ДЕТАЛИ И СБОРОЧНЫЕ ЕДИНИЦЫ ИЗ УГЛЕРОДИСТЫХ И КРЕМНЕМАРГАНЦОВИСТЫХ СТАЛЕЙ ДЛЯ ТРУБОПРОВОДОВ ПАРА И ГОРЯЧЕЙ ВОДЫ С ДАВЛЕНИЕМ $p_{,>}$ 4,0 МПа ($p_{,>}$ 40 кгс/см²) ТЕПЛОВЫХ ЭЛЕКТРОСТАНЦИЙ

ТИПЫ, КОНСТРУКЦИЯ, РАЗМЕРЫ И ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ

OCT 108.321.11—82	OCT 108.462.01—82	OCT 108.104.16—82
OCT 108.321.12-82	OCT 108.462.02—82	OCT 108.720.03—82
OCT 108,321.13—82	OCT 108.462.03—82	OCT 108.720.04—82
OCT 108.321.14—82	OCT 108.520.02—82	OCT 108.839.01—82
OCT 108.321.15—82	OCT 108.313.06—82	OCT 108.462.04—82
OCT 108.321.16—82	OCT 108.720.01-82	OCT 108.462.05—82
OCT 108.321.17-82	OCT 108.720.02-82	OCT 108.839.02—82
OCT 108.327.01-82	OCT 108.104.01—82	OCT 108.462.06—82
OCT 108.318.11—82	OCT 108.104.02-82	OCT 108.839.03—82
OCT 108.318.12-82	OCT 108.104.03-82	OCT 108.839.04—82
OCT 108.318.13-82	OCT 108.104.04-82	OCT 108.462.07—82
OCT 108.318.14—82	OCT 108.104.05-82	OCT 108.839.05—82
OCT 108.318.15—82	OCT 108.104.06—82	OCT 108.504.01—82
OCT 108.318.16—82	OCT 108.104.07—82	OCT 108.530.01-82
OCT 108.318.17—82	OCT 108.104.08—82	OCT 108.724.01—82
OCT 108.038.62—82	OCT 108.104.09—82	001100000000000000000000000000000000000
0 0 1 100.000.02 02	001 1001101100 02	

Издание официальное

Срок действия стандартов не ограничен в соответствии с указанием Госстандарта РФ N 1/28-332 от 15.02.94

УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ указанием Министерства энергетического машиностроения от 04.06.82 № ВВ-002/4628

ИСПОЛНИТЕЛИ НПО ЦКТИ и БЗЭМ

СОГЛАСОВАН с Главным управлением по проектированию и научноисследовательским работам Министерства энергетики и электрификации СССР

л. м. воронин

ПАТРУБКИ БЛОКОВ С ДИАФРАГМАМИ ДЛЯ ТРУБОПРОВОДОВ ТЭС

OCT 108.462.06—8:

КОНСТРУКЦИЯ И РАЗМЕРЫ

OKII 31 1312

Взамен ОСТ 24.462 07 в части $p_{\text{ном}} = 40 \text{ кгс/см}^2$, $t = 440 ^{\circ}\text{C}$; $p_{\text{вом}} = 76 \text{ кгс/см}^2$, $t = 145 ^{\circ}\text{C}$

Указанием Министерства энергетического машиностроения от 04.06.82 № ВВ-002/4628 срок действия установлен

c 01.01

до 01.01

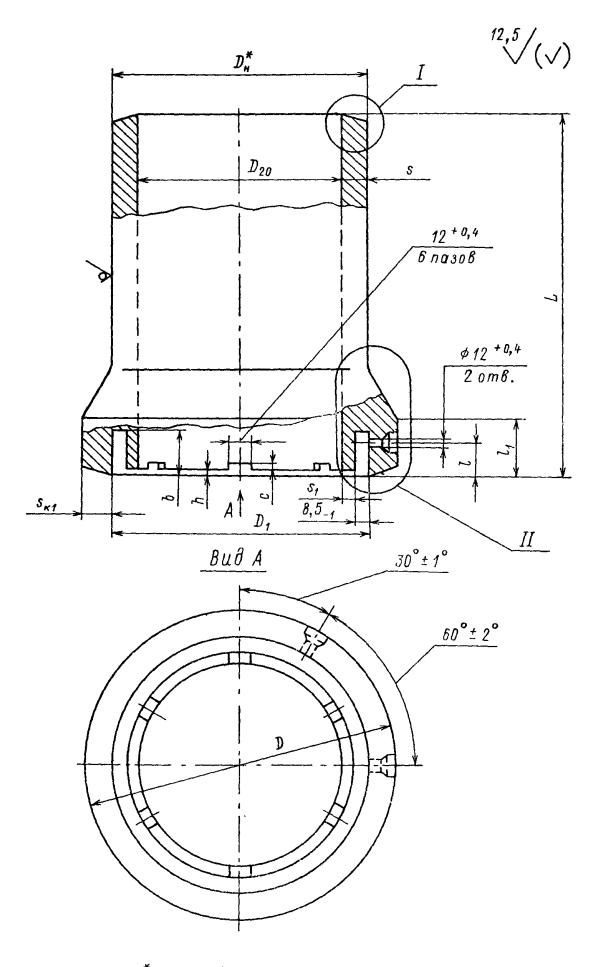
Несоблюдение стандарта преследуется по закону

1. Настоящий стандарт распространяется на патрубки для блоков с диафрагмами, устана ливаемых на трубопроводах пара и горячей воды тепловых электростанций с абсолютным давлиием и температурой среды:

 ρ = 3,92 MΠa (40 krc/cm²), t = 440°C; ρ = 7,45 MΠa (76 krc/cm²), t = 145°C; ρ = 4,31 MΠa (44 krc/cm²), t = 340°C; ρ = 3,92 MΠa (40 krc/cm²), t = 200°C.

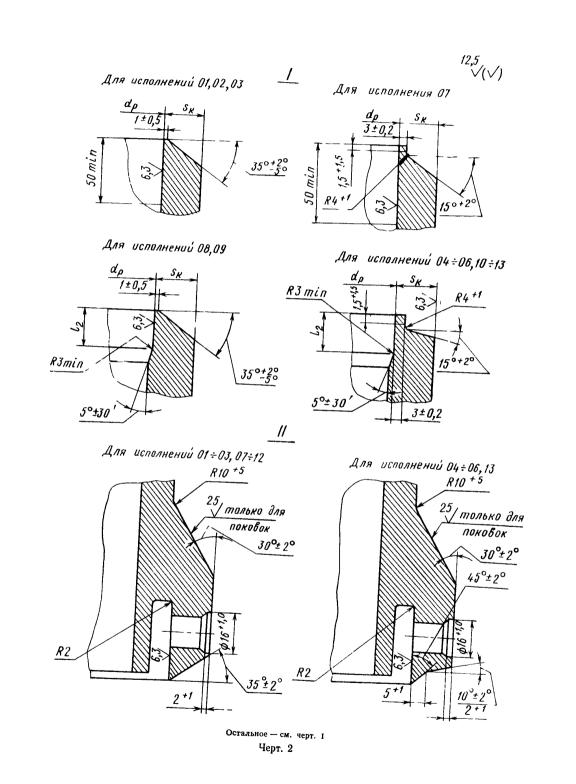
- 2. Конструкция и размеры патрубков должны соответствовать указанным на черт. 1—3 в таблице.
 - 3. Материал труба из стали марки 20 по ТУ 14-3-460.
- 4. Допускается изготовление патрубков из двух частей (трубы и поковки) или только из поковки.

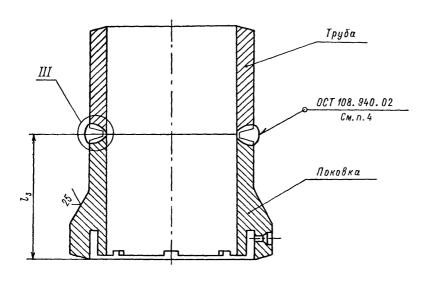
Материал поковки — сталь марки 20 по ОСТ 108.030.113.

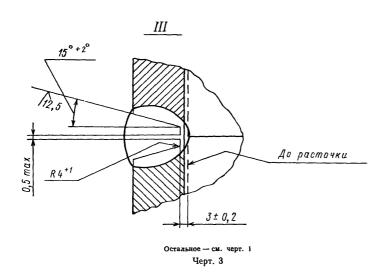

Наплавленный металл — по ОСТ 108.940.02.

- 5. Патрубки исполнений 01, 02 должны изготавливаться цельными.
- 6. Размеры швов устанавливаются предприятием-изготовителем в зависимости от толщин свариваемых элементов.
 - 7. Остальные технические требования по ОСТ 24.125.60.
- 8. Пример условного обозначения патрубка исполнения 03 с условным проходо $D_{\rm v} = 150$ мм:

ПАТРУБОК 150 03 ОСТ 108.462.06.


9. Пример маркировки: 03 ОСТ 108.462.06


Товарный знак



*Размер для справок.

Черт. 1

194									Разв	еры, мм									
	ние	a C)	D	ı	D	20	d	p	ree	менее	s _k	s_{κ_1}	ь			;
	Исполнение	Условный проход $D_{\rm y}$	<i>D</i> _H *	Номин.	Пред. Откл.	Номин.	Пред. откл.	Номин.	Пред. откл.	Номин.	Пред. откл.	з, не менее	S ₁ , не ме	нем	иенее	Номин.	Пред. откл.	Номин.	Пред. откл.
							•	. ,	, $t = 440^{\circ}\text{C}$; , $t = 340^{\circ}\text{C}$	•	5 МПа (76 2 МПа (46	-							
	01	50	57	92	+1,6	74	±0,1	50	±0,1	50	±0,15	3,1	3,0	3,1	8,0	30	+0,6	1,0	±0,1
				·	'	p=3,9	['] 2 МПа (4	0 кгс/см²)	, $t = 440^{\circ}$ C	p = 7.45	5 МПа (76	6 кгс/сы	$(\Lambda^2), t=$	145°C		·			
	02 03 04	80 150 200	89 159 219	120 195 255	+1,6	101 168 221	±0,1	77 142 193	$\begin{array}{c c} & \pm 0.2 \\ \hline & \pm 0.4 \\ \hline & \pm 0.5 \end{array}$	77 142 195	± 0.23 $+0.63$ $+0.72$	5,0 7,2 12,0	3,0 4,0 5,0	5,0 7,2 9,5	9,0 12,5 16,0	30	+0,6	1,0 1,8 2,0	±0,2
	05 06	300	273 325	310 360		271 319		241 287	± 0.7 ± 0.8	244 290	+0,81	14,0 17,0	6,0 7,0	11,5 13,5	18,0	35		2,5 3,0	
								p = 3.93	2 МПа (40) кг¢/см²),	$t = 440^{\circ}\text{C}$								
	07	100	108	145	+1,6	123	±0,1	93	±0,2	93	+0,54	5,4	6,0	5,4	10,0	30	+0,6	1,5	±0,2
						p=7	45 МПа (76 кгс/см²), $t = 145^{\circ}$ C	p = 4,31	МПа (44	кгс/см	t^2), $t=3$	340°C					
	08	100	108	145	+1,6	123	±0,1	96	±0,2	97	+0,54	5,0	4,5	4,6	10,0	30	+0,6	1,5	±0,2
								p = 3,9	2 МПа (40) кгс/см²),	t = 200°C								
	09	100	108	145	+1,6	123	±0,1	99	±0,2	100	+0,54	4,0	3,0	2,7	10,0	30	+0,6	1,2	$\pm 0,2$
						p = 4,3	I МПа (44	4 кгс/см²),	$t = 340^{\circ}\text{C};$	p = 3.92	МПа (40	кгс/см	2), $t=2$	200°C					
-	10 11 12	300 350 400	325 377 426	360 420 460	+1,6	331 385 432	±0,1	299 351 396	±0,8	303 354 401	+0,81	11,0	7,0 8,0 9,0	7,6 8,6 9,5	13,0 15,0 13,0	35	+0,6	3,3 3,7 4,3	±0,2
								$\rho = 4,31$	MΠa (44	кгс/см²),	t = 340°C								
	13	450	465	505	41,6	474	±01	433	± 1,0	137	40,97	13,0	10,0	10,5	15,0	35	40,6	4,7	±az

Испол-		<u>h</u>		<u> </u>	<i>l</i>	<u>!</u>		12		3			Macea,
нение	Номин.	Пред. откл.	Номин.	Пред. откл.	Номин.	Пред. откл.	Номин.	Пред. откл.	Номин.	Пред. откл.	Номин.	Пред. откл.	кг
$p=3.92 \text{ M}\Pi a \text{ (40 krc/cm}^2), } t=440^{\circ}\text{C}; $ $p=7.45 \text{ M}\Pi a \text{ (76 krc/cm}^2), } t=145^{\circ}\text{C}; $ $p=4.31 \text{ M}\Pi a \text{ (44 krc/cm}^2), } t=340^{\circ}\text{C}; $ $p=3.92 \text{ M}\Pi a \text{ (40 krc/cm}^2), } t=200^{\circ}\text{C}$													
01	_	_	20	±0,5	40	+2,5		_		_	105	±2,5	1,2
$p=3,92~{\rm M\Pi a}$ (40 кгс/см²), $t=440{\rm ^{\circ}C};$ $p=7,45~{\rm M\Pi a}$ (76 кгс/см²), $t=145{\rm ^{\circ}C}$												•	
02	-	-	20								165		2,9
03	0,5	± 0,2	22		40		_ -		110	_	350	<u> </u> -	13,5
04	2,0	20,2		± 0,5		+2,5			120	±2	460	±2,5	34,0
05	2,5	± 0.2	25		45		50	+5	130		570		65,0
06	4,5	1]					680		100,0
	$p=3.92~{\rm M\Pi a}$ (40 krc/cm ²), $t=440^{\circ}{\rm C}$; $p=7.45~{\rm M\Pi a}$ (76 krc/cm ²), $t=145^{\circ}{\rm C}$												
07	0,5	±0,2	22	±0,5	40	+2,5		-	105	±2	250	±2,5	6,0
			p	=7,45 MΠa (7	76 кгс/см²), t	$f = 145^{\circ}\text{C}; p = 145^{\circ}\text{C}$	=4,31 МПа ((44 Krc/cm ²), t	=340°C				
08	0,5	±0,2	22	± 0,5	40	+2,5	50	+5	105	±2	250	±2,5	4,7
					p = 3.92	МПа (40 кгс/	$(cm^2), t = 200^\circ$	C					
09	0,5	±0,2	22	±0,5	40	+2,5	40	+5	105	±2	250	$\pm 2,5$	3,7
p=4,31 MΠa (44 krc/cm²), $t=340$ °C; $p=3.92$ MΠa (40 krc/cm²), $t=200$ °C													
10	4,5										680		84,0
11	6,0	±0,2	25	±0,5	45	+2,5	50	+5	130	±2	790	±2,5	110,0
12	7,0					1					880		148,0
					p = 4,31	МПа (44 кгс/	cm^2), $t = 340^\circ$	С					
13	7,5	±0,2	25	±0,5	45	+2,5	50	+5	140	±2	960	±2,5	192,0
ŀ		1		1		1		1		l j	1		

195

ИНФОРМАЦИОННЫЕ ДАННЫЕ

- 1. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ указанием Министерства энергетического машиностроения от 04.06.82 № ВВ-002/4628
- 2. ИСПОЛНИТЕЛИ
 - П. М. Христюк, канд. техн. наук; Д. Д. Дорофеев, канд. техн. наук (руководитель темы); Г. Н. Смирнов (руководитель темы); Л. Н. Жылюк; В. Н. Шанский; Н. В. Москаленко; Д. Ф. Фомина; Г. А. Мисирьвиц; В. Ф. Логвиненко; Ф. А. Гловач; А. З. Гармаш; Н. Г. Мазин; А. С. Шестернин
- 3. ЗАРЕГИСТРИРОВАН Государственным комитетом СССР по стандартам за № 8273860 от 26.02.83
- 4. B3AMEH OCT 24.462.07
- 5. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

Обозначение НТД, на который дана ссылка	Номер пункта, подпункта, перечисления, приложения
OCT 24,125.60—89	7
OCT 108.030,11387	4
OCT 108.940.02—82	4
Y 14-3-460-75	3

6. ПЕРЕИЗДАНИЕ (1992 г.) с Изменениями № 1, 2, 3, 4, 5.

Срок действия продден до 1996 г. Изменением № 4, утвержденным письмом Минтяжмаша СССР от 27.12.90 № ВА-002-1-12060

СОДЕРЖАНИЕ

```
ОСТ 108.321.11-82. Отводы гнутые для трубопроводов ТЭС. Конструкция и
                                                                         1
    ОСТ 108.321.12-82. Отводы гнутые для трубопроводов ТЭС. Конструкция
                                                                         5
    ОСТ 108.321.13—82. Отводы гнутые для трубопроводов ТЭС.
                                                        Конструкция
                                                                         9
    ОСТ 108.321.14-82. Отводы гнутые для трубопроводов ТЭС.
                                                        Конструкция
                                                                        14
    ОСТ 108.321.15—82. Отводы гнутые для трубопроводов ТЭС. Конструкция
                                                                        18
размеры
ОСТ 108.321.16—82. Отводы крутоизогнутые для трубопроводов ТЭС. Конструк-
    23
                                                                        28
ция и размеры
    ОСТ 108.327.01-82. Колена штампованные для трубопроводов ТЭС. Конструк-
                                                                        33
    ция
                                                                        38
размеры
    ост 108.318.12—82. Переходы для трубопроводов ТЭС. Конструкция и размеры ОСТ 108.318.13—82. Переходы для трубопроводов ТЭС. Конструкция и размеры ОСТ 108.318.14—82. Переходы для трубопроводов ТЭС. Конструкция и размеры ОСТ 108.318.15—82. Переходы для трубопроводов ТЭС. Конструкция и размеры ОСТ 108.318.15—82. Переходы для трубопроводов ТЭС. Конструкция и размеры
                                                                        42
                                                                        47
                                                                        53
                                                                        58
    ОСТ 108.318.16-82. Переход штампованный для трубопроводов ТЭС. Конструк-
                                                                        63
    и размеры
ОСТ 108.038.62—82. Ответвления паропроводов ТЭС. Типы
    ОСТ 108.462.01—82. Штуцеры для трубопроводов ТЭС. Конструкция и размеры ОСТ 108.462.03—82. Штуцеры для трубопроводов ТЭС. Конструкция и размеры ОСТ 108.462.03—82. Штуцеры для трубопроводов ТЭС. Конструкция и размеры ОСТ 108.520.02—82. Кольца подкладные для трубопроводов ТЭС. Конструкция
                                                                        83
                                                                        87
                                                                        91
                                                                        96
    ОСТ 108.313.06-82. Соединения штуцерные для трубопроводов ТЭС. Конструк-
                                                                        99
    струкция и размеры ОСТ 108.720.02—82. Тройники переходные для трубопроводов ТЭС. Конструкция
                                                                        105
                                                                        109
    ОСТ 108.104.01-82. Тройники сварные равнопроходные для трубопроводов ТЭС.
113
                                                                 ТЭС.
Конструкция и размеры . ОСТ 108.104.03—82. Тройники сварные переходные для трубопроводов
                                                                        118
123
128
133
137
                                                                        143
и размеры
    ОСТ 108.104.08-82. Тройники штампованные равнопроходные для трубопрово-
148
                                                                        153
157
Конструкция и размеры
                                                                        161
    ОСТ 108.720.04-82. Тройник переходный кованый для трубопроводов ТЭС. Кон-
струкция и размеры . ОСТ 108.839.01—82. Блоки с диафрагмами для трубопроводов ТЭС. Конструкция
                                                                       164
                                                                        167
    ОСТ 108.462.04-82. Патрубки блоков с диафрагмами для трубопроводов ТЭС.
                                                                       172
Конструкция и размеры .
```

ОС1 108.462.05-82. Патруски олоков с диафрагмами для трубопроводов 13С,
Конструкция и размеры
ОСТ 108.839.02—82. Блоки с диафрагмами для трубопроводов ТЭС. Конструкция
и размеры
ОСТ 108.462.06—82. Патрубки блоков с диафрагмами для трубопроводов ТЭС.
Конструкция и размеры
ОСТ 108.839.03—82. Блок с соплом для паропроводов ТЭС. Конструкция и
размеры
ОСТ 108.839.04—82. Блок с диафрагмой для паропроводов ТЭС. Конструкция
и размеры
ОСТ 108.462.07—82. Патрубки блоков с соплами и диафрагмами для паропро-
водов ТЭС. Конструкция и размеры
ОСТ 108.839.05—82. Диафрагмы блоков для трубопроводов ТЭС. Конструкция
и размеры
ОСТ 108.504.01—82. Донышки приварные для трубопроводов ТЭС. Конструкция
и размеры
ОСТ 108.530.01—82. Бобышки для трубопроводов ТЭС. Конструкция и размеры 217
ОСТ 108.724.01-82. Пробки для трубопроводов ТЭС. Конструкция и размеры 223
Ain ipjoonponodon ioo. Noncipykun k pasmepu 220

Редактор Л. П. Коняева

Т ехнический редактор <i>А. I</i>	Н. Крупенева	Корректор Л. А. Подрезова
Сдано в набор 07.02.92. Объем 28,5 п	Подписано к печ. 15,0 еч. л. Тираж 100	