

НЕФТЕПРОДУКТЫ методы испытаний

часть 2

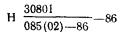
ГОСУДАРСТВЕННЫЕ СТАНДАРТЫ СОЮЗА ССР

НЕФТЕПРОДУКТЫ

МЕТОДЫ ИСПЫТАНИЙ

Часть 2

Издание официальное


Москва ИЗДАТЕЛЬСТВО СТАНДАРТОВ 1987

ОТ ИЗДАТЕЛЬСТВА

Сборник «Нефтепродукты. Методы испытаний» часть 2 содержит стандарты, утвержденные до 1 марта 1987 г.

В стандарты внесены все изменения, принятые до указанного срока. Около номера стандарта, в который внесено изменение, стоит знак *.

Текущая информация о вновь утвержденных и пересмотренных стандартах, а также о принятых к ним изменениях публикуется в выпускаемом ежемесячно информационном указателе «Государственные стандарты СССР».

РЕНЗИНР

ГОСТ 4039—48*

Метод определения длительности индукционного периода

Взамен ОСТ 7872—39, М. И. 24в

ОКСТУ 0209

Утвержден Всесоюзным комитетом стандартов при Совете Министров Союза ССР 24/II 1948 г. Срок введения установлен

c 01.05.48

Постановлением Госстандарта от 15.01.86 № 98 срок действия продлен

до 01.01.88

Несоблюдение стандарта преследуется по закону

Настоящий стандарт устанавливает метод определения длительности индукционного периода, характеризующего склонность бензинов к окислению и смолообразованию при длительном их хранении.

Сущность метода заключается в определении времени, в течение которого испытуемый бензин, находящийся в среде кислорода под давлением 0,70 МПа (7 кгс/см²) и при температуре 100°С, практически не подвергается окислению.

(Измененная редакция, Изм. № 1).

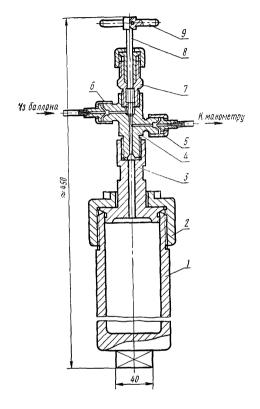
І. ДППАРАТУРА, МАТЕРИАЛЫ И РЕАКТИВЫ

При проведении определения длительности индукционного периода применяется следующая аппаратура:

а) Бомба типа БИ для окисления (черт. 1), изготовленная из нержавеющей стали.

Бомба состоит из корпуса 1, крышки 2 и головки, состоящей из грибка 3, тройника 4 с нижним боковым отростком 5 и верхним боковым отростком 6 и вентиля 7 с игольчатым клапаном 8 и воротком 9.

Крышка бомбы свободно движется по стержню грибка и вращается над его расширенной частью, которая пришлифована к корпусу бомбы. При завинчивании крышки расширенная часть грибка герметично закрывает корпус бомбы.

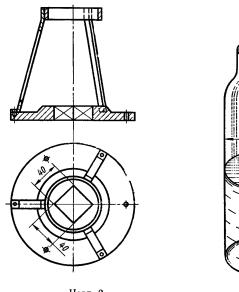

Издание официальное

Перепечатка воспрещена

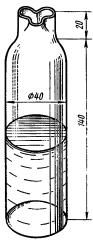
*

^{*} Переиздание с Изменением № 1, утвержденным в августе 1983 г. (ИУС 11—83).

б) Манометр кислородный класса 1,5 по ГОСТ 8625-77 в


Черт. 1

корпусе диаметром 160 мм; шкала 0—1,6 МПа (0—16 кгс/см²). Манометр отъединяется от бомбы только в случае необходимого ремонта.


в) Трубка из углеродистой стали по ГОСТ 8732—78 наружным диаметром 5 мм и толщиной стенки 1 мм, согнутая в спираль и служащая для соединения бомбы с манометром. Для присоеди-

нения к манометру трубка снабжена обычной гайкой со свинцовой прокладкой. Соединение трубки с бомбой достигается при помощи конуса и гайки.

г) Подставка (черт. 2) из углеродистой стали, служащая для

Черт. 3

установки бомбы при ее завинчивании и при заполнении кислородом. Подставка должна быть привинчена к устойчивому столу.

- д) Ключ для завинчивания бомбы— по размерам выступа крышки.
- е) Баллон по ГОСТ 949—73, тип A, для кислорода, наполненный кислородом до давления не менее 1,00 МПа (10 кгс/см²) с вентилем.
- ж) Редуктор для кислорода по ГОСТ 13861—80 или игольчатый клапан.
- 3) Трубка медная высокого давления для соединения редуктора с бомбой. Трубка снабжена гайкой для присоединения к редуктору и гайкой с конусом для присоединения к бомбе.
- и) Стакан стеклянный (черт. 3) для испытуемого бензина. В верхней части стакана сделаны три выемки для свободного доступа кислорода.

- к) Стекло часовое диаметром около 50 мм для покрывания стакана;
- л) Воронка лабораторная диаметром 70—100 мм по ГОСТ 25336—82;
- м) Баня водяная с гнездами для погружения бомб. Высота бани не менее 400 мм. Количество гнезд в бане от одного до четырех. Диаметр гнезда около 80 мм (по диаметру бомбы).

н) Цилиндр мерный по ГОСТ 1770—74, вместимостью 100 см³

для налива испытуемого бензина в стакан.

- о) Бак высотой не менее 450 мм и диаметром около 350 мм для проверки герметичности бомбы и для охлаждения бомбы после окисления бензина.
 - п) Штатив с держателем.

р) Щипцы тигельные никелированные.

2. Для анализа применяют следующие реактивы и материалы: толуол по ГОСТ 14710—78 или ГОСТ 5789—78; аммоний азотнокислый по ГОСТ 22867—77:

глицерин по ГОСТ 6823—77;

бензин-растворитель для резиновой промышленности по ГОСТ 443—76:

бумагу фильтровальную по ГОСТ 12026-76.

1, 2. (Измененная редакция, Изм № 1).

ІІ. ПОДГОТОВКА К ИСПЫТАНИЮ

3. Пробу испытуемого бензина в количестве 120—150 см³ фильтруют через бумажный фильтр.

4. Перед испытанием промывают внутреннюю часть корпуса

бомбы 25-40 см3 толуола и просушивают струей воздуха.

Крышку бомбы и детали головки тщательно вытирают фильтровальной бумагой.

Стеклянный стакан и часовое стекло промывают толуолом и высушивают в термостате или в струе воздуха.

(Измененная редакция, Изм. № 1).

5. В стеклянный стакан наливают мерным цилиндром при комнатной температуре 100 см³ испытуемого бензина.

Стакан с бензином вносят внутрь бомбы, установленной в подставке, и покрывают стакан часовым стеклом.

Бомбу закрывают крышкой и завинчивают последнюю ключом.

6. Подготовленную бомбу присоединяют с помощью медной трубки к редуктору кислородного баллона.

7. После присоединения бомбы к редуктору кислородного баллона поднятием игольчатого клапана поворотом воротка открывают верхнее боковое отверстие тройника головки бомбы и медленно наполняют бомбу кислородом до давления 0,20 МПа 2 кгс/см²

(наполнение бомбы кислородом производят в течение времени не менее 3 мин).

По наполнении бомбы кислородом верхнее боковое отверстие тройника перекрывают игольчатым клапаном обратным поворотом воротка.

Затем отвинчивают гайку, при помощи которой соединена медная трубка с бомбой, осторожно открывают вентиль бомбы и медленно выпускают из нее кислород.

8. Продутую указанным способом бомбу вновь наполняют кислородом до давления 0,75 МПа (7,5 кгс/см²), перекрывают игольчатым клапаном верхнее боковое отверстие тройника и отсоединяют бомбу от медной трубки.

Все эти операции производят при комнатной температуре.

Примечание. Если при наполнении бомбы кислородом из баллона через редуктор манометр бомбы не показывает давления, а манометр на редукторе указывает на расход кислорода, то необходимо прекратить пуск кислорода и проверить исправность манометра бомбы.

- 9. Наполненную кислородом бомбу вынимают из подставки и осторожно погружают полностью в бак с водой температурой 15—20 °С для испытания на герметичность. Если при этом появляются пузырьки кислорода в воде, то бомбу вновь переносят в подставку, производят необходимое дополнительное крепление тех деталей, которые пропускали кислород, и повторяют испытание на герметичность. Испытание на герметичность повторяют подобным же образом до достижения полной герметичности, после чего давление в бомбе снижают до 0,70 МПа (7 кгс/см²). Окончательно установленное давление в бомбе должно равняться (0,70± ±0,005) МПа (7±0,05) кгс/см² при 15—20 °С (отсчет производят на глаз с точностью до ¹/4 деления шкалы манометра).
- 10. Одновременно с подготовкой бомбы для окисления испытуемого бензина нагревают до кипения воду в водяной бане, причем вода в бане должна быть налита до уровня гнезд.

Примечание. Колебание температуры кипящей водяной бани допускается в пределах 99—101 °С в зависимости от барометрического давления. При очень низком барометрическом давлении в воду в бане добавляют азотнокислый аммоний или глицерин в таком количестве, чтобы температура кипящей воды была в пределах 99—101 °С.

(Измененная редакция, Изм. № 1).

III, ПРОВЕДЕНИЕ ИСПЫТАНИЯ

11. Бомбу с испытуемым бензином под давлением кислорода 0,70 МПа (7 кгс/см²) переносят в кипящую водяную баню и погружают в воду до верхнего края крышки бомбы.

Избыток воды спускают через кран.

Момент погружения бомбы в кипящую воду фиксируют как

начало окисления. В этот момент записывают время и начальное давление в бомбе. Далее, до конца опыта, давление в бомбе записывают через каждые 5 мин. (Порядок записей при проведении испытания дан в приложении).

12. С момента погружения бомбы в кипящую воду, по мере нагревания кислорода и бензина, давление в бомбе начинает повышаться. Достигнув определенного максимума, давление держится обычно некоторое время постоянным, а затем начинает снижаться. В отдельных случаях, после небольшого (до 0,02 МПа (0,2 кгс/см²) снижения давление в бомбе некоторое время держится постоянным, а затем вновь начинает непрерывно снижаться.

В первом случае за конец индукционного периода принимают начало непрерывного спадания давления (перегиб кривой давления); во втором случае за конец индукционного периода принимают второй перегиб кривой.

Нагрев бомбы заканчивают при падении давления на 0,06 МПа (0,6 кгс/см²) от величины максимального давления.

13. По окончании окисления бомбу тотчас же осторожно вынимают из кипящей водяной бани и погружают полностью в бак с водой температурой 15—20 °С. В этих условиях, вследствие снижения температуры бензина и кислорода, давление в бомбе резко снижается.

Бомбу оставляют в воде в течение 15 мин для охлаждения и проверяют за это время ее герметичность. Если наблюдается появление пузырьков кислорода в воде, то все испытание повторяют сначала.

14. После охлаждения бомбу переносят в подставку и выпускают из нее кислород.

Затем протирают крышку колбы и головку со всеми деталями сухим полотенцем для удаления влаги, после чего отвинчивают крышку бомбы и, не снимая грибок с корпуса, а только приподнимая крышку, обезвоживают выступающую часть грибка фильтровальной бумагой. После этого крышку с головкой снимают с корпуса бомбы.

15. Часовое стекло и стакан с окисленным бензином извлекают из бомбы тигельными щипцами. Небольшое количество бензина, сконденсировавшегося в корпусе бомбы, переводят в стакан, из которого переливают в мерный цилиндр для замера его количества. Если бензина окажется меньше 95 см³, испытание повторяют.

IV. ПОРЯДОК ОПРЕДЕЛЕНИЯ ДЛИТЕЛЬНОСТИ ИНДУКЦИОННОГО ПЕРИОДА

16. Длительность периода окисления испытуемого бензина определяют как разность между временем конца индукционного периода и временем начала окисления.

Так как бензин в бомбе нагревается постепенно и достигает температуры 100 °С через некоторый промежуток времени, то длительность индукционного периода не совпадает с длительностью периода окисления. Поэтому при определении длительности индукционного периода испытуемого бензина необходимо вводить поправку, учитывающую отставание температуры бензина от 100 °С.

Зависимость между длительностью периода окисления и длительностью индукционного периода в бомбах данной конструкции приведена в следующей таблице *.

Длительность периода	Длительность индукционного
окисления в мин	периода в мин
10	0,0
20	0,0
30	1,0
40	3,5
50	8,0
60	14,0
70	21,0
80	29,0
90	37,5
100	46,0
110	55,0

Если длительность периода окисления больше 110 мин, то длительность индукционного периода получается вычитанием из длительности периода окисления 55 мин.

17. За результат испытания принимают среднее арифметическое двух параллельных определений.

V. ДОПУСКАЕМЫЕ РАСХОЖДЕНИЯ МЕЖДУ ПАРАЛЛЕЛЬНЫМИ ОПРЕДЕЛЕНИЯМИ

18. Расхождения между двумя параллельными определениями длительности индукционного периода не должны превышать следующие величины:

Длительность индукционного периода в мин	Допускаемые расхождения в мин
Менее 60	5
60-400	15
Более 400	30

VI. МЕРЫ ПРЕДОСТОРОЖНОСТИ И ПЕРИОДИЧЕСКАЯ ПРОВЕРКА АППАРАТУРЫ

19. Новая бомба для определения индукционного периода должна быть подвергнута гидравлическому испытанию на 2,0 МПа (20 кгс/см²).

^{*} Зависимость между длительностью периода окисления и длительностью индукционного периода выведена на основании опытных данных, полученных при окислении бензина в бомбах данной конструкции.

20. Перед началом работы детали новой бомбы (корпус, крышка, головка), а также манометр и спираль должны быть тщательно промыты от масла толуолом или бензином прямой гонки и высушены воздухом.

Тщательная промывка всех деталей необходима с целью предотвращения взрыва, могущего произойти вследствие взаимодействия кислорода с остатками масла.

(Измененная редакция, Изм. № 1).

21. Детали головки разбираются для очистки не более одного раза в год.

22. После каждых 200—250 окислений, но не реже одного раза в год, производят проверку показаний манометра и гидравлическое испытание бомбы.

ПРИЛОЖЕНИЕ Рекомендуемое

Форма записи при проведении окисления бензина

		нометра во время я, МПа (кгс/см²)	Длительность периода окисления мин	
	Опыт № 1	Опыт № 2	Опыт № 1	Опыт № 2
0 час 00 мин	0,70 (7,00)	-	0	-
.5 »	0,81 (8,10)	–	.5	
10 » 15 »	0,82 (8,25)	-	10	
15 » 20 »	0,86 (8,65) 0,89 (8,90)	_	15 20	
20 <i>»</i> 25 »	0,89 (8,90)		20 25	_
30 »	0,91 (9,10)	0,70 (7,00)	30	0
35 »	0,92 (9,15)	0,82 (8,20)	35	Š
40 »	0.92 (9.25)	0,82 (8,25)	40	10
45 »	0,92 (9,25)	0,86 (8,60)	45	15
50 »	0,92 (9,25)	0,89 (8,90)	<u>50</u>	20
55 »	0,92 (9,25)	0,91 (9,10)	55	25
1 час 00 мин	0,93 (9,30)	0,92 (9,25)	60	30
.5 »	0,93 (9,30)	0,94 (9,40)	65	35
10 »	0,94 (9,35)	0,95 (9,50)	70	40
15 » 20 »	0,94 (9,40)	0,95 (9,50)	75	45 50
20 » 25 »	0,94 (9,40) 0,94 (9,40)	0,96 (9,55) 0,96 (9,60)	80 85	55 55
30 »	0,94 (9,40)	0,96 (9,60)	90	60
35 »	0,94 (9,40)	0,96 (9,60)	95	65
40 »	0,94 (9,40)	0,96 (9,65)	100	70
45 »	0,94 (9,40)	0,96 (9,65)	105	75
50 »	0,94 (9,40)	0,96 (9,65)	110	80
55 »	0,94 (9,40)	0,96 (9,65)	115	85
2 час 00 мин	0,94 (9,40)	0,96 (9,65)	120	90
5 »	0,93 (9,30)	0,96 (9,65)	-	95
10 »	0,92 (9,25)	0,96 (9,65)		100
15 » 20 »	0,91 (9,10)	0,96 (9,65)		105 110
20 » 25 »	0,90 (9,00) 0,88 (8,75)	0,96 (9,65) 0,94 (9,40)	_	110
30 »	",00 (0,10)	0,93 (9,30)		
35 »		0,92 (9,25)		_
40 »] —	0,91 (9,10)		
45 »		0,90 (9,00)	_	

СОДЕРЖАНИЕ

ΓΟCT 13210—72	Бензины. Метод определения содержания свинца комплексометрическим титрованием	3
ГОСТ 3338—68	Бензины авиационные. Метод определения сортности на богатой смеси	11
ΓΟ CT 7423—55	Бензины авиационные. Метод определения содержания параоксидифениламина	24
ΓΟCT 6667—75	Бензины авиационные. Методы определения периода стабильности	28
FOCT 26370—84	Бензины автомобильные. Метод оценки распределения детонационной стойкости по фракциям	32
ΓΟ CT 103 7 3—75	Бензины автомобильные для двигателей. Методы детонационных испытаний	35
ΓΟCT 20924—75	Бензины автомобильные и авиационные. Метод определения интенсивности окраски	61
FOCT 4039—48	Бензины. Метод определения длительности индукционного периода	64
FOCT 6073—75	Бензины этилированные. Метод определения содержания бромистых и хлористых выносителей	73
Γ OCT 22387.2—83	Газы горючие природные. Методы определения сероводорода и меркаптановой серы	84
FOCT 22387.3—77	Газ для коммунально-бытового потребления. Метод определения содержания кислорода	98
ΓΟCT 22387.4—77	Газ для коммунально-бытового потребления. Метод определения содержания смолы и пыли	101
ΓΟ CT 22387.5—77	Газ для коммунально-бытового потребления. Методы определения интенсивности запаха	103
ГОСТ 14920—79	Газ сухой. Метод определения компонентного состава	110
ΓΟCT 18917—82	Газ горючий природный. Методы отбора проб	119
ΓΟCT 26374—84	Газы горючие природные. Метод определения общей и органической серы	127
ΓΟCT 10062—75	Газы природные горючие. Метод определения удельной теплоты сгорания	13 6
ГОСТ 20060—83	Газы горючие природные. Методы определения со- держания водяных паров и точки росы влаги	161

389

TOCT	20061—84	Газы горючие природные. Метод определения температуры точки росы углеводородов	177
гост	10679—76	Газы углеводородные сжиженные. Метод определения углеводородного состава	181
FOCT	11382—76	Газы нефтепереработки. Метод определения содержания сероводорода	197
гост	19121—73	Нефтепродукты. Метод определения содержания серы сжиганием в лампе	208
гост	2070—82	Нефтепродукты светлые. Методы определения йодных чисел и содержания непредельных углеводородов	215
гост	6994—74	Нефтепродукты светлые. Метод определения ароматических углеводородов	221
гост	8226—82	Топливо для двигателей. Исследовательский метод определения октанового числа	227
ГОСТ	511—82	Топливо для двигателей. Моторный метод определения октанового числа	242
LOCL	13379—82	Нефть. Метод определения содержания углеводородов $C_1 - C_6$	259
FOCT	312267	Топлива дизельные. Метод определения цетанового числа	270
гост	18597—73	Топлива для двигателей. Метод определения коррозионной активности в условиях конденсации воды	288
LOCT	19006—73	Топливо для двигателей. Метод определения коэффициента фильтруемости	294
гост	1 7 323—71	Топливо для двигателей. Метод определения меркаптановой и сероводородной серы потенциометрическим титрованием	300
FOCT	9144—79	Топливо для двигателей. Метод определения термической стабильности в статических условиях	311
гост	2110375	Топливо для реактивных двигателей. Метод определения мыл нафтеновых кислот	315
гост	18598—73	Топливо для реактивных двигателей. Метод определения коррозионной активности при повышенных температурах	320
ГОСТ	17750—72	Топливо для реактивных двигателей. Метод определения люминометрического числа на аппарате типа ПЛЧТ	326
FOCT	1106575	Топливо для реактивных двигателей. Расчетный метод определения низшей удельной теплоты сгорания	332
ГОСТ	11802—66	Топливо для реактивных двигателей. Метод определения термоокислительной стабильности в статических условиях	336
ГОСТ	1 7749—7 2 T	опливо для реактивных двигателей. Спектрофотометрический метод определения нафталиновых углеводородов	342

FOCT 1756—52	Нефтепродукты. Методы определения давления насыщенных паров	347
FOCT 1567—83	Топливо моторное. Метод определения фактических смол	364
ΓΟCT 8489—85	Топливо моторное. Метод определения фактических смол (по Бударову)	
FOCT 5066—56	Топлива моторные. Методы определения температуры помутнения, начала кристаллизации и кристаллизации	376

НЕФТЕПРОДУКТЫ Методы испытаний Часть 2

Редактор С. И. Бабарыкин Технический редактор М. И. Максимова

Корректор Р. Н. Корчагина

Формат 60×901/16. Сдано в набор 17.10.86. Подп. в печ. 11.08.87. Гарнитура «Литературная». Печать высокая. Бумага книжно-журнальная. 24,5 усл. п. л. 24,63 усл. кр. отт. 24,42 уч.-изд. л. Изд. № 9025/2. Тираж 10 000. Зак. 3164. Цена 1 р. 40 коп.

Ордена «Знак Почета» Издательство стандартов, 123840, Москва, ГСП, Новопресненский пер., 3.

Великолукская городская типография управления издательств, полиграфии и книжной торговли Псковского облисполкома, 182100, г. Великие Луки, ул. Полиграфистов, 78/12