

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

НАДЕЖНОСТЬ В ТЕХНИКЕ

СИСТЕМА СБОРА И ОБРАБОТКИ ИНФОРМАЦИИ. ПЛАНИРОВАНИЕ НАБЛЮДЕНИЙ

FOCT 17510-79

Издание официальное

НАДЕЖНОСТЬ В ТЕХНИКЕ

ГОСТ 17510—79

Система сбора и обработки информации. Планирование наблюдений

Reliability in technics. System of collecting and processing of information.
Planning of observation

Взамен ГОСТ 17510—72

Постановлением Государственного комитета СССР по стандартам от 10 мая 1979 г. № 1655 срок введения установлен

с 01.07.1980 г.

Настоящий стандарт распространяется на новые и отремонтированные изделия всех отраслей машиностроения и приборостроения.

Стандарт устанавливает методы определения минимального объема наблюдений за изделиями, исследуемыми в условиях эксплуатации.

1. ОСНОВНЫЕ ПОЛОЖЕНИЯ

- 1.1. Наблюдения в условиях эксплуатации представляют собой процесс, обеспечивающий получение достоверной информации о надежности объектов наблюдения.
- 1.2. Цель планирования наблюдений заключается в определении требуемого объема наблюдений для получения оценок показателей надежности с заданной точностью и достоверностью.
- 1.3. Планирование наблюдений предусматривает выбор объектов наблюдений, условий эксплуатации и режимов работы, планов проведения наблюдений.
- 1.4. Объектами наблюдений являются однотипные изделия (группа изделий или несколько групп), не имеющие конструктивных различий и изготовленные по единой технологии.
- 1.5. Выбор места проведения наблюдений должен обеспечивать наиболее характерные условия эксплуатации и режимы работы, предусмотренные нормативно-технической документацией.

Издание официальное ★ Перепечатка воспрещена

- 1.6. План проведения наблюдений (далее план наблюдений) должен устанавливать число объектов наблюдения, порядок проведения наблюдений и критерии их прекращения.
- 1.7. Номенклатура объектов наблюдений, типичные режимы и условия эксплуатации устанавливаются в техническом задании на проведение сбора информации; планы наблюдений, параметры, определяющие режим работы и способ их измерения, допустимая погрешность и требуемая достоверность определения оценок показателей надежности устанавливаются в рабочих методиках по сбору и обработке информации.

2. ПЛАНЫ НАБЛЮДЕНИЙ

2.1. Предусмотрено пять основных планов наблюдений, обозначенных индексами:

[NUN]; [NUr]; [NUT]; [NRr]; [NRT].

Характеристики планов наблюдений приведены в табл. 1.

Таблица 1

Индекс плана наблюдения	Характеристика плана наблюдения
[NUN]	Наблюдениям подлежат N объектов, отказавшие объекты новыми не заменяют и не восс≀анавливают,
[NUr]	наблюдения прекращают, когда число отказавших объектов достигает N Наблюдениям подлежат N объектов, отказавшие объекты новыми не заменяют и не восстанавливают, наблюдения прекращают, когда число отказавших
[NUT]	объектов достигает <i>r</i> Наблюдениям подлежат <i>N</i> объектов, отказавшие объекты новыми не заменяют и не восстанавливают,
[NRr]	наблюдения прекращают по истечении времени <i>Т</i> Наблюдениям подлежат <i>N</i> объектов, отказавшие объекты заменяют новыми или восстанавливают,
[NRT]	наблюдения прекращают, когда число отказавших объектов достигает <i>г</i> Наблюдениям подлежат <i>N</i> объектов, отказавшие объекты заменяют новыми или восстанавливают, наблюдения прекращают по истечении времени <i>T</i>

- 2.2. При использовании планов наблюдений [NUN]; [NUr]; [NUT] отказавшие объекты могут восстанавливаться, но данные об их отказах после восстановления не рассматривают.
- 2.3. Выбор планов наблюдений зависит от типа объекта, целей наблюдения, оцениваемых показателей надежности, условий эксплуатации с учетом экономической целесообразности и технической необходимости.

3. ОПРЕДЕЛЕНИЕ МИНИМАЛЬНОГО ОБЪЕМА НАБЛЮДЕНИЯ

3.1. Под объемом наблюдений следует понимать:

число объектов наблюдений N — для плана [NUN];

число объектов наблюдений N и число отказов (предельных состояний) наблюдаемых объектов r — для планов [NUr] и [NRr];

число объектов наблюдений N и установленную наработку или календарную продолжительность наблюдений T — для планов [NUT] и [NRT].

3.2. Определение объема наблюдений для плана [NUN].

3.2.1. Число объектов наблюдений *N* при оценке средних показателей надежности (средней наработки до отказа, среднего ресурса, среднего срока службы и т. д.) определяют по табл. 2—4.

Исходные данные для расчета:

относительная ошибка оценки соответствующего среднего показателя надежности δ_{co} ;

односторонняя доверительная вероятность оценки показателя падежности в:

предполагаемый коэффициент вариации V;

вид закона распределения исследуемой случайной величины

(наработки до отказа, ресурса, срока службы и т. д.).

3.2.2. Число объектов наблюдений U для оценки тамма-процентных показателей надежности (гамма-процентного ресурса, гамма-процентного срока службы и т. д.) при нормальном распределении определяют по табл. 5.

Исходные данные для расчета:

относительная ошибка оценки соответствующего гамма-процентного показателя надежности δ_{γ} ;

односторонняя доверительная вероятность в;

регламентированная вероятность $\frac{\gamma}{100}$;

предполагаемый коэффициент вариации V.

3.2.3. Число объектов наблюдений N для оценки гамма-процентных показателей надежности в случае распределений Вейбулла (экспоненциального) и логарифмически-нормального при известных значениях δ_{γ} ; β ; V определяют в следующей последовательности:

задают произвольный вспомогательный коэффициент вариации V'(V' < 0,4) и число N';

по табл. 5 стандарта для заданных величин $\frac{\gamma}{100}$; β ; V'; N' находят вспомогательное значение δ_{ν} ;

по табл. 3 стандарта для заданных величин β ; V'; N' находят вспомогательное значение δ_{cn} ;

рассчитывают относительную ошибку δ_{cp} оценки среднего показателя надежности, соответствующую относительной ошибке δ_{cp} ,

T аблица 2 Число объектов наблюдений N для плана [NUN] при распределении Вейбулла

							Nı	ірн <i>V</i>						
ð	В	0,4	0,5	0,6	0,7	0,8	0.9	1,0	1,1	1,2	1,5	1.8	2,0	3.0
	0,80	50	65	100	150	200	250	315	315	500	650	800	1000	_
0.05	0,90	100	200	250	400	500	500	650	1000	1000		—		_
0,05	0,95	150	250	400	500	650	800	1000	_		_	_	_	-
	0,99	315	500	800	1000	1000	_				_			-
	0,80	13	25	32	50	50	65	100	125	150	200	250	315	400
	0,90	32	50	65	100	125	150	200	250	315	400	500	500	1000
0,10	0,95	1 50	80	100	150	200	250	400	500	650	800	800	800	1000
	0,99	100	150	200	315	400	500	650	650	800	1000	_		
	0,80	6	10	15	20	25	32	40	50	80	80	125	125	200
_	0,90	15	25	32	40	65	80	80	125	150	200	250	315	500
0,15	0,95	25	40	50	80	100	125	150	200	200	315	400	500	800
	0,99	40	6.5	100	150	200	250	315	400	500	800	1000	_	
	0,80	5	8	10	15	20	20	25	32	40	50	65	80	125
	0,90	10	15	20	32	40	40	50	65	80	125	150	200	315
0,20	0,95	15	25	32	40	50	80	100	125	150	200	250	250	400
	0,99	25	40	65	80	125	150	150	200	250	315	460	500	1000

$$\delta_{cp} = \delta'_{cp} \cdot \frac{\delta'_{\gamma}}{\delta'_{v}}$$
.

Для найденного значения $\delta_{\rm cp}$ и заданных значений β и V для соответствующих законов распределений по табл. 2 и 4 определяют искомое число объектов наблюдений N.

3.2.4. Если по результатам наблюдений за N объектами получен коэффициент вариации больше заданного, то объем наблюдений пересчитывают для найденного коэффициента вариации (пп. 3.2.1 —3.2.3).

Таблица 3 Число объектов наблюдений М для плана [NUN] при нермальном законе распределения

	ĺ		распреде	N npu V		
8	В	0,10	0,15	0,20	0,25	0,30
0,05	0,80 0,90 0,95 0,99	4 8 13 25	6 15 25 50	13 25 40 100	20 40 65 150	25 65 100 200
0,10	0.80 0,90 0,95 0,99	3 5 8	3 5 8 15	5 8 13 25	8 13 20 32	10 15 25 50
0,15	0,80 0,90 0,95 0,99	 3 5	 3 5 8	3 4 6 13	4 6 10 15	5 8 13 25
0,20	0,80 0,90 0,95 0,99		 4 6	4 5 8	5 6 10	3 6 8 15

3.3. Определение объема наблюдений для плана [NUr]

 $3.\dot{3}.1.$ Число объектов наблюдения N для оценки гамма-процентных показателей надежности или вероятности безотказной работы P(t) определяют по табл. 6.

Исходные данные для расчета:

односторонняя доверительная вероятность в;

регламентированная вероятность $\frac{\gamma}{100}$ или предполагаемое значение P(t);

установленное число г отказов (предельных состояний).

- 3.3.2. Число отказов (предельных состояний) r для оценки гамма-процентных показателей надежности или вероятности безетказной работы P (t) определяют по табл. 6 в предположении, что число наблюдаемых объектов N задано.
- 3.3.3. Если по результатам наблюдений за N объектами получено значение вероятности безотказной работы больше заданного, то число отказов (предельных состояний) r пересчитывают по табл. 6 для найденного значения P (t) и наблюдения продолжают.

3.4. Определение объема наблюдений для плана [NUT]

3.4.1. Число объектов наблюдений N для оценки средних показателей надежности $t_{\rm cp}$ определяют по табл. 7 и 8.

Таблица 4

Число объектов наблюдений N для плана [NUN] при логарифмически нормальном законе распределения

-				N	при <i>V</i>			
8	β	0,4	0,5	0,6	0,7	0,8	0,9	1,0
0,05	0,80 0,90 0,95 0,99	40 100 150 315	65 150 250 500	100 250 400 800	125 315 500 —	150 400 650 —	200 500 800	250 650 1000 —
0,10	0,80 0,90 0,95 0,99	10 25 40 80	20 40 65 125	25 65 100 200	32 80 125 250	40 100 150 315	50 125 200 400	65 150 250 500
0,15	0,80 0,90 0,95 0,99	5 13 20 40	8 20 32 50	10 25 40 80	15 40 50 125	20 50 80 150	25 50 100 200	32 65 100 200
0,20	0,80 0,90 0,95 0,99	3 6 10 20	4 10 15 32	6 15 25 50	8 20 32 65	10 25 40 80	15 32 50 100	20 40 65 125

Таблица 5 Число объектов наблюдений N для плана [NUN] при оценке гамма-процентных показателей надежности

			$\frac{v}{100} = 0$),75		1	$\frac{v}{00} = 0.80$				<u>v</u>),85	
8	β		N	при <i>V</i>			<i>N</i> прі	1 V			N 1	при <i>V</i>	
		0,1	0,2	0,3	0,4	0,1	0,2	0,3	0,4	0,1	0.2	0,3	0,4
	0,80		50	100	250	_	50	150	315	_	65	200	400
0,05	0,90	_	80	200	315		80	200	500	20	100	315	500
	0,95		100	250	400	25	125	315	500	32	150	400	500
	0,80		13	32	65		15	40	80		20	50	125
0,10	0,90		25	40	80		25	65	125	-	25	80	200
	0,95		25	65	125	_	32	80	200	_	32	100	250
	0,80	_	6	10	25		6	10	25	_	8	20	50
0,15	0,90	_	8	20	40	_	8	25	65		10	32	80
	0,95		13	32	65		15	32	80	_	15	50	125
	0,80	<u>—</u>	3	5	13		3	6	20		5	8	32
0,20	0,90		4	13	25	_	5	15	32	_	6	20	50
	0,95		6	15	32		8	20	50	l _	10	25	65

Продолжение	табл.	5	
-------------	-------	---	--

			$\frac{v}{100} = 0$,90			$\frac{\gamma}{100} = 0$),95			<u>ν</u> 100	0, 9 9	
ð	В		Nn	гри <i>V</i>			<i>N</i> при	ı V			N	при V	
		0.1	0.2	0,3	0,4	0,1	0,2	0.3	0,4	0.1	0.2	0.3	0.4
	0,80	2 0	80	315	500	25	150	500	500	32	250	500	500
0,05	0,90	25	150	500	500	40	200	500	500	50	400	500	500
	0,95	40	200	400	500	50	315	500	500	80	500	500	500
	0,80		20	65	200		32	125	250		65	315	400
0,10	0,90		40	125	315		65	200	400	_	100	500	500
	0,95		50	150	400		80	200	500	20	125	500	500
	0,80		13	32	80		20	65	100		25	150	200
0,15	0,90		15	50	150	_	25	100	250		40	200	315
	0,95		25	65	200	_	32	125	315	25	65	315	500
	0,80		6	20	50		10	32	65		20	80	100
0,20	0,90		10	32	80	_	13	50	100	-	25	125	200
0,20	0,95		13	40	100		20	80	150	15	32	150	250

Таблица 6 Число объектов наблюдений N для плана [NUr] при оценке гамма-процентных показателей надежности

γ/100			- -						N при /	r						
или P(t)	В	0	1	2	3	4	5	6	8	10	15	20	ยูร	J2	40	50
	0,80	_	_	_	8	10	13	13	20	25	32	40	50	65	80	100
0,50	0,90		_	6	8	10	13	15	20	25	32	40	50	65	80	100
-,	0,95		-	8	10	13	15	20	25	32	40	50	65	80	100	125
	0,99	6	10	10	13	15	20	20	25	32	50	65	65	80	100	125
	-								<u>-</u>	<u> </u>						
	0,80	8	8	13	20	25	32	40	50	65	80	125	150	150	200	
0,80	0,90	10	10	15	25	32	40	40	50	65	100	125	150	200		
	0,95	13	13	20	32	40	40	50	65	80	100	125	150	200		
	0,99	20	20	25	32	40	50	50	65	80	125	150	150	200	_	
	-															
	0,80	15	15	32	40	50	65	80	100	125	200	200	200		_	_
0,90	0,90	20	20	32	50	65	80	80	100	150	200	200				
-7	0,95	20	25	40	50	65	80	100	125	150	200	_		_		
	0,99	32	32	50	80	80	100	125	125	150	200		_		_	_
	·					ļ		<u> </u>		<u> </u>		 				
	0,80	32	32	50	80	100	125	150	150	200	_	_				
0,95	0,90	50	50	65	100	100	125	150	200	_		_			_	_
0,00	0,95	50	65	80	125	150	200	_				_			_	
	0,99	65	65	100	150	150	200				_					_

OCT 17510-79 CTp. 1

Таблица 7
Число объектов наблюдений N для плана [NUT] при распределении Вейбулла
(экспоненциальном)

	1]	8.	-0,05			ð:	-0,10			ð:	=0,15		1	8.	-0,20	
×	V		N	при В			N	при В			N	при β			N	при В	
^	,	0,8 0	0,90	0,95	0,99	0.80	0,90	0,95	0,99	0,80	0,90	0,95	0,99	0,80	0,90	0,95	0,99
0,1	0,7 0,8 0,9 1,0 1,1 1,2 1,5 2,0 3,0	 800 250 80 25	500 125 32	 800 150 40		1000 800 400 250 100 40 13	800 500 200 65 20	 800 250 80 25			800 500 315 100 40 13	650 400 150 50 20	 650 250 65 25	315 200 125 80 40 20 8	800 500 250 200 80 25 13	800 400 250 100 40 15	
0,3	0,70 0,80 0,90 1,0 1,1 1,2 1,5 2,0 3,0	650 400 150 65 20	 800 250 80 25	 400 100 32	650 150 40	500 315 200 125 50 20	- 650 400 250 100 40 13	 650 400 125 50 20	 650 200 65 25		650 315 200 125 65 25	- 500 315 200 80 32	 500 315 125 40 15	500 200 100 80 50 40 20	500 315 200 125 80 40 15	500 315 200 125 50 20	
0,5	0,70 0,80 0,90 1,0 1,1	- - 800 400	- - - 800			800 400 200 125	- - 500 250	- - 800 400	- - 1000 650	650 315 150 80 50	800 400 200 125	800 315 200	- - - 650 315	250 150 80 50 32	400 250 125 65	800 400 200 100	800 400 200

Продолжение табл. 7

-			6-	-0,05			ð÷	=0,10			8-	-0,15			δ-	-0,20	
ļ			N	при В			N	при В			N	при В			N	при В	
×	V	0,80	0,90	0,95	0,99	0,80	0,90	0.95	0.99	0,80	0,90	0,95	0,99	0,80	0,90	0,95	0,99
	1,2	250	500	800		80	200	250	500	40	80	125	200	25	50	80	150
	1,5	100	200	250	400	40	65	100	150	25	40	65	80	15	25	40	65
0,5	2,0	50	65	80	125	20	32	40	65	13	20	25	32		13	20	25
	3,0	15	20	32	40		13	15	20		_	_	13				_
																	
!	0,70				<u> </u>		_	_		400	_	_	_	150	500	_	<u> </u>
	0,80			<u> </u>	_	650	_			200	650		-	100	250	500	
	0,90			 	 	250	650	-	_	125	315	500	1000	50	150	250	650
	1,0	650		_	 	150	400	650		65	150	250	500	40	100	150	315
0,7	1,1	315	800	<u> </u>	 -	100	200	315	650	50	100	150	315	32	65	100	200
0,1	1,2	200	400	650		65	150	200	400	40	80	125	200	20	50	65	125
	1,5	80	150	200	315	32	65	80	125	20	32	50	65	13	25	32	50
	2,0	50	65	80	100	15	25	32	50	10	20	25	32		13	15	25
	3,0	15	20	25	32		13	13	20			10	13		_	_	10
!	· !							<u> </u> {							 	i i	
				1	l .			•		Į	ŀ	ł	ļ	i	!	1	I

TOCT 17510-79 Ctp. 1

 ${\tt Таблица 8} \\ {\tt Число \ oбъектов \ наблюдений} \ {\tt N} \ {\tt для \ плана \ [NUT] \ нормального \ распределения }$

			δ=	-0,05			ð-	-0, 10			ô-	-0,15		<u> </u>	ô-	-0.20	
×	v		N	при В			N	при В			N	при В			N	при В	
YC .	, <i>v</i>	0,8	0,9	0,95	0,99	0,8	0,9	0.95	0,99	0,8	0,9	0,95	0,99	0,8	0,9	0,95	0,99
	0,1	_	_		_		-			_	_	_	-		_	_	
0,6	0,2			-	_	800		_		400	1000	_		200	500	800	_
	0,3	500	1000	-	_	150	315	500	1000	65	125	250	500	32	80	125	500
	0,1				_	_		_							_		
0,7	0,2	400	1000			100	250	400	800	50	100	200	400	25	65	100	200
	0,3	250	500	1000	_	65	125	250	500	25	65	100	200	13	32	65	100
	0,1	500	_	_	_	125	315	500	1000	50	125	200	400	32	80	125	2 50
0,8	0,2	100	250	400	800	25	65	100	200	10	25	40	100		15	25	50
	0,3	100	250	400	800	25	65	100	200	13	32	50	100	_	15	25	50
	0,1	25	65	100	200		15	25	50			10	20	_			13
0,9	0,2	32	80	125	250		20	32	65		_	15	32		_		20
	0,3	65	150	250	500	15	40	65	125	-	15	25	50	_	-	13	32

Исходные данные для расчета:

относительная ошибка 8;

односторонняя доверительная вероятность в;

предполагаемый коэффициент вариации V;

предполагаемая величина κ (отношение продолжительности наблюдения T_{κ} оцениваемому показателю надежности $t_{\rm cp}$);

вид закона распределения исследуемой случайной величины.

- Если по результатам наблюдений за N объектами получено значение \varkappa меньше заданного, то число N пересчитывают для найденного значения \varkappa по табл. 7 и 8 соответственно и наблюдения продолжают.
- 3.4.2. Продолжительность наблюдений T вычисляют по формуле

$$T = \varkappa \cdot t_{\rm cp}$$
.

Величину и определяют по табл. 7 и 8 соответственно для распределений Вейбулла и нормального при следующих исходных данных:

относительной ошибке δ;

односторонней доверительной вероятности в;

предполагаемом коэффициенте вариации V;

числе объектов наблюдений N.

Значение продолжительности наблюдений T округляют до ближайшего значения ряда R_{70} по ГОСТ 11.001—73.

3.5. Для плана [NRr] число отказов r для оценки средних показателей надежности определяют по табл. 9 в предположении, что поток отказов простейший.

таблица 9

Число отказов г для плана [NRr]

		г при В										
8	0,80	0,90	0,95	0,99								
0,05 0,10 0,15 0,20	315 80 50 25	650 200 100 50	1000 315 150 100	2500 650 315 200								

Исходные данные для расчета:

относительная ошибка δ;

односторонняя доверительная вероятность в.

3.6. Для плана [NRr] число отказов V для оценки коэффициента готовности K_r определяют по табл. 10.

Исходные данные для расчета:

относительная ошибка δ;

односторонняя доверительная вероятность в.

предполагаемый коэффициент вариации V распределения наработок между отказами;

предполагаемый коэффициент вариации $V_{\mathtt{B}}$ распределения времени восстановления.

Если по результатам наблюдений за объектами получен коэффициент вариации V больше заданного, то число отказов r пересчитывают по табл. 10 для найденного коэффициента вариации и наблюдения продолжают.

3.7. Для плана [NRT] продолжительность наблюдений T для оценки средних показателей надежности $t_{\rm cp}$ вычисляют по формуле

$$T=\frac{\kappa \cdot t_{\rm cp}}{N}.$$

Таблица 10 Число отказов г для плана [NRr] для оценки коэффициента готовности

		V _B =0,1							
8	β			<u></u>	при <i>V</i>				
	þ	0,1	0,2	0,3	0,4	0,6	0.8	1.0	
0,05	0,80 0,90 0,95 0,99	6 13 20 40	15 32 65 100	25 65 125 200	50 125 200 400	100 250 400 800	200 400 800	315 650 — —	
0,10	0,80 0,90 0,95 0,99	4 6 10	4 10 15 32	8 20 32 65	15 32 50 100	32 65 125 250	50 125 200 400	80 200 315 650	
	0,80	_		4	6	15	25	40	
0,15	0,90	-	5	10	15	32	65	100	
	0,95	3	8	15	25	50	100	150	
	0,99	6	15	32	50	125	200	315	
	0,80		_		4	10	15	25	
0,20	0,90		3	6	10	20	40	65	
	0,95	-	5	10	15	32	65	100	
	0,99	3	10	20	32	65	125	200	

Продолжение табл. 10

				ı	/ _B =0,2			
٥	β			r	при <i>V</i>	 _		
		0,1	0,2	0,3	0,4	0,6	0,8	1,0
0,05	0,80 0,90 0,95 0,99	15 32 50 100	25 50 100 200	40 100 150 315	65 150 250 500	125 250 500 1000	200 500 800 —	315 800 —
0,10	0,80 0,90 0,95 0,99	4 8 13 25	6 15 25 50	10 25 40 80	15 40 65 125	32 80 125 250	50 125 200 400	80 200 315 650
0,15	0,80 0,90 0,95 0,99		3 6 10 20	5 10 20 40	8 20 32 65	15 40 65 125	25 65 100 200	40 100 150 315
0,20	0,80 0,90 0,95 0,99	 - 4 8	- 4 6 13	3 6 10 20	5 10 20 40	10 20 40 80	15 40 65 125	25 65 100 200

Продолжение табл. 10

			_	V	' _B =0,3				
•			г при V						
δ	В	0,1	0,2	0,3	0,4	0.6	0,8	0,1	
0,05	0,80 0,90 0,95 0,99	25 65 100 200	40 80 150 315	50 125 200 400	80 200 315 650	125 315 500 1000	200 500 800	315 800 —	
0,10	0,80 0,90 0,95 0,99	6 15 25 50	10 25 40 80	15 32 50 100	20 50 80 150	40 80 150 250	65 150 250 400	100 200 400 650	

Продолжение табл. 10

	1	V _B -0,3							
8	β	r прн V							
		0,1	0,2	0,3	0.4	0,6	0,8	1,0	
0,15	0,80 0,90 0,95 0,99	3 8 13 25	5 10 15 32	6 15 25 50	10 25 40 80	15 40 65 125	32 65 100 200	50 100 150 315	
0,20	0,80 0,90 0,95 0,99	 4 6 13	3 6 10 20	4 10 15 32	6 13 20 40	10 25 40 80	20 40 65 125	25 65 100 200	

Продолжение табл. 10

	1	V _B -0,4							
8	β			r	при V				
		0,1	0,2	0,3	0,4	0,6	0,8	1,0	
0,05	0,80 0,90 0,95 0,99	50 100 150 315	65 125 200 400	80 150 250 500	100 200 400 800	150 315 650	250 500 1000 —	400 800 —	
0,10	0,80 0,90 0,95 0,99	13 25 40 100	15 32 50 125	20 40 80 150	25 65 100 200	40 100 150 315	65 150 250 500	100 250 400 800	
0,15	0,80 0,90 0,95 0,99	5 13 20 40	6 15 25 50	8 20 32 65	10 25 40 80	20 50 80 150	32 80 125 250	50 100 200 400	
0,20	0,80 0,90 0,95 0,99	3 6 10 25	4 8 13 32	5 13 20 40	6 15 25 50	13 25 40 80	20 40 65 150	32 65 100 200	

Продолжение табл. 10

		<u> </u>	V _B =0.6 г при V							
δ	β	0,1	0,2	0,3	0,4	0,6	0,8	1.0		
0,05	0,80 0,90 0,95 0,99	100 250 400 800	125 250 400 800	125 315 500 1000	150 400 650	200 500 800	315 650 —	400 1000 —		
0,10	0,80	25	25	32	40	50	80	100		
	0,90	65	65	80	100	125	200	250		
	0,95	100	100	125	150	200	315	400		
	0,99	200	200	250	315	400	650	800		
0,15	0,80	10	13	15	20	25	40	50		
	0,90	25	32	32	40	65	80	125		
	0,95	40	50	50	65	100	150	200		
	0,99	80	100	125	150	200	315	400		
0,20	0,80	6	8	8	10	15	20	32		
	0,90	15	15	20	25	40	50	80		
	0,95	25	25	32	40	65	80	125		
	0,99	50	50	65	80	125	150	250		

Продолжение табл. 10

						рооолж	ение т	10 <i>n</i> . 10
				V	' _B =0,8			
δ	β			r	при V			
	þ	1,0	0,2	0,3	0,4	0,6	0.8	1,0
0,05	0,80 0,90 0,95 0,99	150 400 650	200 400 650	200 500 800	250 500 800 —	315 650 —	400 800 —	500 — —
0,10	0,80 0,90 0,95 0,99	40 100 150 315	50 100 200 400	50 125 200 400	65 150 200 400	80 150 315 400	100 250 400 800	125 315 500 1000

Продолжение табл. 10

		V _B =0,8 г при V						
δ	β	0,1	0,2	0,3	0.4	0,6	0,8	1.0
0,15	0,80	20	20	20	25	32	40	65
	0,90	40	50	50	65	80	100	150
	0,95	80	80	80	100	125	150	250
	0,99	150	150	200	200	250	315	500
0,20	0,80	10	13	13	15	20	25	32
	0,90	25	25	32	40	50	65	80
	0,95	40	40	50	65	80	100	150
	0,99	80	100	100	125	150	200	250

Продолжение табл. 10

			V _в =1,0						
δ	β	0,1	0,2	0,3	0,4	0,6	0,8	1,0	
0,05	0,80 0,90 0,95 0,99	250 650 —	315 650 — —	315 650 —	315 800 — —	400 1000 —	500 — — —	650 — — —	
0,10	0,80 0,90 0,95 0,99	65 150 250 500	65 150 250 500	80 200 315 500	80 200 315 650	100 250 400 800	125 315 500 1000	150 400 650	
0,15	0,80 0,90 0,95 0,99	32 65 125 250	32 80 125 250	32 80 125 250	40 80 150 315	40 100 200 315	50 125 250 400	65 150 250 500	
0,20	0,80 0,90 0,95 0,99	15 40 65 125	20 40 65 150	20 50 80 150	20 50 80 150	25 65 100 200	32 80 125 250	40 100 150 315	

Величину и определяют по табл. 11 в предположении, что поток отказов простейший.

Таблица 11 Вельшина у вла плана (NPT)

		na z zen manana	(ete)					
		ж при β						
.	0,80	0,90	0,95	0.99				
0,05	331	684	1052	2625				
0,10	88	217	346	714				
0,15	56	114	170	358				
0,20	29	59	116	232				

Исходные данные для расчета:

относительная ошибка δ:

односторонняя доверительная вероятность в.

Численное значение продолжительности наблюдений T округляют до ближайшего значения ряда R_{70} по ГОСТ 11.001—73.

3.8. Относительная ошибка δ представляет собой меру точности оценки показателей надежности и равна:

$$\delta = \left| \frac{\Pi - \Pi^*}{\Pi} \right|,$$

где П — оценки показателя надежности;

 Π^* — односторонняя доверительная граница показателя надежности (наиболее далеко отстоящая от Π).

Относительную ошибку δ выбирают из ряда: 0,05; 0,10; 0,15; 0,20.

3.9. Одностороннюю доверительную вероятность в для оценки показателей надежности выбирают из ряда:

0,80; 0,90; 0,95; 0,99.

3.10. Формулы для определения минимального объема наблюдений приведены в справочном приложении 1. Примеры определения минимального объема наблюдений приведены в справочном приложении 2.

ФОРМУЛЫ ДЛЯ ОПРЕДЕЛЕНИЯ МИНИМАЛЬНОГО ОБЪЕМА НАБЛЮДЕНИЙ

1. Минимальный объем наблюдений для оценки средних показателей надежности $t_{\mathtt{cp}}$ определяется по формулам таблицы.

План наб- людений	Вид распределения с плот- ностью	Формулы для расчета
[NUN]	Экспоненциальное $f(t) = \lambda e^{-\lambda t}$	$rac{2N}{\chi^2_{-eta}(2N)} = \delta + 1,$ где $\chi^2_{-eta}(2N)$ — квантиль распределения хи-квадрат с $2N$ степенями свободы, соответствующая вероятности $1-eta$
	Вейбулла $f(t) = b\lambda(\lambda t)^{b-1} e^{-(\lambda t)^b}$	$\frac{2N}{\chi_{1-\beta}^{2}(2N)}=(\delta+1)^{b}$
	Нормальное $f(t) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(t-a)^2}{2\sigma^2}}$	$\frac{t_{\beta}(N-1)}{\sqrt[]{N}} = \frac{\delta}{V},$ где $t_{\beta}(N-1)$ —квантиль распределения Стьюдента с $N-1$ степенью свободы, соответствующая вероятности β
	Логарифмически нормальное $f(t) = \frac{1}{t\sigma\sqrt{2\pi}} e^{-\frac{(\ln t - a)^2}{2\sigma^2}}$	$R = \ln(V^{2} + 1) \left[1 + \frac{\ln(V^{2} + 1)}{2} \right]$ $Q = \left(\frac{U_{\beta}}{\delta} \right)^{2},$
		где U_{β} — квантиль нормального распределения, соответствующая вероятности β
[NUT]	Вейбулла $f(t) = b\lambda(\lambda t)^{b-1} e^{-(\lambda t)^b}$ Нормальное $f(t) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(t-a)^2}{2\sigma^2}}$	$N = \left(\frac{U_{\beta}}{\delta}\right)^{2b} \frac{1}{1 - e^{-(\lambda t)}}b$ $N = \left(\frac{U_{\beta}}{\delta}\right)^{2} f_{2}(K)$ $K = \frac{1 - \kappa}{V}$
	ì	l

План наб- людений	Вид распределения с плот- ностью	Формулы для расчета
[NRr]	Экспоненциальное $f(t) = \lambda e^{-\lambda t}$	$\frac{2r}{\chi_{l-\beta}^{2}\left(2r\right)}=\delta+1,$ где $\chi_{l-\beta}^{2}\left(2r\right)$ — квантиль хи-квадрат распределения с $2r$ стоменями свободы, соответствующая вероятности $1-\beta$

2. Минимальный объем наблюдений для оценки гамма-процентных показателей надежности t , при плане [NUr] определяется по формулам:

$$\frac{\gamma}{100}(r+1)f_{\beta} \quad (m_1; m_2) = (1 - \frac{\gamma}{100})(N-\gamma)$$

$$m_1 = 2(r+1)$$

$$m_2 = 2(N-r),$$

где f_{β} (m_1, m_2) — квантиль распределения Фишера с m_1 и m_2 степенями свободы, соответствующая вероятности β .

3. Минимальный объем наблюдений для оценки коэффицисита готовности K_r при плане [NRr] определяется по формуле

$$r = \left(\frac{U_{\beta}}{\delta}\right)^{2} \left[(\delta+1)^{2} V^{2} + V_{\beta}^{2} \right].$$

ПРИЛОЖЕНИЕ 2 Справочное

примеры определения объема наблюдений

Пример 1. Для плана наблюдений [NUN] определить число N объектов наблюдений, чтобы с односторонней доверительной вероятностью $\beta = 0.90$ относительная ошибка δ в определении среднего ресурса не превышала 0.10.

Ресурс распределен нормально с коэффициентом вариации V, равным 0,20. **Решение.** По табл. 3 настоящего стандарта для V=0,20; $\beta=0,90$ и $\delta=0,10$ находим N=8.

По результатам наблюдений за 8 объектами получен коэффициент вариации V, равный 0,30.

В соответствии с п. 3.2.4 настоящего стандарта определим дополнительный объем наблюдений. Для $V\!=\!0.30;~\beta\!=\!0.90$ и $\delta\!=\!0.10$ по табл. 3 находим $N\!=\!15.$ Следовательно, под наблюдение необходимо дополнительно поставить 7 объектов.

Пример 2. Для наблюдений [NUN] определить число N объектов наблюдений, чтобы с односторонней доверительной вероятностью β =0,90 относительная ошибка δ в определении 80% ресурса не превышала 0,10. Ресурс имеет распределение Вейбулла с коэффициентом вариации V, равным 0,5.

Решение. Число N объектов наблюдений определяется в соответствии с π . 3.2.3 настоящего стандарта:

задаемся произвольным вспомогательным значением коэффициента вариации

$$V'=0.30$$
 и числом $N'=15$; для заданных величин $\frac{Y}{100}=0.80$; $V'=30$; $N'=15$

и $\beta = 0.90$ по табл. 5 находим вспомогательное значение $\delta_{\gamma}' = 0.20;$

для заданных величин V'=0,30;~N'=15 и $\delta=0,90$ по табл. 3 находим вспомогательное значение $\delta_{cn}^{\prime}=0,10;$

определяем относительную ошибку $\delta_{c\,p}$, соответствующую заданной относительной ошибке $\delta_{\cdot,\cdot}=0,10;$

$$\delta_{cp} = \delta'_{cp} \cdot \frac{\delta_{\gamma}}{\delta'_{\gamma}} = 0.10 \cdot \frac{0.10}{0.20} = 0.05$$

для найденного значения $\delta_{\text{е.p}}\!=\!0,\!05$ и заданных $\beta\!=\!0,\!90$ и $V\!=\!0,\!5$ по табл. 2 находим $N\!=\!200$.

Пример 3. Для плана наблюдений [NUr] определить число N объектов наблюдений, чтобы с односторонней доверительной вероятностью $\beta = 0.80$ определить 90%-ресурс объектов. Установленное число r предельных состояний равно 5.

Решение. По табл. 6 настоящего стандарта для $\frac{\gamma}{100}$ = 0,90; β = 0,80 и r = 5 находим N = 65.

Пример 4. Для плана наблюдений [NUT] определить продолжительность наблюдений T за 25 объектами, чтобы с односторонней доверительной вероятностью $\beta = 0.95$ относительная ошибка δ в определении средней наработки до отказа не превышала 0,15. Наработки до отказа распределены нормально с коэффициентом вариации V, равным 0,2; предполагаемое значение средней наработки до отказа $t_{\rm cp}$ равно 400 ч.

Решение. В соответствии с п. 3.4.2 настоящего стандарта продолжительность Т наблюдений равна:

Для заданных $N\!=\!25;~\beta\!=\!0.95;~\delta\!=\!0.15$ и $V\!=\!0.2$ по табл. 8 находим $\varkappa\!=\!0.9.$ Тогда

$$T = 0.9 \cdot 400 = 360 \text{ q.}$$

Полученное значение T в соответствии с ГОСТ 11.001—73 округляем до ближайшего значения $T\!=\!400$ ч.

Пример 5. Для плана наблюдений [NRr] определить число отказов r, чтобы с односторонней доверительной вероятностью $\beta = 0.90$ относительная ошибка δ в определении наработки на отказ не превышала 0,20.

Решение. По табл. 9 настоящего стандарта для β = 0,90 и δ = 0,20 находим r = 50.

Пример 6. Для плана наблюдений [NRr] определить число отказов r, чтобы с односторонней доверительной вероятностью $\beta = 0,80$ относительная ошибка δ в определении коэффициента готовности не превышала 0,10. Коэффициент вариации распределения наработок между отказами равен 0,4; коэффициент вариации распределения времени восстановления равен 0,6.

Решение. По табл. 10 настоящего стандарта для $\beta=0.80;\ \delta=0.10;\ V=0.4$ и $V_{\rm B}=0.6$ находим r=40.

Пример 7. Для плана [NRT] определить продолжительность наблюдений за 10 объектами, чтобы с односторонней доверительной вероятностью β = 0,90 относительная ошибка в определении средней наработки на отказ не превышала 0,15. Поток отказов предполагается простейшим, предполагаемое значение средней наработки на отказ $t_{\rm cp}$ равно 100 ч.

Решение. В соответствии с п. 3.7 настоящего стандарта продолжительность T наблюдений равна:

$$T = \frac{\kappa t_{\rm cp}}{N}$$
.

Для заданных $\beta \! = \! 0,\!90$ и $\delta \! = \! 0,\!15$ по табл. 11 находим $\varkappa \! = \! 114.$ Тогда

$$T = \frac{114 \cdot 100}{10} = 1140 \text{ q.}$$

Полученное значение T в соответствии с ГОСТ 11.001—73 округляем до ближайшего значения $T\!=\!1250$ ч.

Редактор *Р. Г. Говердовская* Технический редактор *Ф. И. Шрайбштейн* Корректор *М. Г. Байрашевская*

Сдано в наб. 20.04.80 Подп. в печ. 17.07.80 1,5 п. л. 1,47 уч.-изд. л. Тир. 8000 Цена 5 коп.

Ордена «Знак Почета» Издательство стандартов, Москва, Д.557, Новопресненский пер., д. 3. Вильнюсская типография Издательства стандартов, ул. Миндауго, 12/14. Зак. 2190