СПЛАВЫ МЕДНО-ФОСФОРИСТЫЕ

Метод определения висмута

Издание официальное

Предисловие

1 РАЗРАБОТАН Межгосударственным техническим комитетом по стандартизации МТК 107, Донецким государственным институтом цветных металлов (ДонИЦМ)

ВНЕСЕН Государственным комитетом Украины по стандартизации, метрологии и сертификации

2 ПРИНЯТ Межгосударственным Советом по стандартизации, метрологии и сертификации (протокол № 10 от 3 октября 1996 г.)

За принятие проголосовали:

Наименование государства	Наименование национального органа по стандартизации
Азербайджанская Республика Республика Беларусь Республика Казахстан Республика Молдова Российская Федерация Республика Таджикистан Туркменистан	Азгосстандарт Госстандарт Республики Беларусь Госстандарт Республики Казахстан Молдовастандарт Госстандарт России Таджикгосстандарт Главтосинспекция «Туркменстандартлары»
Республика Узбекистан Украина	Узгосстандарт Госстандарт Украины

- 3 Постановлением Государственного комитета Российской Федерации по стандартизации и метрологии от 19 декабря 2000 г. № 384-ст межгосударственный стандарт ГОСТ 6674.4—96 введен в действие непосредственно в качестве государственного стандарта Российской Федерации с 1 июля 2001 г.
 - 4 B3AMEH ΓΟCT 6674.4—74

© ИПК Издательство стандартов, 2001

Настоящий стандарт не может быть полностью или частично воспроизведен, тиражирован и распространен в качестве официального издания на территории Российской Федерации без разрешения Госстандарта России

ГОСТ 6674.4—96

Содержание

1	Область применения
2	Нормативные ссылки
3	Общие требования
4	Сущность метода
5	Аппаратура, реактивы и растворы
6	Проведение анализа
7	Обработка результатов

межгосударственный стандарт

СПЛАВЫ МЕДНО-ФОСФОРИСТЫЕ

Метод определения висмута

Copper-phosphorous alloys.

Method for determination of bismuth

Дата введения 2001-07-01

1 Область применения

Настоящий стандарт устанавливает атомно-абсорбционный метод определения висмута при его содержании от 0,0008 % до 0,02 % в медно-фосфористых сплавах.

2 Нормативные ссылки

В настоящем стандарте использованы ссылки на следующие стандарты:

ГОСТ 3760—79 Аммиак водный. Технические условия

ГОСТ 4160—74 Калий бромистый. Технические условия

ГОСТ 4461—77 Кислота азотная. Технические условия

ГОСТ 5845—79 Калий-натрий виннокислый 4-водный. Технические условия

ГОСТ 6674.0—96 Сплавы медно-фосфористые. Общие требования к методам анализа

ГОСТ 10157—79 Аргон газообразный и жидкий. Технические условия

ГОСТ 10928—90 Висмут. Технические условия

3 Общие требования

Общие требования — по ГОСТ 6674.0.

4 Сущность метода

Метод основан на растворении пробы в азотной кислоте, экстракционном извлечении висмута из бромидных растворов циклогексаноном и измерении атомного поглощения висмута в водном растворе реэкстракта с непламенным электротермическим атомизатором.

5 Аппаратура, реактивы и растворы

Атомно-абсорбционный спектрофотометр с непламенным электротермическим атомизатором и комплектом принадлежностей.

Аргон газообразный по ГОСТ 10157.

Кислота азотная по ГОСТ 4461, разбавленная 1:1; раствор 0,1 моль/дм³.

Калий бромистый (калия бромид) по ГОСТ 4160, раствор 2 моль/дм³.

Аммиак водный по ГОСТ 3760, разбавленный 4:1.

Калий-натрий виннокислый (калия-натрия тартрат) 4-водный (сегнетова соль) по ГОСТ 5845, раствор 200 г/дм³.

Циклогексанон по действующему нормативному документу.

Раствор реэкстрагента: смешивают 50 см³ раствора аммиака, 50 см³ раствора сегнетовой соли и 125 см³ воды.

Висмут марки ВИО по ГОСТ 10928.

Стандартный раствор висмута: 0,1 г висмута растворяют в 50 см³ разбавленной азотной кислоты (1:1). После удаления оксидов азота кипячением раствор охлаждают, переносят в мерную колбу вместимостью 1 дм³, доливают до метки водой и перемешивают.

1 см³ раствора содержит 0,0001 г висмута.

6 Проведение анализа

6.1 Навеску сплава массой 2 г помещают в стакан вместимостью 400 см³, растворяют в 20 см³ разбавленной азотной кислоты (1:1), охлаждают, переносят в мерную колбу вместимостью 50 см³, разбавляют до метки водой, перемешивают и отбирают аликвотную часть раствора в соответствии с таблицей 1.

Таблица 1

Массовая доля висмута, %	Объем аликвотной части раствора, см ³	Масса навески, соответствующая аликвотной части раствора, г
От 0,0008 до 0,005 включ.	25	1
Св. 0,005 » 0,01 »	10	0,4
» 0,01 » 0,02 »	5	0,2

6.2 Раствор, полученный по 6.1, помещают в делительную воронку, добавляют 5 см³ раствора бромида калия, доводят объем водной фазы до 50 см³, добавляют 10 см³ циклогексанона и встряхивают 3 мин.

После расслоения фаз водную фазу отбрасывают и реэкстрагируют висмут 5 см³ раствора реэкстрагента. Реэкстрагент фильтруют через сухой фильтр «белая лента» в сухой бюкс с притертой крышкой.

- 6.3 Для построения градуировочного графика в сухие бюксы с притертой крышкой помещают 0; 0,05; 0,10; 0,20; 0,30; 0,40 и 0,50 см³ стандартного раствора висмута, добавляют 5,00; 4,95; 4,90; 4,80; 4,70; 4,60 и 4,50 см³ раствора реэкстрагента, закрывают крышкой и перемешивают.
- 6.4 Подготовительные действия, необходимые для приведения спектрофотометра в режим работы по однолучевой схеме с дейтериевым корректором фона, проводят в соответствии с инструкцией по эксплуатации.
- 6.5 20·10⁻⁶ дм³ полученного по 6.2 и 6.3 раствора с помощью дозатора вносят в графитовую печь с потоком аргона на платформу с пиролитическим покрытием и проводят нагрев печи по следующей программе: 1-я стадия при 90 °C в течение 30 с; 2-я стадия плавный нагрев до 200 °C в течение 30 с; 3-я стадия при 2300 °C в течение 5 с при остановленном потоке аргона. Регистрируют величину атомного поглощения висмута в растворах проб и растворах для построения градуировочного графика при длине волны 306,4 нм.
- 6.6 По полученным данным строят градуировочный график в координатах: «масса висмута, г величина атомного поглощения». Массовую долю висмута в пробе определяют непосредственно по градуировочному графику.
 - 6.7 Одновременно с проведением анализа сплава проводят контрольный опыт.

7 Обработка результатов

7.1 Массовую долю висмута X, %, вычисляют по формуле

$$X = \frac{m_1 - m_2}{m} \, 100,\tag{1}$$

где m_1 — масса висмута в анализируемом растворе пробы, определенная по градуировочному графику, г;

- m_2 масса висмута в растворе контрольного опыта, определенная по градуировочному графику, г;
- т масса навески сплава, соответствующая аликвотной части раствора, г.
- 7.2 Расхождения результатов параллельных определений и результатов анализа не должны превышать допускаемых (при доверительной вероятности 0,95) значений, приведенных в таблице 2.

Таблица 2 В процентах

	Абсолютное допускаемое расхождение		
Массовая доля висмута	результатов параллельных определений	результатов анализа	
От 0,0008 до 0,001 включ.	0,0002	0,0004	
CB. 0,001 » 0,003 »	0,0003	0,0006	
» 0,003 » 0,006 »	0,0006	0,0012	
» 0,006 » 0,01 »	0,001	0,002	
» 0,01 » 0,02 »	0,002	0,004	

УДК 669.35′779:546.87.06:006.354

MKC 77.120.30

B59

OKCTY 1709

Ключевые слова: сплавы медно-фосфористые, висмут, атомно-абсорбционный метод, непламенный электротермический атомизатор, экстракция, реэкстракция

Редактор *Л.И. Нахимова* Технический редактор *Н.С. Гришанова* Корректор *Н.Л. Шнайдер* Компьютерная верстка *О.В. Арсеевой*

Изд.лиц.№ 02354 от 14.07.2000. Сдано в набор 26.03.2001. Подписано в печать 10.04.2001. Усл. печ. л. 0,93. Уч.-изд.л. 0,40. Тираж экз. С 715. Зак. 391.