

НЕФТЕПРОДУКТЫ методы испытаний

часть 2

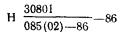
ГОСУДАРСТВЕННЫЕ СТАНДАРТЫ СОЮЗА ССР

НЕФТЕПРОДУКТЫ

МЕТОДЫ ИСПЫТАНИЙ

Часть 2

Издание официальное


Москва ИЗДАТЕЛЬСТВО СТАНДАРТОВ 1987

ОТ ИЗДАТЕЛЬСТВА

Сборник «Нефтепродукты. Методы испытаний» часть 2 содержит стандарты, утвержденные до 1 марта 1987 г.

В стандарты внесены все изменения, принятые до указанного срока. Около номера стандарта, в который внесено изменение, стоит знак *.

Текущая информация о вновь утвержденных и пересмотренных стандартах, а также о принятых к ним изменениях публикуется в выпускаемом ежемесячно информационном указателе «Государственные стандарты СССР».

ТОПЛИВО ДЛЯ РЕАКТИВНЫХ ДВИГАТЕЛЕЙ

Метод определения термоокислительной стабильности в статических условиях

Iet fuels. Method of test for determination of thermal stability under static conditions.

ГОСТ 11802—66*

ОКСТУ 0209

Утвержден Комитетом стандартов, мер и измерительных приборов при Совете Министров СССР 8 февраля 1966 г. Срок введения установлен

c 01.07.66

Постановлением Госстандарта от 15.07.85 № 2205 срок действия продлен

до 01.01.88

Несоблюдение стандарта преследуется по закону

Настоящий стандарт устанавливает метод определения термической стабильности топлива для реактивных двигателей в статических условиях.

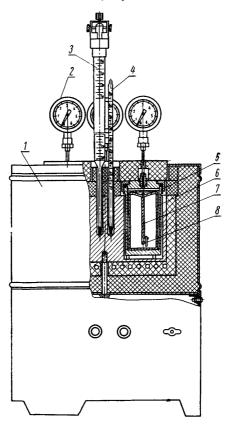
Термическая стабильность топлива для реактивных двигателей в статических условиях оценивается по количеству осадка, растворимых и нерастворимых смол, образующихся при окислении его в аппарате типа TCPT-2 при 150°C в течение 5 ч.

Применение метода предусматривается в стандартах и технических условиях на топливо реактивных двигателей.

1. АППАРАТУРА, РЕАКТИВЫ И МАТЕРИАЛЫ

1.1. При определении термической стабильности топлива для реактивных двигателей в статических условиях применяют:

прибор ТСРТ-2 (см. чертеж) представляет собой металлический электротермостат 1, в нем размещены четыре герметически закрывающиеся стальные бомбы 5, изготовленные из нержавеющей стали марки 20Х13 по ГОСТ 5632—72, а крышки бомб из дюраля Д-1 по ГОСТ 4784—74, или аналогичный аппарат, обеспечивающий проведение испытания в таких же условиях;


для контроля герметичности на каждой бомбе установлен манометр 2 по ГОСТ 8625—77 или аналогичного типа; нагрев термостата осуществляется электронагревателем, установленным в нижней части прибора;

Издание официальное

Перепечатка воспрешена

* Переиздание с Изменениями № 2, 3, 4, утвержденными в июне 1977 г., декабре 1982 г., декабре 1986 г. (ИУС 6—77, 4—83, 4—87). термометры ТПК—4П—163, ТПК—4П—203 по ГОСТ 9871—75, ТЛ-2 1Б 3—4 по ГОСТ 215—78.

Прибор ТСРТ-2

испытуемое топливо наливают в стаканы 6, которые закрывают стеклянными крышками, имеющими в центре стеклянную палочку 7 с крючками для подвещивания пластинок 8 из меди; стаканы и крышки изготовляют из термостойкого стекла;

полная вместимость одной бомбы 225 см³, соотношение объема топлива к объему воздуха в бомбе составляет 1:3,5 (50 см³ топ-

лива и 175 см³ воздуха);

герметичность бомб достигается при помощи крышек специальной конструкции, имеющих уплотнительные прокладки, изготовленные из тефлона или другого соответствующего материала;

прибор для определения фактических смол по ГОСТ 1567-83

или ГОСТ 8489—85;

цилиндры измерительные вместимостью 100 см³ по ГОСТ 1770—74;

воронки B-56-80XC, B-75-80XC, B-75-110XC по ГОСТ 25336—82, воронка для фильтрования по ГОСТ 10577—78;

эксикаторы по ГОСТ 25336-82;

промывалка вместимостью 200-250 см3;

стаканчики для взвешивания (бюксы) по ГОСТ 25336-82;

шкаф сушильный или термостат с температурой нагрева (105 ± 5) °C;

спирт этиловый ректификованный технический по ГОСТ 18300—72;

изооктан по ГОСТ 4095—75 или петролейный эфир марки 70—100 или гептан нормальный по ГОСТ 25828—83;

хромовая смесь;

вода дистиллированная по ГОСТ 6709-72;

пластинки из меди марок M0к и M1к по ГОСТ 859—78 размером $(20\pm1)\times(25\pm1)\times(3\pm0.5)$ мм;

бумага фильтровальная лабораторная по ГОСТ 12026—76;

фильтры бумажные обеззоленные марки «белая лента» диаметром 9—11 см или мембранные фильтры «Владипор» МФА-МА № 9;

бензол по ГОСТ 8448—78 или ГОСТ 5955—75, или ГОСТ 9572—77 или толуол по ГОСТ 14710—78 или ГОСТ 5789—78;

груша резиновая двойная;

палочки стеклянные с изогнутым концом;

трубка резиновая;

кальций хлористый плавленый по ГОСТ 4460-77;

спирто-бензольная или спирто-толуольная смесь в соотношении спирта и бензола (толуола) 1:4;

весы аналитические любого типа с погрешностью измерения не более 0,0002 г.

(Измененная редакция, Изм. № 2, 3, 4).

2. ПОДГОТОВКА К ИСПЫТАНИЮ

2.1. Фильтры (бумажные или мембранные) сушат в сушильном шкафу при температуре (105 ± 5) °C не менее 1 ч в стаканчиках для взвешивания с открытой крышкой. После этого каждый стаканчик плотно закрывают крышкой охлаждают в эксикаторе в течение 1 ч и взвешивают с погрешностью 0.0002 г.

Высушивание и взвешивание повторяют до получения расхождения между двумя последовательными взвешиваниями не более 0,0004 г. При этом повторное высушивание и охлаждение производят по 30 мин на каждую операцию.

(Измененная редакция, Изм. № 4).

2.2. Бомбы прибора ТСРТ-2 моют бензином марки Б-70 и высушивают струей воздуха.

(Измененная редакция, Изм. № 2).

2.3. Стеклянные стаканы и крышки с крючками моют спирто-бензольной или спирто-толуольной смесью, водой, хромовой смесью и снова дистиллированной водой и сушат.

(Измененная редакция, Изм. № 4).

2.4. Медные пластинки шлифуют до блеска пастой «ГОИ» на войлоке, промывают бензином, этиловым спиртом и высушивают на листах фильтровальной бумаги.

(Измененная редакция, Изм. № 2).

2.5. Испытуемое топливо при комнатной температуре фильтруют через такой же фильтр, какой будет использоваться при определении осадка в топливе, и наливают в стеклянные стаканы по 50 см³.

Затем в каждый стакан помещают по одной подготовленной по п. 2.4 медной пластинке, подвешенной на крючке стеклянной палочки.

(Измененная редакция, Изм. № 4).

2.6. Стаканы помещают в бомбы, которые герметически закрывают крышками путем тщательной затяжки последних ключом. Затем бомбы помещают в термостат прибора TCPT-2.

Допускается установка бомб в термостат при температуре невыше 100°C.

(Измененная редакция, Изм. № 2).

3. ПРОВЕДЕНИЕ ИСПЫТАНИЯ

- 3.1. Включают прибор в электросеть; момент включения прибора принимают за начало испытания.
- 3.2. Через 1,2—1,5 ч от начала нагрева температура топлива достигает 150° С. Избыточное давление в бомбах должно быть неменее 0,02 МПа.

Если в одной из бомб нет давления или оно значительно меньше нижнего предела (что указывает на недостаточную герметичность бомбы), то такой опыт считается недействительным.

(Измененная редакция, Изм. № 2, 4)

- 3.3. По истечении 5 ч отключают электронагрев, вынимают бомбы из термостата и охлаждают их до комнатной температуры.
- 3.4. После охлаждения, но не позже чем через 18 ч, бомбы открывают и топливо фильтруют через фильтр (п. 2.1), при этом количественно переносят на фильтр осадок, образовавшийся в топливе, на пластинке и стеклянной палочке, а топливо собирают для последующего определения растворимых смол в топливе. Воронку с осадком на фильтре устанавливают в сухую колбу. Стаканы, крышки с палочками и медные пластинки для полного удаления осадка промывают растворителем и переносят на фильтр. Фильтр промывают растворителем до удаления с фильтра следов топлива.

(Измененная редакция, Изм. № 4).

3.5. По окончании промывки каждый фильтр с осадком помещают в стаканчик для взвешивания, применяющийся для сушки чистого фильтра, и производят высушивание и доведение фильтров до постоянной массы так, как это указано в п. 2.1.

Высушивание осадка повторяют до получения расхождения между двумя последовательными взвещиваниями не более 0,0004 г.

3.6. В топливе после отделения осадка определяют растворимые смолы по ГОСТ 1567—56 или ГОСТ 8489—58.

В случае разногласий в оценке качества реактивного топлива анализ проводят по ГОСТ 1567—56.

- 3.5, 3.6. (Измененная редакция, Изм. № 2).
- 3.7. Если нормативно-технической документацией на топливо кроме осадка и растворимых смол, предусматривается определение нерастворимых смол (которые выпали на дно стакана), то их растворяют в 25 см³ спирто-бензольной или спирто-толуольной смеси и содержание смол определяют по ГОСТ 1567—83 или ГОСТ 8489—85.

(Измененная редакция, Изм. № 3).

4. ОБРАБОТКА РЕЗУЛЬТАТОВ

4.1. Для оценки термической стабильности в статических условиях испытуемого топлива вычисляют количество осадка и количество растворимых и нерастворимых смол, полученных после испытания.

4.2. Количество осадка ($G_{\rm oc}$) в мг на 100 см³ топлива вычисляют по формуле

$$G_{\rm oc} = 2 (m_2 - m_1),$$

- где m_1 масса стаканчика для взвешивания с чистым фильтром в мг;
 - m_2 масса стаканчика для взвешивания с осадком на фильтре в мг.
- 4.3. Количество растворимых смол (G'_{cm}) в мг на 100 см³ топлива вычисляют по формуле

$$G'_{\text{cm}} = G_4 - G_{3}$$

- где G_3 содержание фактических смол в топливе до его испытания в мг на 100 мл топлива;
 - G_4 содержание растворимых смол в топливе после его испытания в мг на 100 мл топлива.
- 4.4. Қоличество нерастворимых смол ($G''_{\text{см}}$) в мг на 100 см³ топлива вычисляют по формуле

$$G''_{\rm cm}=2G_5$$

- где G_5 количество нерастворимых смол, определенных в спирто-бензольной смеси, в мг.
- 4.5. Термическую стабильность топлива оценивают по средним арифметическим результатам двух параллельных определений (в двух бомбах).
- 4.6. Расхождения между двумя параллельными определениями осадков в топливе не должны превышать величин, указанных в таблице.

Образование нерастворимых осадков в мг на 100 см³ топлива	Допускаемые расхождения в мг на 100 см³ топлива
До 10	2
До 20	3
Более 20	4

4.7. Допускаемые расхождения между двумя параллельными определениями по смолам — по ГОСТ 1567—83 или по ГОСТ 8489—85.

Содержание растворимых в топливе смол менее 2 мг на 100 см³ топлива оценивается как их отсутствие.

(Измененная редакция, Изм. № 2).

СОДЕРЖАНИЕ

ΓΟCT 13210—72	Бензины. Метод определения содержания свинца комплексометрическим титрованием	3
ГОСТ 3338—68	Бензины авиационные. Метод определения сортности на богатой смеси	11
ΓΟ CT 7423—55	Бензины авиационные. Метод определения содержания параоксидифениламина	24
ΓΟCT 6667—75	Бензины авиационные. Методы определения периода стабильности	28
FOCT 26370—84	Бензины автомобильные. Метод оценки распределения детонационной стойкости по фракциям	32
ΓΟ CT 103 7 3—75	Бензины автомобильные для двигателей. Методы детонационных испытаний	35
ΓΟCT 20924—75	Бензины автомобильные и авиационные. Метод определения интенсивности окраски	61
FOCT 4039—48	Бензины. Метод определения длительности индукционного периода	64
FOCT 6073—75	Бензины этилированные. Метод определения содержания бромистых и хлористых выносителей	73
Γ OCT 22387.2—83	Газы горючие природные. Методы определения сероводорода и меркаптановой серы	84
FOCT 22387.3—77	Газ для коммунально-бытового потребления. Метод определения содержания кислорода	98
ΓΟCT 22387.4—77	Газ для коммунально-бытового потребления. Метод определения содержания смолы и пыли	101
ΓΟ CT 22387.5—77	Газ для коммунально-бытового потребления. Методы определения интенсивности запаха	103
ГОСТ 14920—79	Газ сухой. Метод определения компонентного состава	110
ΓΟCT 18917—82	Газ горючий природный. Методы отбора проб	119
ΓΟCT 26374—84	Газы горючие природные. Метод определения общей и органической серы	127
ΓΟCT 10062—75	Газы природные горючие. Метод определения удельной теплоты сгорания	13 6
ГОСТ 20060—83	Газы горючие природные. Методы определения со- держания водяных паров и точки росы влаги	161

389

TOCT	20061—84	Газы горючие природные. Метод определения температуры точки росы углеводородов	177
гост	10679—76	Газы углеводородные сжиженные. Метод определения углеводородного состава	181
FOCT	11382—76	Газы нефтепереработки. Метод определения содержания сероводорода	197
гост	19121—73	Нефтепродукты. Метод определения содержания серы сжиганием в лампе	208
гост	2070—82	Нефтепродукты светлые. Методы определения йодных чисел и содержания непредельных углеводородов	215
гост	6994—74	Нефтепродукты светлые. Метод определения ароматических углеводородов	221
гост	8226—82	Топливо для двигателей. Исследовательский метод определения октанового числа	227
ГОСТ	511—82	Топливо для двигателей. Моторный метод определения октанового числа	242
LOCL	13379—82	Нефть. Метод определения содержания углеводородов $C_1 - C_6$	259
FOCT	312267	Топлива дизельные. Метод определения цетанового числа	270
гост	18597—73	Топлива для двигателей. Метод определения коррозионной активности в условиях конденсации воды	288
LOCT	19006—73	Топливо для двигателей. Метод определения коэффициента фильтруемости	294
гост	1 7 323—71	Топливо для двигателей. Метод определения меркаптановой и сероводородной серы потенциометрическим титрованием	300
FOCT	9144—79	Топливо для двигателей. Метод определения термической стабильности в статических условиях	311
гост	2110375	Топливо для реактивных двигателей. Метод определения мыл нафтеновых кислот	315
гост	18598—73	Топливо для реактивных двигателей. Метод определения коррозионной активности при повышенных температурах	320
ГОСТ	17750—72	Топливо для реактивных двигателей. Метод определения люминометрического числа на аппарате типа ПЛЧТ	326
FOCT	1106575	Топливо для реактивных двигателей. Расчетный метод определения низшей удельной теплоты сгорания	332
ГОСТ	11802—66	Топливо для реактивных двигателей. Метод определения термоокислительной стабильности в статических условиях	336
ГОСТ	1 7749—7 2 T	опливо для реактивных двигателей. Спектрофотометрический метод определения нафталиновых углеводородов	342

FOCT 1756—52	Нефтепродукты. Методы определения давления насыщенных паров	347
FOCT 1567—83	Топливо моторное. Метод определения фактических смол	364
	Топливо моторное. Метод определения фактических смол (по Бударову)	
FOCT 5066—56	Топлива моторные. Методы определения температуры помутнения, начала кристаллизации и кристаллизации	376

НЕФТЕПРОДУКТЫ Методы испытаний Часть 2

Редактор С. И. Бабарыкин Технический редактор М. И. Максимова

Корректор Р. Н. Корчагина

Сдано в набор 17.10.86.

Гарнитура «Литературная». Печать высокая. Бумага книжно-журнальная. 24,5 усл. п. л. 24,63 усл. кр. отт. 24,42 уч.-изд. л. Изд. № 9025/2. Тираж 10 000. Зак. 3164. Цена 1 р. 40 коп.

Ордена «Знак Почета» Издательство стандартов, 123840, Москва, ГСП, Новопресненский пер., 3.

Подп. в печ. 11.08.87.

Формат 60×901/16.

Великолукская городская типография управления издательств, полиграфии и книжной торговли Псковского облисполкома, 182100, г. Великие Луки, ул. Полиграфистов, 78/12