JTBE PKAEHO

Организация п/я	A-3398	
	<u>.</u> А.Зак	
" 10 " 04 old		

РУКОВОДЯЩИЙ ТЕХНИЧЕСКИЙ МАТЕРИАЛ

МЕТОДИКА ТЕПЛОВОГО РАСЧЕТА
ЗАДВИЖЕК (АРМАТУРЫ СТЕРЖНЕВОГО
ТИПА) ДЛЯ СРЕД С РАБОЧЕЯ
ТЕМПЕРАТУРОЙ ОТ 423 К ДО 873 К
(ОТ 150 ДО 600°С) ПРИ РАЗЛИЧНЫХ
УСЛОВИЯХ ЭКСПЛУАТАЦИИ

PA PTM 26-07-224-79

Вводится впервые

	Прикавои	организации	I П/я А-3	398 o r "	16 " 4	inpens	197 9 r
ĸ.	51	срок введ	цения уст	нелаоны	с <u>"I" я</u> г	<u>варя</u> 19	8I r.
×	Снято о	праничение с	POKO BEÛ	cmbuse. 🛊	io <u>"I" ar</u>	варя І 9	86-r .
	* 8	O cook dei te D cook dei t	mbya na	93,811 - 30	1 Autop	9-1990 r.	
	Настоящи	у руководящ	ий технич	песний ма	териал	станавли	Baet Me-
TO	дику тепло	ового расче	са задвиж	кек, пред	назначен	ных для	работы в
CT	ационарно	и режиме на	паровых	и жидкиз	средах	с темпер	ату рой
OT	423 до 8	73 K (of I50) до 600 ⁰	C), с в	ртикалы	ю распол	оженними
гл	адкими уд	линенными к	рышками и	и крышкал	au, opedj	ренны чи т	еплоот-
BΛ	វាជាឃុំឃុំ ភេស	rauu.					

Погрешность расчета по данной методике - не более 6%.

І. ЗАЛАЧА РАСЧЕТА

- I.I. Задачей теплового расчета задвижек с гладкими удлиненными крышками при стационарном режиме является определение высоты, на которую следует отнести сборочные единицы с ограниченной теплостойкостью при заданном значении допустимой температуры.
- 1.2. Задачей теплового расчета задвижек с крышками, оребренними теплоотводящими дисками, при стационарном режиме является определение температурного поля крышки и температурных условий работы сборочных единиц и деталей крышки с ограниченной теплостойкостью, что позволит судить о правильности принятой геометрии оребрения.

2. УСЛОВИЯ РАСЧЕТА

2.I. Тепловой расчет кришек должен вестись с учетом следующих допущений:

решвется одномерная задача теплопроводности с учетом особенностей интенсивности теплообмена в зависимости от температуры рабочей среды;

температура в основании крышек принимается равной температуре рабочей среды.

з. ИСХОДНЫЕ ДАННЫЕ

3.1. Для проведения теплового расчета задвижек с удлиненными гладкими крышками должны быть заданы следующие исходные данные:

То - температура в основании цилиндрической части крышки, К;

Тт - температура окружающей среды, К;

т - максимально допустимая температура сборочных единиц
 с ограниченной теплостойкостью. К:

d' - наружный диаметр крышки, м ;

 f_n - площади поперечного сечения сборочных единиц крышки, M^2 ;

 A_n - коэффициенты теплопроводности сборочных единиц крышки, $\frac{B\tau}{M_n \cdot rne \pi}$;

 λ_m - коэффициент теплопроводности окружающей среды, $\frac{\mathrm{Br}}{\mathrm{M_{\bullet}}\mathrm{град}}$;

g - ускорение свободного падения, $\frac{u}{c^2}$;

 eta_m - коэффициент объемного расширения окружающей среды, $\overline{\underline{I}}$

 V_m - коэффициент кинематической вязкости окружающей среды, $\frac{M^2}{c}$;

*Р*е_т- критерий Прандтля;

Л - наружный периметр крышки, м;

€ - степень черноты тела;

 $\phi = 5,7.10^{-8}$ - постоянная Стефана-Бальцмана, $\frac{Br}{M^2 \text{ град}^4}$;

3.2. Для проведения теплового расчета задвижек с оребренными крышками должны быть заданы следующие исходные данные:

 v_o - избыточная температура в основании цилиндрической части крышки. К;

 T_m - температура окружающей среды, К;

D - наружний диаметр ребра. м;

 δ - толщина ребра, и;

S - жаг оребрения, и;

 ℓ_i - длина нижнего неоребренного участка цилиндрической части крышки, м;

 ℓ_2 - длина оребренного участка крышки, м;

- ℓ_3 дляна верхнего неоребренного участка цилиндрической части крышки, м;
- ж₂ расстояние от конца участка с, крышки до участка, где могут быть расположены сборочные единицы с ограниченной теплостой-костью, м;
- x_3 расстояние от конца участка ℓ_2 крышки до участка, где могут быть расположены сборочные единицы с ограниченной теплостой-констью, м;
- ℓ площадь поперечного сечения крышки, м²;

4. ТЕПЛОВОЙ РАСЧЕТ ЗАДВИЖКИ С ГЛАДКОЙ УДЛИНЕННОЙ КРЫШКОЙ

- 4.I. Для выполнения теплового расчета конструкция крышки упрощается. На черт.І представлена тепловая модель крышки.
- 4.2. Определение высоты, на которую следует отнести сборочные единицы с ограниченной теплостойкостью, должно производиться по формулам:

$$x = \frac{9}{\sqrt{2 L T_a^{-1/6}}} \left[\left(\theta - \theta_m \right)^{-1/6} - \left(1 - \theta_m \right)^{-1/6} \right] \qquad (\pi p_M z > 5) , (I)$$

$$x = \frac{1}{\sqrt{\frac{6}{3} L T_0'/3}} \quad \mathcal{I}_L \qquad (\text{mpukz} < 5), \quad (2)$$

$$x = \frac{1}{\sqrt{2MT_n^{4'}}} \quad \mathcal{I}_M \qquad (\text{mpm 2<1}) , \quad (3)$$

где $\theta = \frac{7}{7_0}$ - максимально допустимая относительная температура сборочных единиц с ограниченной теплостойкостью;

PTO PTM 26-07-224-79 CTA 5 Расчетноя схема задвижки с гладкай удлиненной крышкой

Черт. 1

$$heta_m = rac{T_m}{I_a}$$
 — относительная температура окружающей среды;

- комплекс, определяемый по формуле (4);

 - комплекс, характеризующий теплообыен конвекцией, определяемый по формуле (5);

 м - комплекс, характеризурший роль излучения в теплообмене крышки, определнемый по формуле (7);

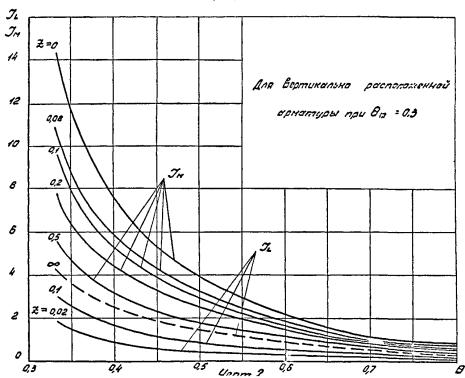
 \mathcal{J}_{A} , \mathcal{J}_{M} — безразмеряме интегралы, определяемие по графикам (черт.2-7) с учетом относительной температуры окружающей среды;

4.3. Величина комплекса 2 определяется по формуле:

$$Z = \frac{0.15 \left(\frac{9\beta_m}{\sqrt{m}} \cdot \rho_{2_m}\right)^{\frac{1}{3}}}{\frac{9}{3} \mathcal{E} G T_0^{\frac{11}{3}} \cdot 10^{-10}}$$
(4)

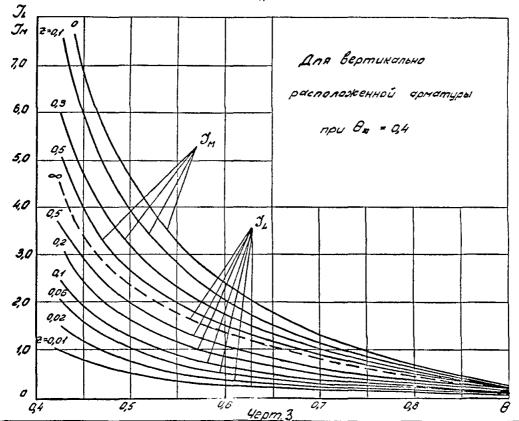
4.4. Величина комплекса / определяется по формуле:

$$\angle = \frac{0.15 \, \lambda_m \left(\frac{g f_m}{\sqrt{l_m}} \rho_{e_m}\right)^{\frac{1}{3}} \cdot \eta}{\lambda \cdot f} \qquad , \tag{5}$$

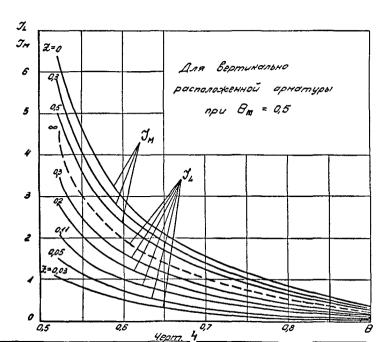

где / - среднее значение коэффициента теплопроводности крышки, определлемое по формуле (6):

4.5. Среднее значение коэффициента теплопроводности крышки определяется по формуле:

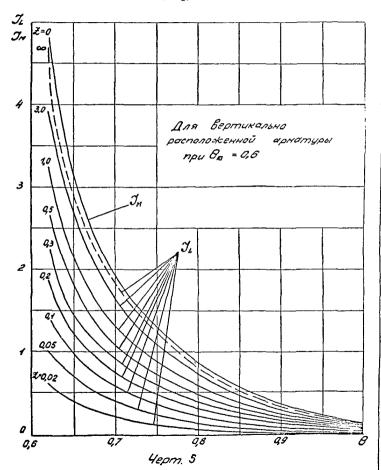
$$\lambda = \frac{\lambda_1 f_1 + \lambda_2 f_2 + \dots + \lambda_n f_n}{f_1 + f_2 + \dots + f_n} , \qquad (6)$$

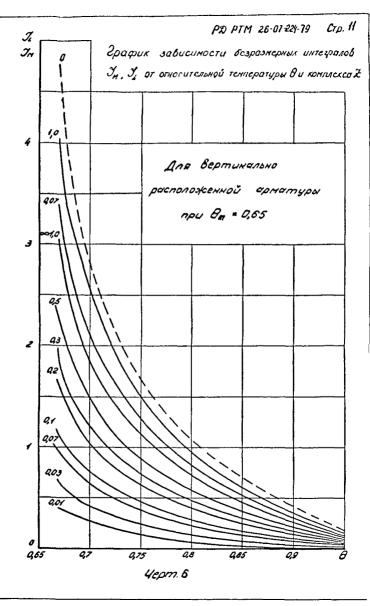

где $\lambda_1, \lambda_2, ... \lambda_n$ — коэффициенты теплопроводности сборочных единиц кришки, определяемые по РТМ 26-07-122-71, $(\frac{B_T}{A_T})$

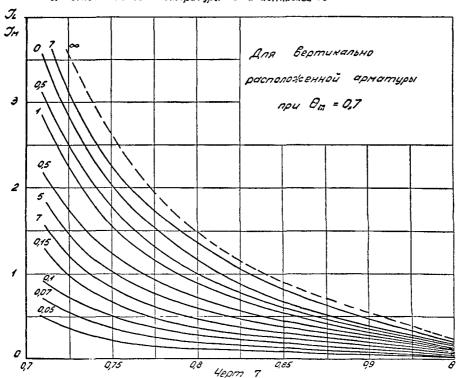
Срафик зависиности безразмерных интегралов \mathcal{I}_{M} , \mathcal{I}_{L} от атносительной гемпературы θ и комплекса \mathcal{Z}


8 PTM 26-07-224-79 Cp.7

 $\mathcal{E}_{
m pa}$ от относительной температуры heta и комплекса \mathcal{Z}


PTM 26-07-224-79 CTD. 8


 Z_{papuk} зависимости безразмерных интегролов $\mathcal{I}_{m_1}\mathcal{I}_{k_2}$ от относительной температуры θ и комплекса \mathcal{X}



PD PTM 26-07-224-79 Csp.9

2рофик зовисимости безразмерных интегралов \mathcal{I}_{M} , \mathcal{I}_{2} от относительной температуры θ и комплекса \mathcal{E}

PD PTM 26-0722-79 Cip.12

4.6. Величина комплекса ${\cal M}$ определяется по формуле:

$$M = \frac{\mathcal{E}G\Pi \cdot 10^{-10}}{\lambda \cdot f} \tag{7}$$

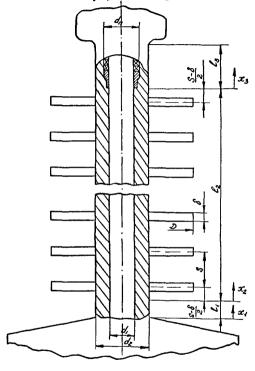
тепловой расчет задвижки с оребренной крышкой

- 5.1. Для выполнения теплового расчета конструкция крышки упрощается. На черт.8 представлена тепловая модель крышки.
- 5.2. Распределение температур на участке оребрения определяется формулой:

$$\mathcal{V} = \left(\frac{\mathcal{V}_{l} \operatorname{ch} m_{np} \ell_{z} - \mathcal{V}_{z} \operatorname{ch} m_{np} \ell_{t}}{\operatorname{sh} m_{np} (\ell_{t} - \ell_{z}) \operatorname{ch} m_{np} \ell_{t}} - \frac{\mathcal{V}_{l}}{\operatorname{ch} m_{np} \ell_{z}}\right) \operatorname{ch} m_{np} x_{z} + \frac{\mathcal{V}_{l} \operatorname{ch} m_{np} \ell_{z} - \mathcal{V}_{z} \operatorname{ch} m_{np} \ell_{t} \operatorname{ch} m_{np} \cdot x_{z}}{\operatorname{sh} m_{np} (\ell_{t} - \ell_{z})}, \tag{8}$$

где V_1 - избыточная температура на границе участков $\ell_1 u \ell_2$, определяемая по формуле (9);

 \mathcal{U}_2 - избиточная температура на границе учестков ℓ_2 и ℓ_3 , определяемая по формуле (I3);


 $m_{n\rho}$ - приведенное значение параметра теплообмена, определяемое по формуле (14).

5.3. Избыточную температуру на границе участков ℓ , и ℓ_2 следует вычислять по формуле:

$$v_i = v_o \frac{i}{\beta \ell_i} , \qquad (9)$$

где В - комплекс, жарактеризующий теплообмен крышки, опредежяемый по формуле (10);

Расчетная схема крышки, орефренной теплоотвадящими дисками

Черт. 8

5.3.1. Комплекс В следует определять по формуле:

$$B = \frac{A \cdot m_{np} m_3 th m_3 \ell_3}{ch m_{np} \ell_2} + \frac{m_t}{th m_t \ell_t} + \frac{1 - e^{-m_{np} \ell_2}}{m_{np} \ell_2} + \frac{d_2 n_{np} \ell_2}{\lambda f}, \quad (10)$$

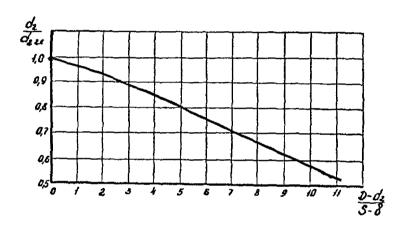
где \mathcal{A} - комплекс, определяемый по формуле (II), м; m_1, m_3 - параметры теплообмена, определяемые по РТМ 26-07-I22-71.($\frac{1}{M}$);

 λ - коэффициент теплопроводности гладкой крышки, определяемый по РТм 26-07-I22, 7I, ($\frac{BT}{M_{\bullet}\text{-}\text{FDa}\Lambda}$);

 \angle_{22} - коэффициент теплоотдачи гладкой стенки, определяемый по РТИ 26-07-I22-7I, $\frac{BT}{\mu^2}$;

 d_2 - коэффициент теплоотдачи ребер, определяемый по графику (черт.9); $\frac{BT}{M^2 \, QQQ}$;

 $n_{n\rho}$. — приведенный периметр оребрения, определяемый по формуле (12), м;


5.3.2. Комплекс А следует определять по формуле:

$$A = (m_3 th m_3 \ell_2 \cdot th m_{n\rho} \ell_2 + m_{n\rho})^{-1}$$
(II)

5.3.3. Приведенный периметр оребрения следует определять по формуле:

$$\Pi_{np} = \frac{\mathcal{J} d_2 (S - \delta) + \left[\frac{2\pi (\mathcal{D}^2 - d_2^2)}{4} + \pi \mathcal{D} \delta \right]}{S}$$
 (I2)

2рофик зависимости $\frac{d_2}{d_{22}}$ от $\frac{D-d_2}{3-8}$

Черт. 9

5.4. Избыточную температуру на границе участков ℓ_2 и ℓ_3 следует определять по формуле:

$$V_{z} = V_{t} \frac{f \cdot m_{np}}{\ell_{t} \delta ch m_{np} \ell_{z}}$$
 (13)

5.5. Величину приведенного нараметра теплообмена следует определять по формуле:

$$m_{np} = \frac{n_{np} \cdot d_2}{\lambda \cdot f} \tag{14}$$

5.6. Избыточная температура на участке ℓ_{3} :

$$\mathcal{V}_3 = \mathcal{V}_2 \cdot e^{-m_3 x_3} \tag{15}$$

Руководитель предприятия п/я Г-4745

Заместитель руководителя предприятия

Главный инженер предприятия п/я А-7899

Ваместитель главного инженера

Завелующий отделом I6I

Руководитель темы -Заведующий отделом 154

Исполнители:

Заведующий сектором

Старший инженер

Старший техник

19.03.79

С.И.Косых

М.Г.Сарайлов

О.Н.Шпаков

Ю.И.Тарасьев

М.И.Власов

И.А.Кузнецова

Г.И.Сергевнина

Б.и.Писаревский

Е.В.Бобрина

ЛИСТ РЕГИСТРАЦИИ ИЗМЕНЕНИЙ

Han.	Номер листов (страниц)			Honep	70.00		Cpok	
	usme- Heh- Hex	Bame- HeH- NWX	новых	14497U- 00504- 46%	Номер Доку- мента			Дата
,	1				21311.1	16		
	1				2/3M 2	Her	140289	
:	1	Paso paso cmpo	40 Ле итин ени я	1/2-2-3 0 XUM	73 am		Vano	O.DENUS DO
!								