTAXY HYREOVEE XU-ADAHON RETNAHEBRIN MAPKY CTAAN BARAALHIN USAEANN MPHHIMATIO TO TAGA. TABANUA 1

РАСЧЕТНАЯ ТЕМПЕРАТУРА, С	Марка стали	ract
TO WHARE 40	CT 3 Ne 6-1	38D- 9 8
	CT 3 cn 5~4	200-89
10 WNH36 2D	Cr 3 Fnc 5-4	

Ubnweathne: B chemonkamnax baboaen tokamentamnn ha baykn DA LIGETAGEMENT NOHTHUSAG RAA AHAEANE NAATS ANGAM MNHAE 40.

2.6 CBAPHDIE CDEANHEHNA AHREPOB C MARTHHAMN B TABP CAEASET MPNваривать пол слоем флюся в соответствии соСНиП 3,03.04-84.

Šab. Nagor	Назаренко	13-2	1.862,1-8.94.	1-Ty		
CAN.COTP.	Назаренко Лаврентьева	Is a		CTALNA	ANDT	METON
Интенер	Антонова	furbet	 Технические эсловия	עאווו	All rea	ИО ФТ3 <i>А</i>
	THE STATE OF THE S			ПОО		6

-300 андажал Δ оп эн интерести хиндалул киндалул поримов обиндающий корольной инжер (ониндаючног ониндаючног ониндаючног ониндаючног ониндаючного в міннадаючно пременаєми и $18-11.60.5\,\mathrm{II}$ ин обал меннадаючно ониндаючно онинаєми и $18-11.60.5\,\mathrm{II}$ ин обал меннадаючно онинаєми оператору операт

ХОННАДА ЭТИДИА ТО В НИТИВОВ ОТ ВИНЬОВ В СОСТАВИ В СТИЗОВ В СОСТАВИ В СТИЗОВ В СТИЗО

3. NOTOBAEHNE BAAOR

- OR GOSTEASOAL, XAMGOD XIGHDAATS S STABABATOTEN TELASAS AND ALL XVIII WENHASSES TO THE STABLES TO THE STABLES
- -одп хахааа хиднэн редпан ондлэтидавадда в идетамда эмнэжган . S. ε -даф ховоли или аднэтэ иддаг ан мадооолэ мияээримдэтодгэле атидавей идетамда рас винириль отондатидавдэд отомжерилодтной винириль винириль
- атаворизмиф тэкаэл импэден кинчетамча эннэжолоп эонтязоч \mathbb{N} . \mathfrak{F} . \mathfrak{F} иммаральной кинмаральной кинмаральной кинмаральной кинмаральной кинмаральной кинмаральной водотальной водотального водот
- 3.4. Las выемки балок изформы и монтажа помменяются замкнутые петан серии λ 400-7. Марка стали але нетель зависит от расетной температуры наружного возалуха (см. п.п. 6 пояснительной записки сер. 3.400-8 вып. 1/84).
- 5.5. Точность изготовления, качество поверхностей и внешний вид балоц должны отвечать требованиям ГОСТ 13015.0-83 и на стоящих рабочих чертежей.

Отклонения проектных размеров балок не должны превышать величин, чельник на чертежах.

3. 6. Отклонение фактической массы валок не доажно превышать 1% номинальной массы, эказанной в рабочих чертежах.

- 3.4. Отклонение защитного слоя бетона толщиной $15\,\mathrm{mm}$ не должно превышать $\pm\,3\,\mathrm{mm}$, при большей толщине защитного слоя $-\,2\,5\,\mathrm{mm}$.
- 3.8. Втилонение от прамолинейного поперечного профиля на длине 2 м (местная непрямолинейность) не должно превышать 3 мм, на всей длине балки -3 мм.
- 3. 9. OTKADHEHNE OT TIPOERTHOLO TO ANHAMALA ALDAH TO AMMALA ALDAH TO THAMALO TO THE THAMALO ALDAH TO THAMALO TO THE THAMALO ALDAH TO THE THAMALO THAMA
- 3.40. В БЕТОНЕ БАЛОК НЕ ДОПИСКАЮТСЯ ТРЕЩИНЫ, ЗА ИСКЛЮЧЕНИЕМ ПОВЕРХНОСТЬЫХ ИСАЛОЧНЫХ И ТЕХНОЛОГИЧЕСКИХ ТРЕЩИН, ШИРИНА КОТОРЫХ НЕ ДОЛ-ЖНА ПРЕВЫШДТЬ 0.4 мм.

4. RPABNAA RPHEMRU N MAPKUPOBKN

- 4.1. Балки дожны быть приняты технологическим контролем предприятия—изготовителя поштучно. Результаты приемочного контроля и текущих Заводских испытаний дожны быть записаны в журнале DTR или заводской лаборатории.
- AHXADA RNIGAN. NMRNTGAN N OHPETWON STUADBENDON NOARD RICHAL EN STROTGOS BOARMGETAM EN MUTDAOHXET ÙDHAD ON XICHHEABOTOTEN, NOARD EN STROTGOS ALNO CICHAD OLOHAD.
- 4.3. Потребитель имеет прави производить повторный выборочный или поштучный контроль качества балоя, применяя при этом порядок и правила приемки, установленные настоящим разделом,
- Ц.Ц. НА КАЖДОЙ БАЛКЕ ДОЛЖНЫ БЫТЬ НАНЕСЕНЫ НЕСМЫВАЕМОЙ КРАСКОЙ ПРИ ПОМОЩИ ТРАФАРЕТА ИЛИ ШТАМПА СЛЕДУЮЩИЕ МАРКИРОВОЧНЫЕ ЗНАКИ:

- ABOHAMNAH JONTAGN OTH NAN RASTNBOTOTEN-RNTRN9TABATH NAHE WICHHAABOT

MAPRA BANKU;

1.862.1-8.94.1-TY

; ХОЛЛА ВИНЭЛВОТОТОВИ АТВД.
ШТАПП ТЕХНИЧЕСКОГО КОНТРОЛЯ;

ВТИЗУЕПТЕ В МАКАВ В Т.

5. МЕТОЛЫ ИСПЫТАНИЙ И КОНТРОЛЯ

- 5. 1. Методы приемочных испытаний и контроль начества изделий должны соответствовать требованиям COCT+3015,1-84*
- ия маманала в и нола кинэлвототем отовороды моларан дэчэ \mathbb{N} . С. С. Серол в одамузтам иннаматам иннама
- СА КИНЯТИЛЯ ПОТОНИЛЬНИЯ ПОТОНИТЬ В СТИТИТЬ В

Nепытаниям должны подвергаться не менее двух балок , пои этом по кандой балке должны быть проверены все указанные виды контролируемых предельных состояний.

CABER W. 2. NAGERTAH RNHAROAHAN N XRNHATIDISN NAN HORAGA RNHAPNING IDHNUPAKS. 2. NAGERALH KNIE IDHNUPAKA BERNUPAKA WAGERATAH KNIE IDHNUPAKA WAGERA WA

- 5.5. Приемочные испытания балок нагряжением, приемочный контроль неразрушьющими методами, а также ощенка качества балок по показателя м прочности, жесткости и трещиностойкости должны производиться в соответствии с ТОСТ 8829-85.
 - 5.4. Прочность ветона на сжатие следует впределять по TDCT 10180-10 и TDCT 18105-86.

ониларинтивф имадотам ими*шорашереван нола* иннатионо инбатион методом согласно онаста мише оневертали аткладато отведало анота атторичество ими ре-кs6 гр тоот имишоневтом и методы ими ре-кs6 гр тоот ответом и методы инпатион и методы инматионы и методы и методы

5.5. Контроль и ощенки проектной марки бетона по прочности на

TAKKE REPELATOUHOÙ N OTRICKHOÙ ROUHOCTN GETONA CAELSET REPUBBOLITTO ROLLET 1818-86.

5.6. MAPKA BETOHA TO MOPOSOCTONKOCTH ADAMHA KOHTPOANPOBATECA (HE PEME OAHOTO PASA 8 WECTE MECALJES) 8 COOTBETCTBUN C TOTAL 100-84.

МОДНІАЯ NOП ОТ НА ОВБИООП ТЭГЛЭЛІ ОТЭОБОООМ АН АНОТЭВ RNHATIONS!

В НОТЭВ АВАТЭВ NNH ЭНЭМЕЙ

TABANHA 2

Mapra	Схема загрузни	Контрольные нагрузки Рк в т Схема загрузки при проверке					
BANKH	NNHATIANON NAN	WECT-	прочн	NTOC] fr	РАСКРЫ- ТИЯ ТРЕЩИН	
		KOCTU	TPN 4-125	NAU	CM	MM	
			C=1,25	C= 1.6	HE E	OVEE	
PC 8-1	The The The The	2,0	2,7	3,6	1,6		
5C 6-2		2.8	3.8	4,9	4,9		
BC 6-3	100 1500 1500 1500 100	3.0	4,3	5,6	4,9		
6CB-4	5980	3,4	4,9	6,3	2,0]	
6 e 4,8-1	Jon Jon Vi.	2.4	3,3	4,3	1.3		
6C 4,5-2	J.K. DK	3,4	4.6	6,0	1.5	۱,۵	
6c 4.5-3	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3,6	5, 2	6,8	1,6]	
6c 4.5-4	275 0081 0081 27E	4,1	5, 9	4,5	4,6		
BC 9 - 1	16K 16K 16K 10	2,9	4,1	5,4	1.3		
509-2	The the	4.4	5,1	4.4	4,5		
BC 9-3	5/2	4,4	5.4	8,4	4,6	1	
669-4	1100 2200 2200 2200 1100 8800	5, 0	1,2	9,4	4,6		

Примечание: Контрольные нагрузки указаны без учета собственного веса балок.

1.862.1-8.94.1-TY

Контрольные нагружи и прогибы предварительно напряженных балок пролетом 10,5м

Таблица 3

		вехичи	величины контрольных нагрузок Р _к по проверке, тс									_				
Mapka	LXEMA SALDASKN	прочности			# ECT	Ж Е СТ К ОСТ И ШИРИНА РАСКРЫТИЯ ТРЕЩИН			Контрольный			OTHOWEHNE				
BANKU	NNH ATIONDU NON	при С	равнов	٨	время п	жетан аязепто элооп кмэчв		іжения (сятки)		f_{κ} , mm		nt/ net				
		1,25	1.4	1.6	14	28	100	44	28	100	14	28	100	14	28	100
6C 10.5 - 1 A m 8		5,6		1,1	3,2	3.0	2.8	4.0	3,7	3.5	18,4	18,2	17.0	F3.a	0.60	D, 54
БС 10,5 -1 А т йк	1 .		5,1	6.0	2.6	2,5	2.3	3,2	3,1	2,9	15,9	45,4	14.1	0,51	0,45	P.5.0
6c-10,5-2 A 🗓 B	1 PK 1 PK 1 PK	6.4		8.6	3,9	F.E	3.4	4,9	4.6	4.3	21,1	8.03	19,2	0.80	24.0	5,62
6C-10.5-2 A, jjr			4.4	8,6	3,5	3,2	3.0	4.7	4.4	4,1	18.9	14.8	46,4	0.61	0,53	0,42
6c - 10,5 - 3A ju B	1950 - 3000 1500 3000 1350	8,6		11.1	5,3	4,9	4,4	Б,6	6,1	5,5	५.६९	26,2	23,4	4.0	88,0	0,74
60-10,5-3A-BR	111400		9,5	11.0	4.5	4.2	3.9	6.4	6,0	5.5	21,8	19.9	19.0	27,0	D, 65	0,52
BC 10.5-4A <u>m</u> 8		8,6		11.1	5.3	4.9	4.4	8.6	6,1	5.5	27.4	26,2	23.7	1.0	68,0	0,94
6C 10.5 - 4 A TOR			9,5	14.0	4.5	4.2	3,9	6,4	6,0	5.5	21.8	19.9	0,9}	0,75	0.65	0,52

где: f_q — прогиб от временной длительной нормативной нагрузки;

ине подл. Подпись и дата Взам. инв. Nº

 f_n - прогив от общей нагрузки (постоянной + временной длительной).

Контрольная ширина раскрытия трещин не дожна превышать 0,45 мм.

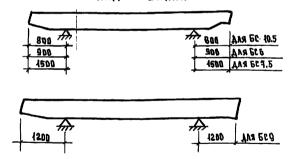
1.862.1-8.94.1-79

Auct

5.7. При проверке плотности бетона контроль марки бетона по во-Донепроницаемости следует производить (не реже одного раза в три месяца) Согласно ГОСТ 12730.5-84.

- .8.2 -1.067517307 on rostragagno ahwada ahotba assam rahmbada .8.2 .88-653677307 on ahotba worm okhmbada atrabadagno standaraka
- 5. 9. Размеры и неплоскосность балок, толщину защитного слоя бетона до арматуры, положение закладных изделий, фактическую массу, качество поверхностей и внешний вид балок проверяют по Γ 0.1-81.
- NCHALAGE WANTER COEMMEMBER OF THE TOTAL OF THE COEMMEMBER OF THE COLOR OF THE COEMBER OF THE COE
- 5.11. Неоговоренные в настоящих ТУ технические тревования и метолы контроля и испытаний принимаются согласно ГОСТ 13016.0-83.

6. TPAHCHOPTHPOBAHNE N XPAHEHNE

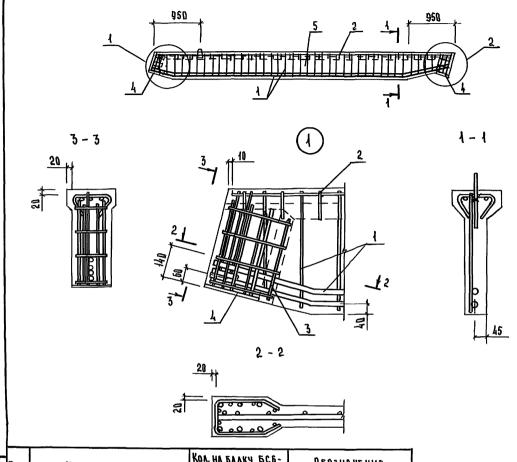

- 6.1. Ganku adamhdi xpahutber u tpahenoptu pobatber b cootbetctbuu c 10013.4-84.
- Б.2. Складирование и транспортирование балон производится в рабочем положении (стенка находится в вертикальной плоскости). Балии должны укальы ваться на инвентарные прокладки, размещаемые в зоне опор (см. рисунки); про-кладки необходимо располагать строго по вертикали.
- вта смещения. Крайние в рядах ваки следет закреплять от возможного сдвиси опромомь вания.
- POD XATDAAQ XIHHUDEVQTICAQ OHVOEVQTON NGN MOHAQN NOAAB TABXAĞ 14.6 POD XATDAAQ XIHUMATHOM NATU NOTE RAL SHHHALHAHAHAHAHAHA AC ROTERABTON
 - окиналаго или) оитрап окелная атармоворпоз наскаю алэтивотогов . 2.3

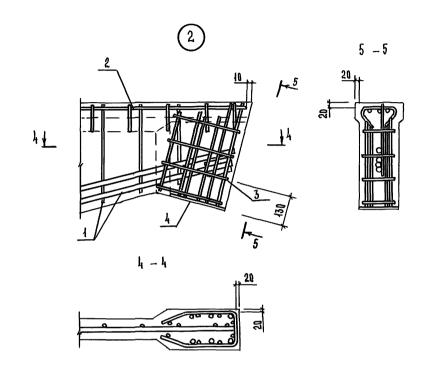
EARY) ADRIMENTOM O KAUECTBE, BANDONHEHHDIM B CODTBETCTBN C TPEBOBAHNAMN TOCT 13015,3-81.

RASTNAOTOSCH NALHACAT.

- 1. 1. Т выводитивания понналод объем неготором и выправания в установаниям порядке балок требованиям рабочих чентеней настоящего кланового и выбома и соотретененом гостания выправания станаваться и выбома и соотретененом гостанаваться выправания станаваться выправания постанаваться выправания постанаваться выправания гостанаваться выправания постанаваться выправания постанаваться выправания постанаваться выправания постанаваться выправания постанавания по
- 1.2. ПРИ ПТИЧСКЕ С ПРЕДПРИЯТИЯ БАЛОК С ПРОЧНОСТЬЮ БЕТОНД НИЖЕ
 ПРОЕКТНОЙ МАРКИ БЕТОНА ПО ПРОЧНОСТИ НА СНАТИЕ ИЗГОТОВИТЕЛЬ ПБЯЗАН ГАРАНТИРОВАТЬ, ЧТО ПРОЩОСТЬ БЕТОНА ДОСТИГНЕТ ПРОЕКТНОЙ МАРКИ НЕ ПОЗДНЕЕ 28 ДНЕЙ СВ
 ДИЯ ИЗГОТОВИЕНИЯ (ИМИ В ДРУГОЙ СРОК, ОБУСЛОВЛЕННЫЙ ЗАКАЗЧИКОМ И ИЗГОТОВИТЕЛЕМ).

Опирание валок при перевозке и Складировании

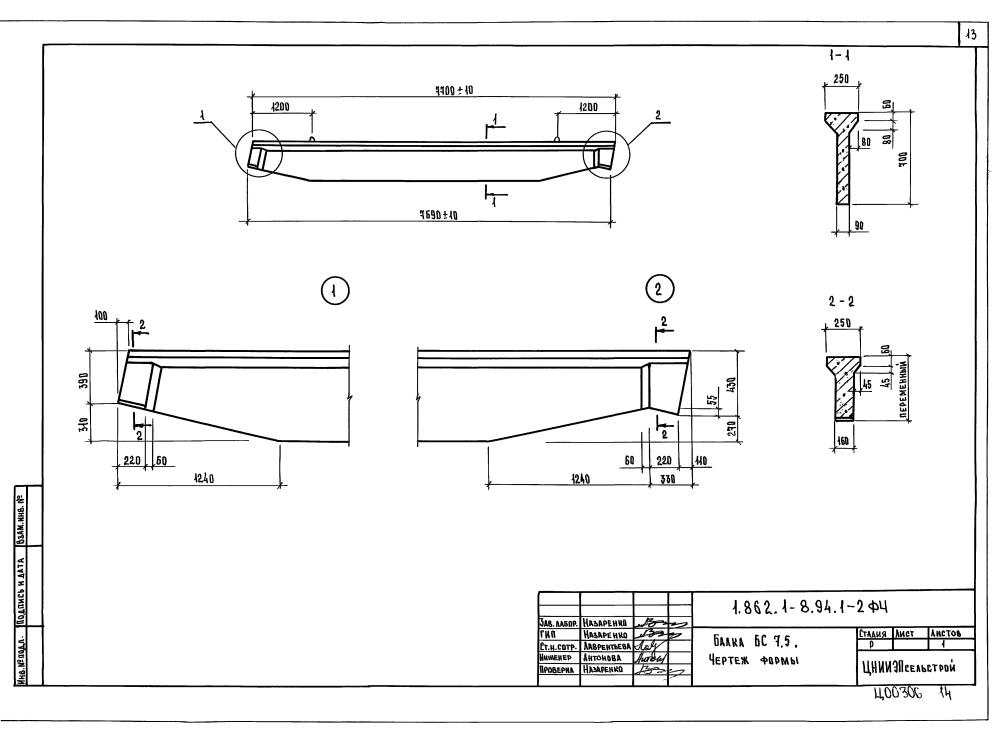

M	РАСЧЕТНАЯ РАВНО- МЕРИО РАСПРАВИТЕЛЬНИЯ	KAACC BE-	Расхоа ма	Валанчэт	Magca	
Mapka	HAPPYSKA OT NOKPHITHS, Krc/m²	0Л АНОТ Проциости	GETOH, M ³	C TANP' KL	τ	
BC 6 - 1	1500	B15		56.3		
<i>PC</i> 8 - 5	2.100	845	B45 64, 2 B20 78, 2		A A 5	
6C6 - 3	2400	B20			0,85	
6C6 -4	2400	B20		88,6		
6c4.5 - 4	4500	845		79,5		
6c 7,5 -2	2100			109,1		
6 c 4.5 - 3	2400	820	0,58	157'1	4.4	
6c4.5-4	2900			133,5		
PC 3 - 1	4500	B 45		6,014		
6c9 - 2	2400	1 015	n 06	127.2	0.1	
609-3	2400	B 22,5	96,0	124.2	2,4	
6C9 -4	2400] B&K,U		146.0		


11		KNACC BE-	Расход ма	TEPNANO8	Macca,	
Марка	HALPASKA DI UDKAPPILNA KCC/W ₅	ВП АНОТ ИТЗОНРОЧП	BETOH, M ³	าม,สกลชา	т	
6 € 40,5 - 4 <u>A</u> ∭8	1500			148,4		
6€ 10,5~2A <u>iii</u> B	2100	825	4.45	165,2	2,9	
6c40,5-3A <u>iii</u> a	2 400		4:10	206,5	ζ, 4	
BC 10.5-4AW8	2400			206.5		
6c10,5-1A,12K	1500			133,4		
6 c 10.5-24,™k	2100	B25	1.15	165,2	2.9	
PC 10'2-37 ⁴ 1∫X	2400			206,5	• •	
60 (0,5 - 4 A ₇ (₹ K	2700			206.5		

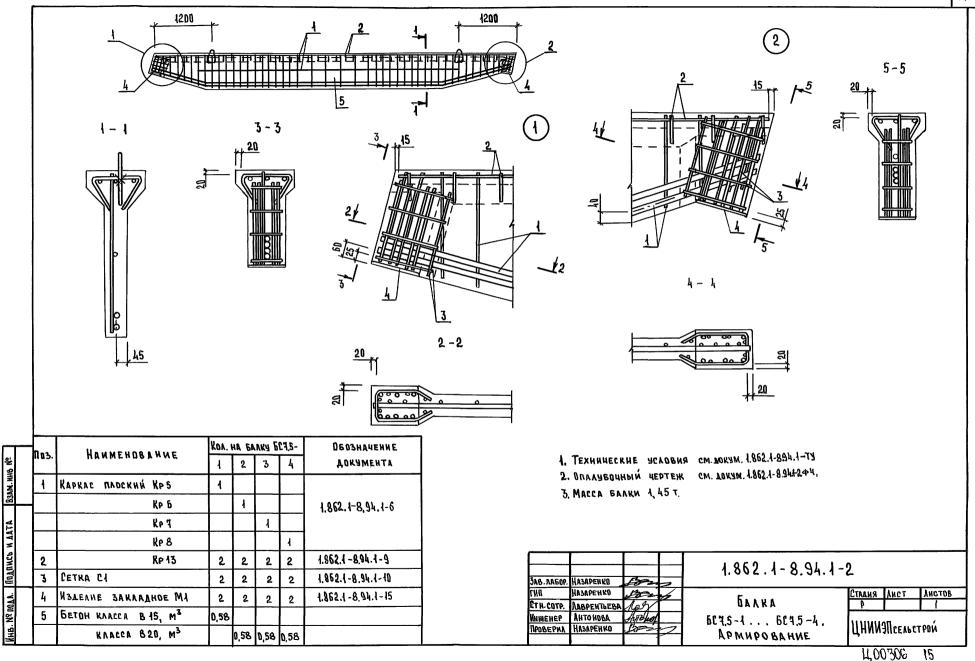
Cr. H. COTP, NABPEHTLEBA JAW	CTALUS ANET ANCTOB
MHWEHER AHTOHOBA HUNGH HOMEHKAATYPA NOMEN MPOBER HABAPENKO HOMEHKAATYPA NOMEN	D . 1

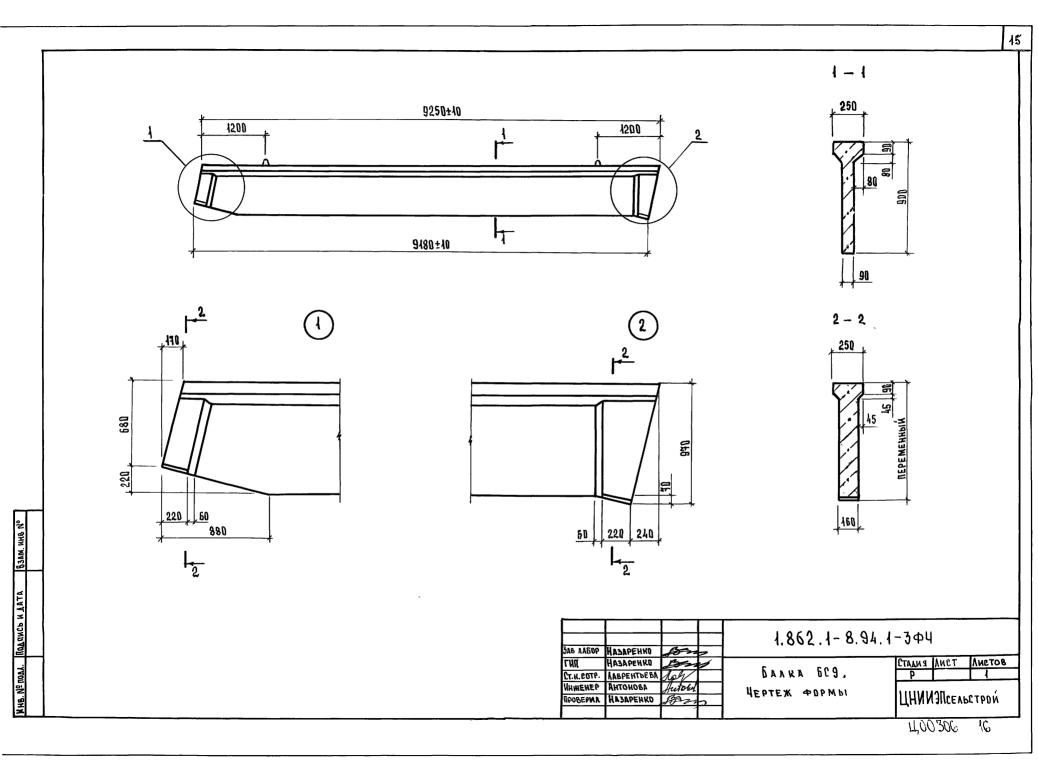
170030P 11

HHE.Nº ROLA ROLTHUCH MATA BERN. WHE NE

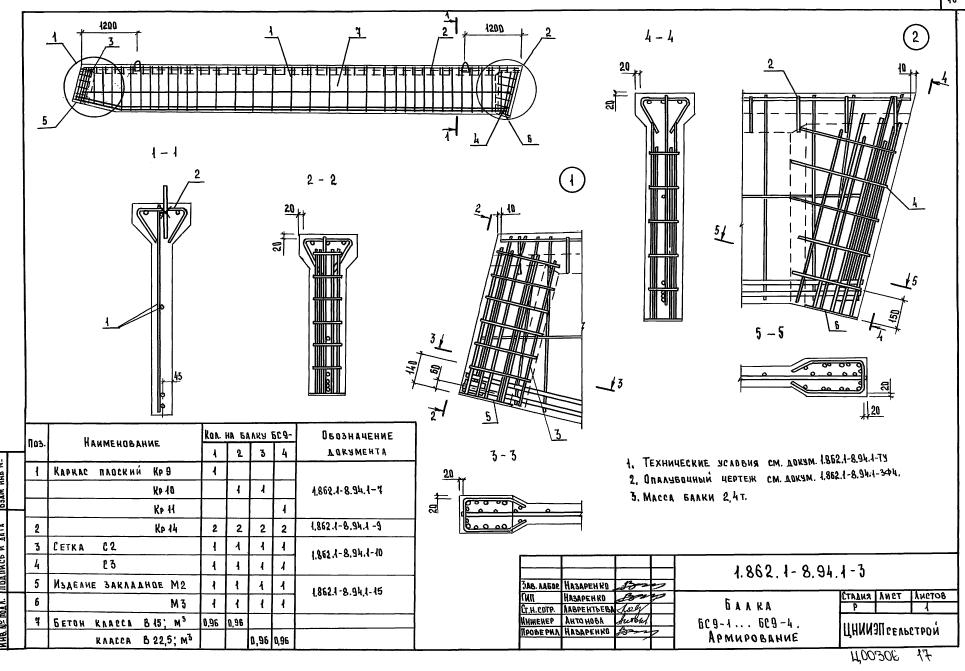

- 1. Технические требования см. докум. 1.862.1-8.94.1-ТУ
- 2. Опалубочный чертеж см. докум, 1.862.1-8.94.1-144,
- 3. MACCA BANKH D. 85T.

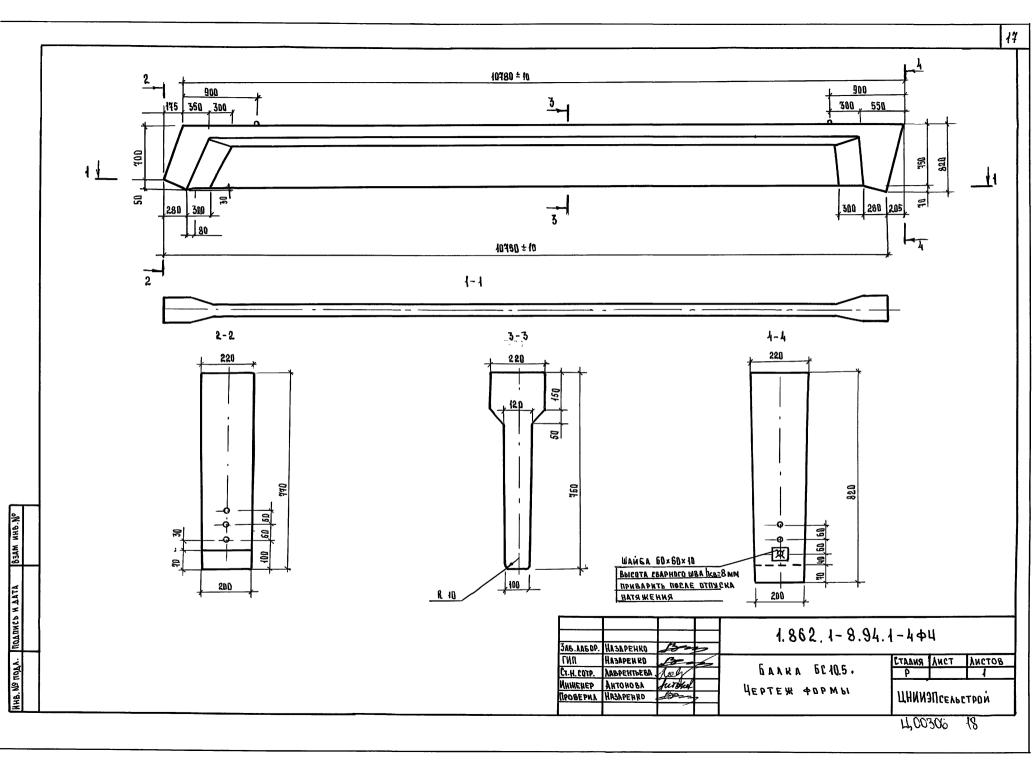
	_	No3.	HANMEHOBAHNE	KOA.	HA BA	AKY 1	5C6-	BEOSHAHEHNE
HB.N		110 3.	Зин ввинямивп	1	2	3	4	A OKYMEHTA
B3AM.HHB.Nº		1	Каркас плоский Кра	1				
183	Н		KP 2		1			4.862.4-8,94.4-5
E			Kp 3			4		1,000.11
X			Kp 4				4	
SORTHCE WARTA		2	Kp 42	1	4	4	4	1,862.4 - 8,94.4 - 9
TOA		3	CETKA CI	2	2	2	2	1.862.1-8.94.1-10
		4	NATEVNE SAKVATHOE WI	2	2	2	2	1.862.1-8.94.1-15
HHB. Nº TOAA.		5	BETOH KNACCA B15, M3	0,34	0,34	,		
呈			KNACCA B 20, M3			0,34	0,34	

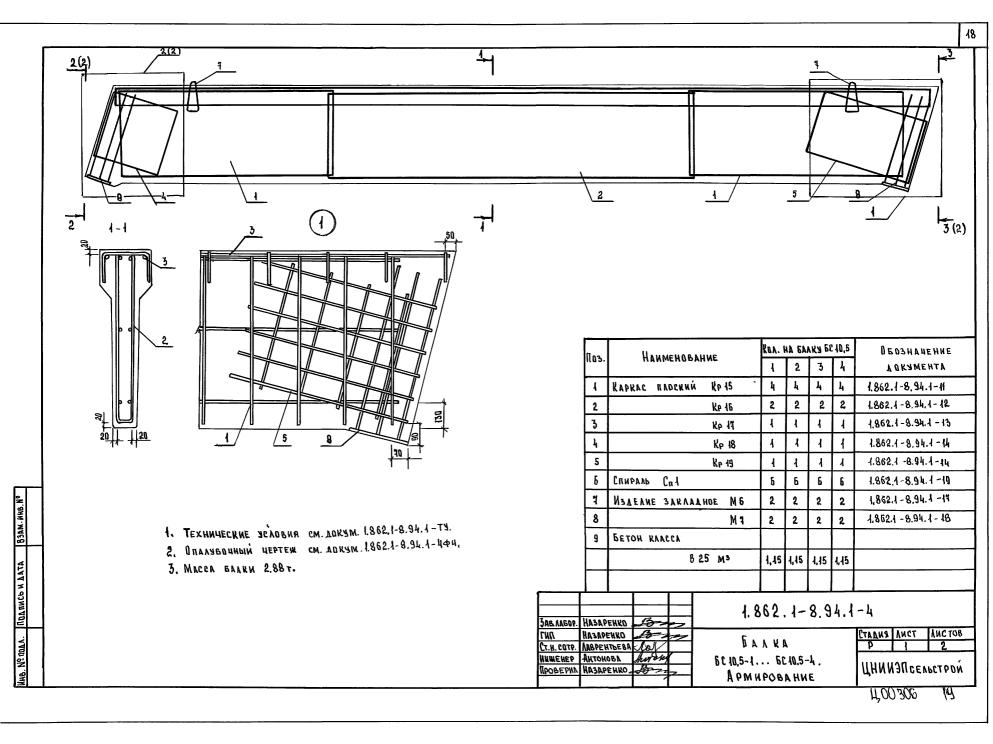

AB.AABOP.	HA3APEHKO	Bez	\exists	1.862.1-8.94	.1-4
'UN T.H.COTP. HWEHEP	Hazapehko Hazapehko	B-24	2	6 A N K A 60 6-1 606-4. Apmupobahme	<u>р</u> ЦН
					1.0

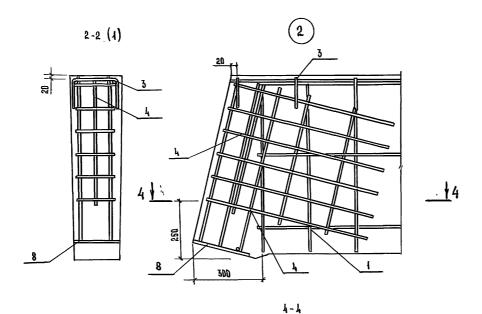

RNAATS	AUCT	ANCTOB
Р		1
нии	1711ce	NOG TOON

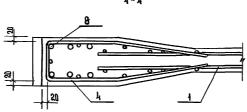
1,00306 13

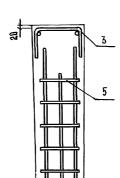


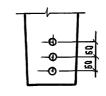








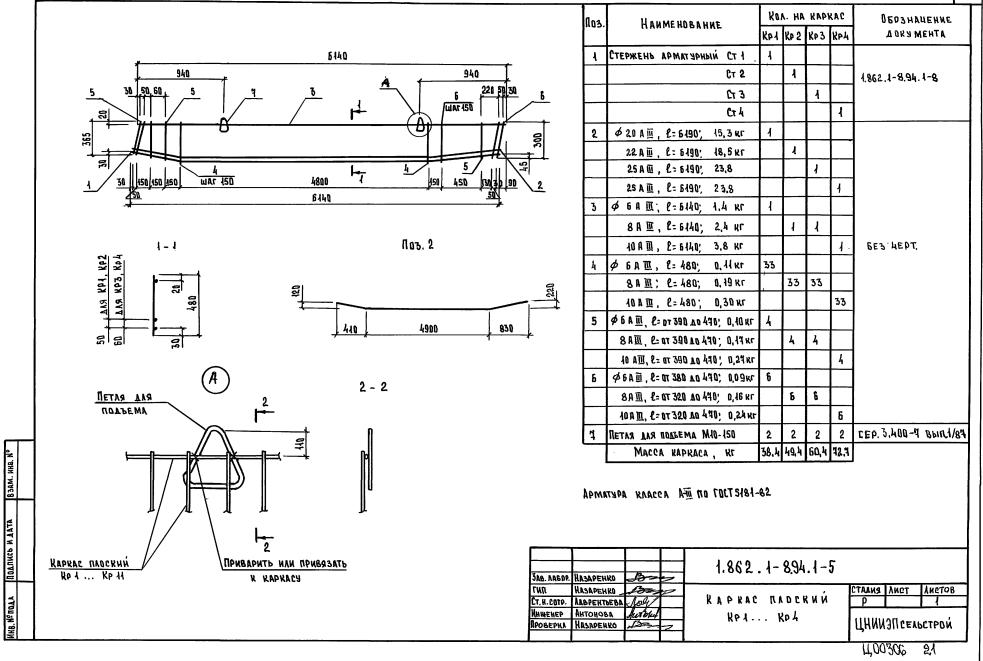


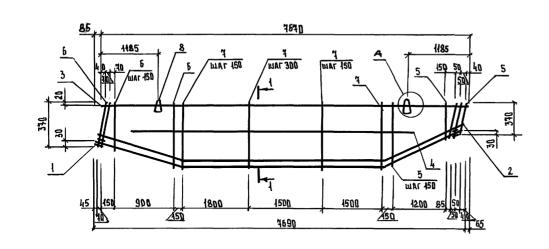


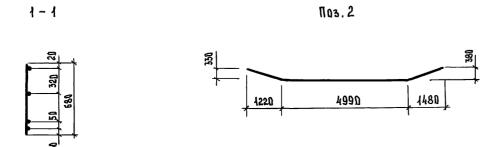
Lonackaetca inamehath bmecto apmataphi karcca $A_{7}\overline{v}$ k no loct 10894-84 equataby karcca $A_{7}\overline{v}$ 0 on loct 5781-82.

3-3 (1)

РАСПОЛОНЕНИЕ НАПРЯ-В ИРЕТЛИЧА ЙОЖЭЛ ИМЛАВ ИИНЭРЭЭ



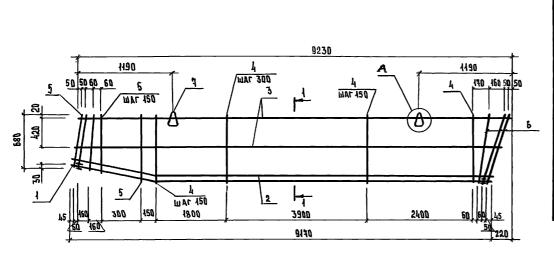

MAPKA BANKN	AGETANGA RAMBATROPAH
6C10.5-1A m 8	3 Ø 20
6c10.5-1A-19K	3 ø 18
B M AS - 2,013d	3 ø 22
6C 10.5 ~ 2 A7 IV K	3 ø 22
8 <u>M</u> 45 - 2.0193	3 ø 25
EC 10.5 - 3AT [] K	3 ø 25
6C10,5 - 4 Am 8	3 ≠ 25
6010.5-4 AT XK	3 ø 25


1.862.1-8.94.1-4

Anet 2

1,00306 20

Паз.	Наименование	Kox	. HA K	LAPKA	e	Овозначение
1143	THE THE STATE OF T	Kp5	KP 6	KPT	Kp8	ДОКУМЕНТА
1	Стершень арматирный Ст 5	4				
	Ст 6		4			1.862.1-8.94.1-8
	Ct 7			4	4	
2	≠20 A W , C= 7780; 19,2 Kr	1				
	22 A III , C = 778D; 23.2 Kr		1			
	25 AII, C= 7780; 30,0 Kr	L		1	1	
3	Ø8A <u>III</u> , €= 4640; 3.0 Kr	1				
	14 AIII, C= 7670; 9,3 KГ		<u></u>		1	
	12 A m, e= 4640; 6,8 Kr		1	1		
4	φ 8 A m., e= 5480; 2, 6 Kr	1				
	10 A m. e = 6480; 4.0 Kr				1	
	12 A III., C = 6480; 5,8 KC		1	4		БЕЗ ЧЕРТ.
5	Ф8 A <u>ш</u> , С=0т340 да660; 0,19кг	12				
<u></u>	42 A III , 8= 07 340 AO 560 ; 0,43Kr		12	12		
	44 A III , 8= ot 310 do 660', 0.59 kg		<u> </u>		12	
Б	Ф 8 A III, C= OT 380 AO 66D; 0,21кг	9				
	12 A Ⅲ, l = 0T 380 A0 660', Q.46Kr		9	g		
	44 M. L = 07 380 A0 660; 0.63 Kr				g	
7	φ 8 A III , θ = 680', 0,24 Kr	28				
	12 A m , e = 580; 0, 60 Kr		28	28		
	44 AM, E= 680; 0, 82 ur				28	
8	RETAR AND MODEMA M12-150	2	2	2	2	CEP. 3.400-4 BUILL/84
	Macea Kapraea, Kr	58,0	84,6	101,6	111'8	

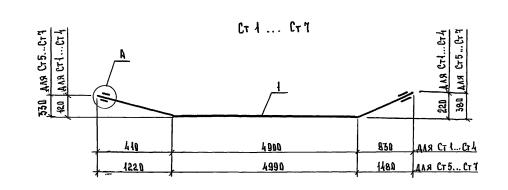

.SB-18FZ T307 on MA ADDANN AGETAMAA .

2. Y3EN A CM. AOK. 1.862.1 -8.94.1-5

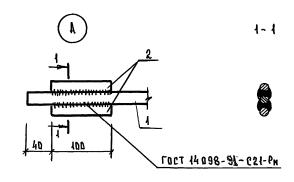
HHS. Nº ROAN ROARNED W AATA B3AM. MHB. Nº

SAB AAROP.	HAZAPEHKO	lon		1.862.1-8.94.1	- 6		
		Con			CTAANS	ЛИСТ	AHETOB
CT.H.COTP.	NABPEHTLEBA	204/		Kapkac naqckuu	Р		1.1
HHHEHEP	Антонова	futoful	П	KP5 KP 8			
UDOBEDKY	HABAPEHKO	1332	,	KY3 KY 0	LIHNN	311 CERP	CTPOK

Ц00306 гг


_						
	N 03.	HANMEHDBAHNE	KOA.	HA KA	PKAC	DBD3HA4EHNE
	11 0.2	THUMERODY HAE	KP9	KP 10	Kp41	TOKAMEHLY
	4	Стержень арматирный Ст 8	4			
		Ст 9		1		1.862.1-8,94,1-8
		CT 40			4	
I	2	\$22AⅢ, E= 9200; 27,4 Kr	1			
I		25 A D, l= 9200; 35,4 Kr		1_		
		28 A II. L= 9200; 44,5 Kr			=	
	3	Ø8 AⅢ, €= 9230; 3,65KF		2	2	без черт.
	4	8 A III , C= 880; 0,35 Kr	42	42	42	
Ì	5	8 A W , 8 = 0T 680 A0 840; 0, 30 KF	6	ħ	в	
	6	8 A M. C = OT 890 AO 940; 0,36kr	3	3	3	
	d	021-41M AMBEAON RAA RATBN	ત્ર	2	2	CEP. 3.400-4 BUR 1/87
		Macca Rapkaca, Kr	82,8	1,66	117,6	

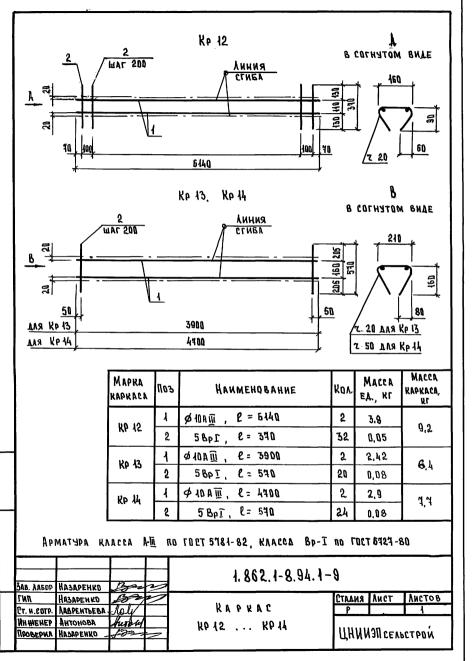
1-1

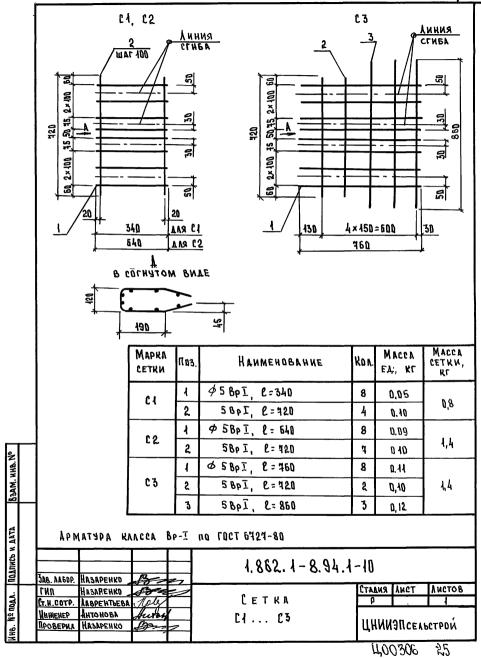

- 1. APMATUPA KAACCA MI NO 1001 5781-82
- 2. YSENA CM. LOK. 1.862.1-8.94.1-5.

				1.86	2.1-8.94	1-7			
ABARABOP.	HAJAPEHKO	Ben	_						
.NU	HAZAPEHKO	B	4			RNAATI	Auct	Anetob	
.н.сотр.	AABPEHTLEBA	poly		KYPKYC	UYOCKNN	4		1 4	
HWEHEP	ABOHOTHA	hereby		KÞ9	Kell		•		
ANGSBOG	Hajapehro	Ben	ń	l "" " " " " " " " " " " " " " " " " "		[TTHNN.	311CE VP	NOGTO	
				l					

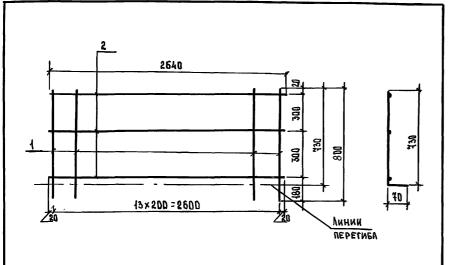
Ц00306 23

7	4	Ст 8 Ст 10
972		_
	86b	8340


Поз.	HANMEHOBAHNE		Kon.	на	NP I	E TA N	PHE	ıú	CTE	₽ ₩ E	нь
11 0 5.	HANMEHUBAHNE	Crl	CT 2	Ст З	Ст 4	CT 5	Ст Б	F 73	CT8	Ст 9	CT 40
4	Ø20AM, 8 = 6190; 15,3 Kr	4									
	22 A 11, C = 6490; 48,5 Kr		4								
	25 A 10, 8 = 6490; 23.8 KC			4							
	28 AM, C = 6190; 29.9 Kr				4						
	20 A 11, C = 4480; 49.2 RF					1					
	22AI, 8 = 4480', 23,2Kr						4				
	25 AM, &= 4480; 30.0 KT							1			
	22 4 11, e= 9200; 27.5 kg								1		
	25 A 11 (L = 9200; 35,4 xr									1	
	28 A M, C = 9200; 44,5 Kr										1
2	Ø 20 AM, € = 100; 0,25 Kr	4				4					
	22 A III, E = 100', 0, 30 KT		4				4		4		
	25 A III. 2 = 100; 0.39 Kr			4				4		4	
	28 A III , C = 100; 0, 48 Kr				4						4
	Масса стерния, кг	16,3	19,7	25,4	59,9	20,2	24,4	31,6	28.7	34.0	46,4


S8-18FE TOOT ON THE ADDAMM AGETAMAN

JAB. AAGDP. HASAPEHKO STAANS ANCT A CT.H.COTP. AABPEHTDEBA LOV NUMEREP ANTOHOBA LUTCH TOOGEPUA HASAPEHKO TOOGEPUA HASAPEHK					1.862.1-8.94.1-8			
CT. H. COTP. ABBPEHTDEBA AS CT L. CT 40 WHINEHEP ANTOHOBA LANDEL CT 1 ET 40		HASAPEHKO .	Book			I Constitute	IIaT	LANCT
CT.H. COTP. NABPEHTDEBA CON CTEPHERB APMATSPROVE	ในก	HAZAPEHKO	400			KNAATI	MULT	ANC
WHIHEHEP ANTOHOBA JUSTICAL CT 1 ET 10	Ст.н.сотр.	NABPEHTDEBA	Now		CTEPHEND APMATYPHOIN	р	<u> </u>	1
Проверил Назаренко До		авонотић	Justal		Cr 1 Cr 40	1	211	
	Ubopeany	HASAPEHKO	Jon-	<u>-</u>	• • • • • • •	ПНИМ	1JIICEA6	OPT).


1,00306 21

Марка Каркаса	No3.	Наименование	Kov.	Macca Ea, Kr	Macca Rapraca, Kr	
K6 12	7	Ø 6 A <u>II</u> , ℓ=800	14	2.5	7.0	
RF 15	2	\$ 5BpI , C= 2640	3	1.3	3,8	

OB-156727-00 III ASSAN, SB-18767-1907 on III ASSANN AGENTANGA OB-15677-1907

18.Nº noan. | noanuchu aata | B3am.nhb.nº

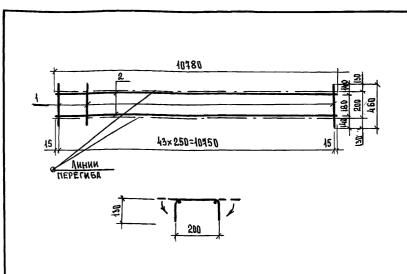
3AB AAGOO HA3APEHKO CNN HA3APEHKO CT.H.COTP. AABPEHTLEBA

Инненер Антонова филь Проверии Назаренко

1.862.1-8.94.	.4 - 44	-
	TONA RHARTS	Аистов
KAPKAC KP 15	P	1
	ИНИИ ЭПСЕЛЬ В НИИ ЭПСЕЛЬ	строй

KHB.NOGOAR. ROATHCOW ARTA BSAM.WHB.NO

*	5300	- <u> el</u>	
1		300 300	430
150	25 × 200 = 5000	150	30
		RNHNA Adniagan	-


M APKA KAPKACA	Поз	Наи менова ние	Roa.	Macca EL, Kr	Macca Kapkaca, Kr
KP 16	1	\$58pI, L=800	26	2,4	C N
KP 10	2	Ø5 BpI, €=5300	3	3,5	5,4

08-1517 7307 оп Тав аззаля ачетамай

JAB. AAGOR HASAPEHKO	1.862,1-8,94.1	-42		
CT. H. COTP. AABPENTSEBA TO S. UNIMENED ANTOHOBA	11	CTAAUR P	Auct	Аистов
ПРОВЕРИА НАЗАРЕНКО	KAPKAC KP16	ЦНИИ	ЭПСЕМ	строй

4,00306

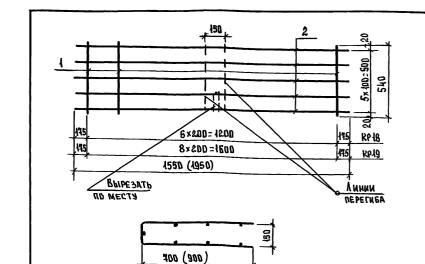
Madka Kapkaca	No3.	Наименование	Koa.	Macca EA., Kr	Macca Kapkaca, Kr
110.10	1	Ø 58pI, l=460	44	FD.0	100
₽}	2	Ø 10 A <u>m</u> , €±10780	2	6.65	16,0

OF EGS ASSANA, S8-18F2 TODION IN ASSANA AGETAMAN 08-FSF0 T301

ROLCINC W LATA

3AB.AAG. HABAPEHKO

HA3APEHKO G. H. COTP. LABPEHT LES LOL

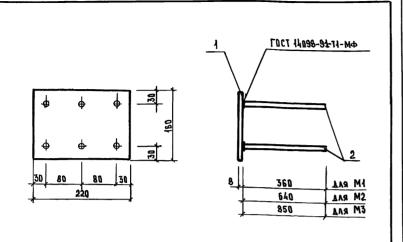

MHHEHEP AHTOHOBA LUTCH

POBER HASAPEHKO

UNJ

1.862.1-8.94.1-13 CTAMUS ANCT ANCTOB KAPKAC KP17 ЦНИИЭПСЕЛЬСТРОЙ

WHE NOTIOAA. | NOLINCE HAATA | B3AM WHS.NO

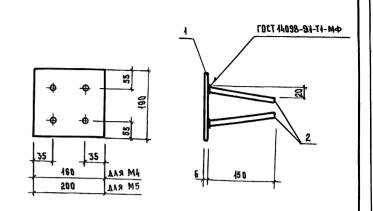


Mapka Kapkaca	No3.	Наименование	Kax	MACCA EA; KT	Macca Kapka ca Kr
130.10	1	\$58pt, e=540	7	8Ú,Ø	
Kb 18	5	\$5 Bp.I., C=1550	6	0.24	2,0
K610	1	Ø 58pI, C=540	9	83,0	
K113	2	\$5Bp], l=1950	6	0.30	2.6

OB-FSF87207 ON ITE ASSAM AGETAMAA

дав.лабо	Р. НАЗДРЕНКО	Ber		1.862.1-8.94	. 1 - 14
CT.H.COT	НАЗАРЕНКО У ЛИВРЕНТЬВА	Siele	7	Kapkac KP48, KP49	CTAANS ANCT ANCTOB
	НАЗАРЕНКО НАЗАРЕНКО		Z	MARKAC RESO, MESS	№ МОЧТОАЛЬ ПЕИИНД

13 SUC 501

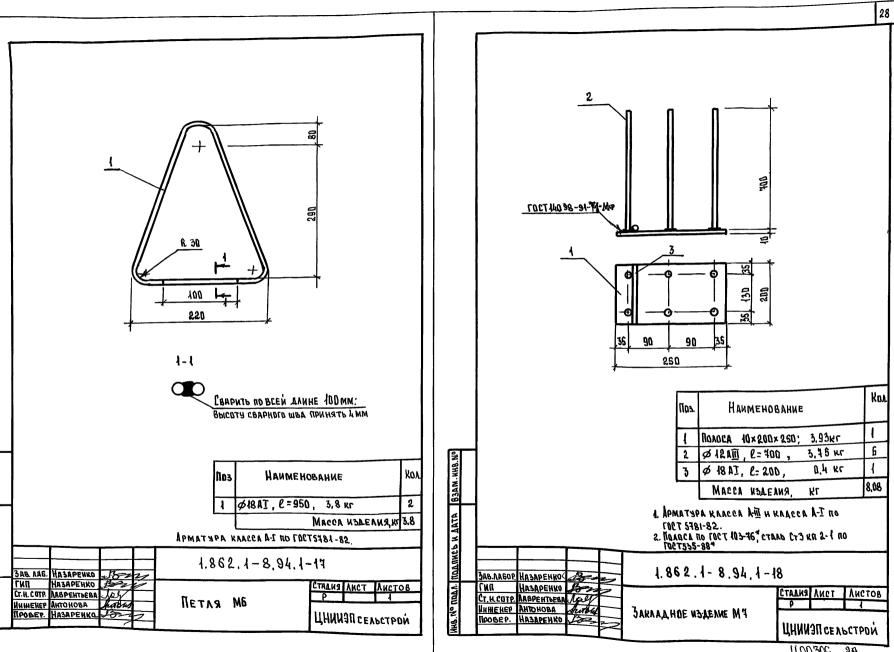


Nos.	Наименован	u t	Koa ha nsaea			
		n L	MA	M2 4 8	M3	
1	Norder E-8×460×550;	2,2 Kr	1	1	1	
2	Ø10Am, €=360;	D.22 KT	6	m	T	
	10 A III , C= 640 ;	0,38 KF		6	Г	
	10 A m, C= 850',	0,52 KT			6	
	Масса изделия,	KL	3,5	4,5	5.3	

1. APMATUDA KARCEA FILL 110 TOET 5781-82.

2. MOADCA NO FOCT 403-76", CTAND CT 3 KT 2-1 NO FOCT 535-88"

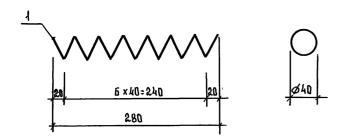
			,		
3ab.nagor	Назаренко	Ber		1.862.1-8.91	4.1-15
TUN CT.H.COTA NHWEHEP	Назаренко Лаврентьева	Horok!	Ш	M1 M3 NaTevne pakvathoe	HOPTSANS RNAFT ANCTSANSSITENNALL HOPTSANSSITENNALL


No3.	Наименование	Kox.		
1100.	HAMMERUBANNE		M4	M5
1	NOADEA 6-6×190×160;	1, 4 Kr	1	
	5- 6× 190 × 20D;	1,8 Kr		1
2	φ8 A m, e= 150;	0,D6Kr	4	4
	MACCA NOAEANA,	KL	1,4	2,0

B3AM.WHB.Nº

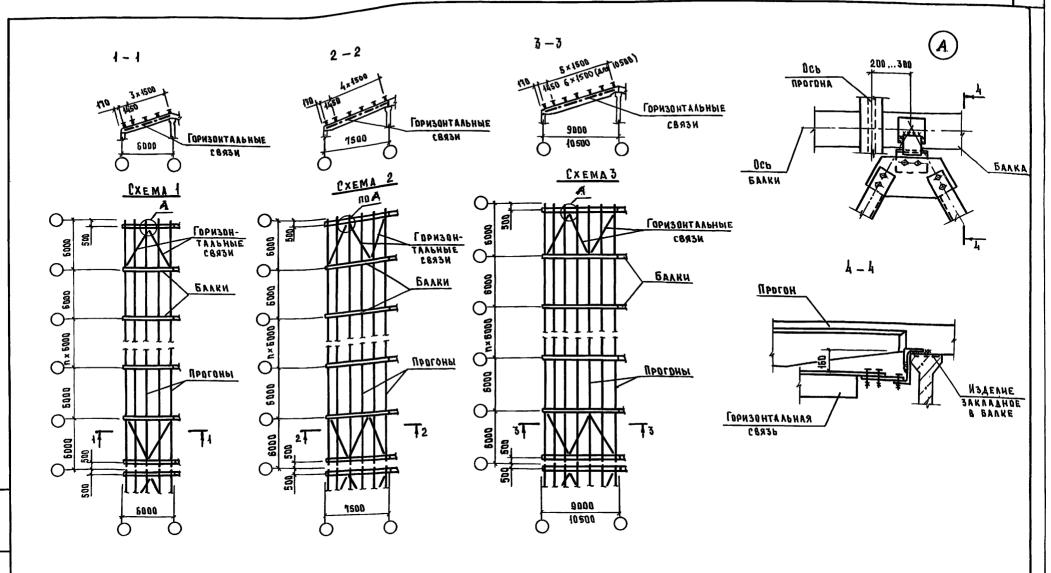
NOAMA					_	1.862 . 1-8.94.1-
2		3A8.AASOP.	HAZAPEHKO	Bre		11.00
j	,		HASAPENKO	Bon		
HHB. Nº TOAA.	1		LABPEHTLEBA	low		NOTEVNE SURVETHOE
9			AHTOHOBA	heroly	_	M4, M5
ā	'	UNGBERNY	HAZAPEHKO	(200mm)	_	Int of 1 to
풒					├─	

CTAAU 9	ANCT	ANCTOB
P		Ti


1700300 58

B, NO MOLA. | MOLNICO W LATA | BSAM. WHB. NO

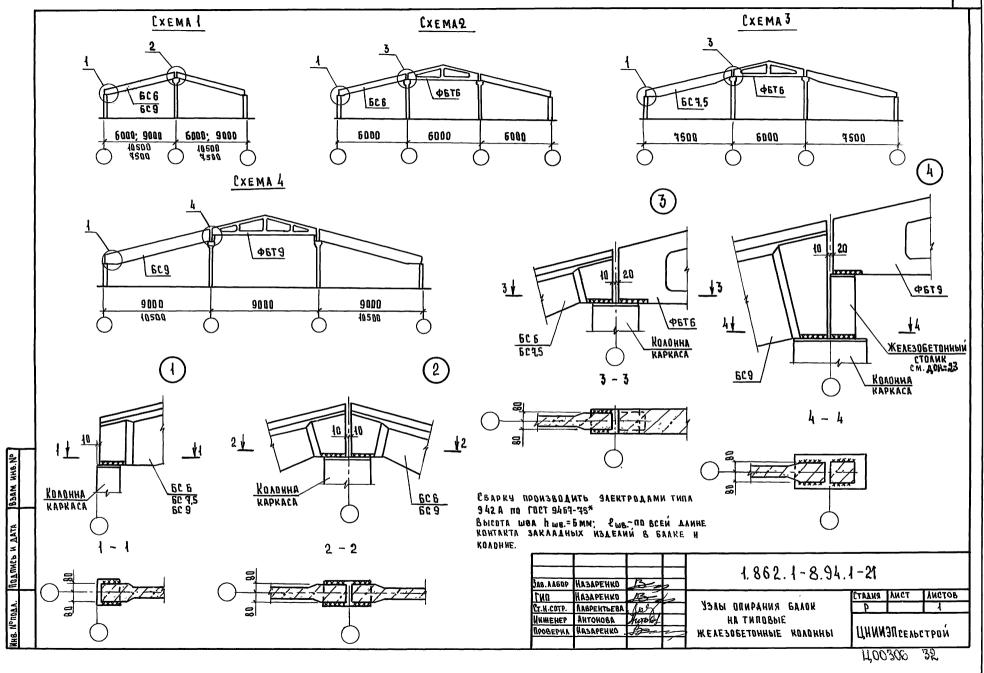
H00300 58

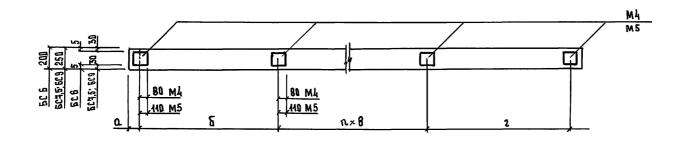

HHE NOTIOAN HOATWED WASTA BSAM. WHB.Nº

Марка изделия	No3.	Наименование	Kaa	MACCA	MACCA NBAENNS, RT
Cn 1	4	Ø4BpI, l=1060	2	0,2	0,2

08-FSF0 TOOT ON IGE ASSAAN AGETAMAA

				1.862,1-8.94.1-19				
JAB AAG.	Назаренко	1300	-					
	Назаренко	B	=,		СТАЛИЯ	AUCT	Листов	
CT.H. COTP.	ЛАВРЕНТЬЕВА	Toly		0 0 1	P		4	
	Антонова	furby		LUNDAVP GUIJ				
MPOBEPWA	HABAPEHKO	Ber			ЦНИИЭПСЕЛЬСТРОЙ			


1,00306 30

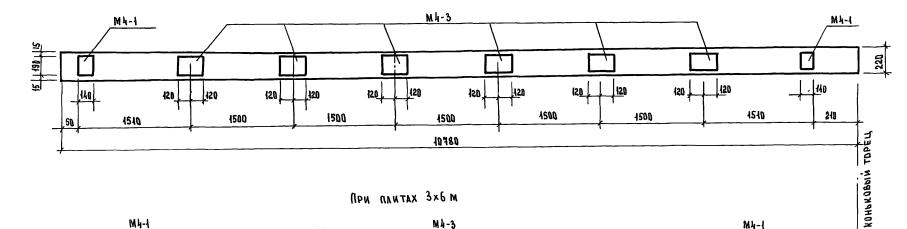


На схемах условно показан шаг прогонов 1,5 м; при шаге прогонов 3м - расположение связей аналогично. Сечение горизонтальных связей и элементов их крепления производится в конкретном проекте по расчету. Марка стали связей зависит от расчетной температуры наружного воздуха наиболее холодиой пятидневки и принимается по таблице 1 п. 2 λ технических условий.

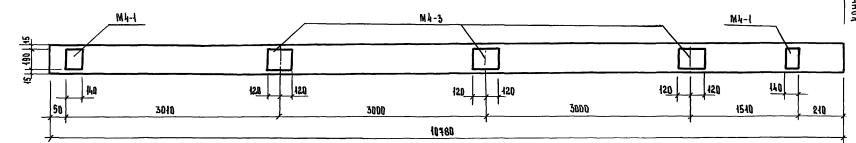
DAR AABOP. HABAPEHKO BA	*2	1.862.1-8.94.1-2	.0				
T.H.COTP. ABPENTAGEDA LOS		-daathoengot rnhamoaondag amaxl	RNAAT) q	ANCT	Аистов		
TOOBEDHA HASAPEHKO		О ЙИНАДЕ КАД ЙЭЕКВО ХИН КИНЭШЭЯ ЧЭМИЧП. ИМАНОТИЧП	ЦНИИЗПСЕЛЬСТРОЙ				

15 306,0071

Mapka	٥	HECH	MNE WAE	MPONET BANKU,		PASMEP	ы, мм		n	KOA. 3AK. H3AEAU	PACXOA CTANN,	
PYVKN			RHTIG	M M	a	δ	В	2	"	M 4	M 5	Kt,
		_		6			_	2960	_	3		5,1
666 a ' 664,5, a		. B NTU	3×6m	٦,5	100	2960	3000	1460	1	4	_	6,8
663 O				ð			0005	2960	4	4		8,8
		}		6		2960	_	296 0	_	3		5,1
		BbIN.		4,5		2300	2005	1460	4	4	—	6,8
5 83 <i>8</i>	6 δ	8	ШАГ	g	140	3000	3000	3000	4	4		6,8
504.56 4-39-1	2	3 M	6	80*	2960	_	2960			3	Б, О	
		BbIA. 8		4,5	7	73 of	3000	1480	1	_	4	8,0
	CEPMU	8		9	1	3000	3000	3000	4	1	4	0,8
	01			б		1460		1460	2	5		8.5
_	HPI	Bbin. 4		7.5		1400		1400	3	6	_	10,2
604E 8	RODFOHDI	8	MАГ	g	140_	1500	1500	1500	4	4		44.9
BE 9 B		ત્ર	1.5 m	Б	80*	1460	1000	11.50	2	-	5	40,0
		Bolff. 2		4.5		1404		1460	3	_	6	12,0
		ä		9		1500		1500	4		4	14,0

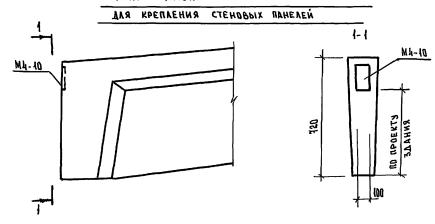

«ДЛЯ НЕОТАПЛИВАЕМЫХ ЗДАНИЙ И НАВЕСОВ ЗАКЛАДНЫЕ ИЗДЕЛИЯ M4; M5 CM. AOKYM. 4.862.1-B.94.1-16.

KHB. Nº NOAN. NOANUC W AATA BSAM. WB. Nº


		- E	1.862.1-8.94.1	-22		
ทมา	HASAPEHKO HASAPEHKO	130	Разбивка закладных излелий	CTAAUS	ANCT	AUCTOB
HHHEHEP	Назаренко Антонова Назаренко	kired	КИНЗАЛЭЧИ КАД КИТИЧИЛ ВОТНЭМЭЛЕ	ЦНИИ	ЭПСЕЛЬ	<u> </u>
				110	0306	' ''\

ХОЛАВ ЕЗВОЛ ЕМЯНКАЯ ОЛ ЙИЛВЬЕН КИНДАЛАБ ВИНДИМЕЛЯ ЛОЛСЯ

MPN MANTAX 1.5 × 6 M


M dx E XATNAD NAD

Ubnweb basenbkn sakvathpix notevnņ

B3AM, WHB. Nº

HB. Nº HOLA. | HOLHWES M AATA

Спецификация закладных избелий THAN KHERLEHUS HANT

ПРОЛЕТ Балки, м	PA3MEP NANTH, M	MAPKA SAKAAAHON AETANN	<i>ЕВУКЯ</i> МД <i>ЯК Н</i> В КОУ-ВО	REC' Bec'
	16.48	M4 -1	2	2,6
10,5	1.5×6	M4-3	6	12,9
15,0	3×6	M4-1	2	2.6
	3,0	M4-3	3	6.5

1.862. 1-8.94.1-22

2 1700306

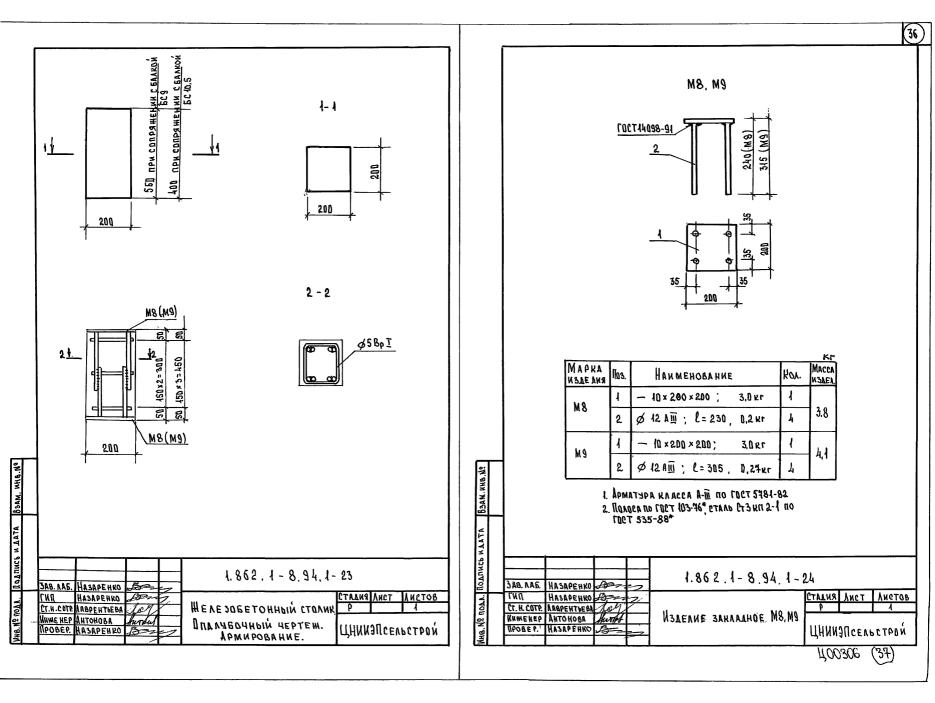
ANCT

					NS	YEVI	A RI	TAMA	AbHP	IE, Kr						NSAENNA SARNAAHHE, KC											1	
						A	PMAT	APA	KAAC	e a						АРМАТУРА КЛАССА ПРОКАТ МАРКИ								PKN	<u> </u>	Овщий		
						A-	<u>II</u>						Bp-I		BCEFO			FA.				A- <u>III</u>		C-	r3 KN	2-1	RCEFO	PACXOV
					roc	T 578	31-82					LOC.	F 6727	- 80	"	,				S8-18F2 T307				LOCT 103-46				KL
	Φ6	\$	Q 10	Ø 12	Ø 14	Ø20	Ø 22	\$25	Ø28	N-	τοτο	φ5		Итого		Ø 10	φ 12	44	И	010	φ 10		Ntoro	8=8		Итого	·	
BC6 -1	6.0	-	8,4	_	-	31.6	-	_	_	4	15,2	3,2		3,2	48,4	0,9	_	-	9	,g	8,5		2,6	4,4		4,4	7.9	56,3
BC6 - 2	-	10,3	3.5	_	_	_	38,2	_	_	5	56,1	3, 2		3,2	59,3	0,9	_	_	t	1,9	2,6		2,5	4,4		4,4	4.9	61.2
6 - 6 2 8	-	10,3	4,6	_	_	_	_	48,2	_	6	64.4	3,2	-	3,2	£,0F	0,9	-	_	1	9	2,5		2,6	4,4		4,4	q, 9	78.2
6C6 -4	-	_	23.8	_	_	_	_	23,8	29,9	7	17.5	3,2		3,2	F,08	0,9	_	-	,	1,9	2,6		2,6	4,4		4,4	7,9	88,6
6 C 7,5 - 1	-	17,3	P.0	_	_	39,4	_	_	_	6	56,4	4.8		4,8	71,2	_	1,3	_	1	.3	2,6		2,6	4,4		4,4	8,3	79,5
6c4,5 - 2	-	_	9,4	38,7		_	41.6	_	_	Q	96,0	4,8		4,8	8,00}	_	1,3	_	1	.3	2,6		2,5	4,4		4,4	8,3	1,60}
Bc7,5 - 3	_	_	9,7	38,7	_		_	61.6	=	1	110.0	4,8		4,8	145,8	_	4,3	_	1	.3	2,6		2,5	4,4		4,4	8,3	124,1
BC 7,5 - 4	-	-	13.7	_	45,1	-	_	61,6	_	1	120,4	4,8		4,8	125,2	_	4,3	_	1	,3	2,6		2,6	4,4		4,4	8,3	133,5
609 -1	_	24,9	11.6	_	1	1	56,4	-	_	9	3,5	6,6		6,6	99.2	-	-	4,8	1	.8	5,5		5,5	4,4		4.4	14,7	140,9
609 -2	-	24,9	14,6	-	_	_	_	12,4	-	41	08,9	6,6		6,6	115,5	_	_	4.8	1	.8	5,5		5,5	4,4		4,4	11,7	124,2
609 -3	-	24,9	11,6	_	_	_	_	72,4	_	41	28,9	6,6		6,6	115,5	_	_	1,8	1	.8	5,5		5,5	4,4		4.4	44,4	124,2
609 -4		24,9	41.6	_		_	1		90,9	ا ا	24,4	6.6		6,6	134,0	_		1,8		8	5,5		5,5	4,4		4,4	13,4	145,7

WHE Nº HOLA. HOLHINCE W LATA BEAM. WHE Nº

	llas sanuus	<i>Q</i> 1	1,862.1-8.94.1-	PC				
	НАЗАРЕНКО НАЗАРЕНКО	Bez		CTAAUS	Лист	AUCTO		
	ЛАВРЕНТЬЕВА			P	4	2		
NHMEHER	Антонова Назаренко	dwided 130	Веломость расхода стали	И ПЕЛИНДИ СЕЛЬСТРОЇ				

Щ0030% 35


- (911	۸.	٨	۸	115	t	L	14 1	
	117	U.D	ш	л	m	£	m	w	_

																											an me nee	<u> </u>
					Из.	TEVN	9 A R	ETAM	рныі	E, Kr										1	√3 Δ€	RNN	3 A H	LAAL	HbIE ,	, Kr		
Mapka		HAI	17895	4EMAS	MQA S	19кта	KVVC	A 2	НЕ КАМВАТ К ОТАНВН					АЭЭАЛЯ АЧЕТАМЧ				азэалы ачетамчА						Прокат марки				Общи
NANAA		A-Ji	В			A ₇ -ĨV				<u>A</u>	į			Bp-I		BCE-	A-I		A-ji	j	ВрЭ]	BCÈ-	CT?	BKUS	-1	BCE -	PAEXO
	207	1872	-82		7007	88017	4-81		tac.	7 5 48	1-82		7907	- FSF0	80	10	1907	548	1-82	,	70976	124-80	10	רטפי	103-	46	70	μr
	\$20	ø22	ø 25	Итого	ø18	ø22	Ø25	Итого	ø6	ø 10	Ø14	Ντο Γο	\$ 4	ø 5	Итого		Ø 18	NTOrd	øIR	Итого	ф4	στοτί		8=10		Итого		
8 <u>11</u> 14 - 2,013	80,4	_	_	1,08	-	-	_		10	13,3	-	23,3	_	23,9	23,9	124,3	4.6	4.6	4,46	4.46	1,2	1,2	13,26	4.85		₹.85	21,12	148,4
60.5 - 4 <u>11</u> 1 k	_	_	_		65,1	-	-	6.5,1	aı	13,3	_	23,3	_	23,9	23,9	112,3	4.6	4.6	7,46	4.46	1.2	4,2	13,26	1,86		4,86	24,12	133.4
8 <u>11</u> 14 S - 2,013		96,9	_	96,9	_	-	_		10	13,3	_	23,3	_	23,9	23,9	144,1	4.5	4,6	4,46	7,46	1.2	4,2	13,26	38.F		3 <i>8</i> .F	21.12	165,2
6€10,5 -2.A7 <u>v</u> k		_	_		_	96,9	_	96,32	10	13,3	_	23,3	_	23,9	23.9	144,1	4.6	4.6	7.46	4.46	1,2	1.2	13,26	38.F		38.F	21,12	165,2
БС10,5- ЗА <u>ії</u> в		_	125,4	125,4	1	_	_		10	-	26,1	36,1	_	23,9	23,9	185,4	4.5	4,6	4,4,6	4,46	1.2	1,2	13,26	7.86		4.86	21.12	206,5
BC10,5 - 3A _T ∑ K		-	_		_	-	125,4	125,4	10	_	26,1	36,1	_	23,9	23,9	185.4	4.6	4,6	7,46	4,46	1,2	1,2	13,26	38.F		4.86	21.12	206.5
6C10,5-4A <u>m</u> b		_	125,4	125,4		\vdash	=		10	_	26,1	36,1	_	23,9	23,9	185,4	4.6	4.5	4.46	7.46	1.2	42	13,26	4.86		4.86	21,12	2,805
6210.5-4A71VK	-	_			_	-	125,4	125,4	10		26,1	86,1	_	23,9	23,9	1854	4.6	4,5	4,46	4.46	1,2	1,2	13,26	1.86		₹.86	21.12	206,5

ИНВ. № ПОДЛ. ПОДПИСЬ И ДАТА ВЗАМ-ИНВ. Nº

1.862.1-8.94.1-pc

AMET 2

