НАУЧНО-ПРОИЗВОДСТВЕННОЕ ПРЕДПРИЯТИЕ "ЭКОПРОМ" АКАДЕМИЯ КОММУНАЛЬНОГО ХОЗЯЙСТВА им. К.Д.ПАМФИЛОВА НИИ ЭКОЛОГИИ ЧЕЛОВЕКА И ГИГИЕНЫ ОКРУЖАЮЩЕЙ СРЕДЫ им. А.Н.СЫСИНА

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

по расчету количественных характеристик выбросов загрязняющих веществ в атмосферу от полигонов твердых бытовых и промышленных отходов

1.АННОТАПИЯ

Методические указания предназначены для использования при разработке проектов нормативов предельно допустимых и временно согласованных выбросов для полигонов твердых бытовых и промышленных отходов и прогнозов ожидаемого загрязнения атмосферы в районах их расположения.

Настоящие указания распространяются на основные виды газообразных загрязняющих веществ, образующихся в результате биотермического анаэробного процесса распада органических составляющих твердых бытовых и промышленных отходов и выделяющихся с поверхностей полигонов отходов в атмосферу.

Указания содержат примерный морфологический состав и основные характеристики отходов, вывозимых на полигоны отходов и свалки Московского региона, поэталную временную характеристику процессов, происходящих в толще отходов, складированных на полигонах, способы определения количественного и качественного состава выделяемого полигонами биогаза, методы расчета удельных и валовых выбросов образующегося биогаза в целом и по компонентам. Приведены основные формулы программной обработки расчетных исходных данных на ЭВМ.

Замечания и предложения по настоящим указаниям просъба направлять по адресу:

117218, Моспви, ул Крэниэнановспого, д.15, порт? Научно-производственное предприятие "Экопром". телефон: 124-49-65

2. РАЗРАБОТЧИКИ

Авторы разработки методических указаний:

- Абрамов Н.Ф. член-корреспондент Жилищно-коммунальной академии;
- Корнеев В.Г. инженер отдела санитарной очистки городов Академии коммунального хозяйства им. К.Д.Памфилова;
- Санников Э.С. инженер научно-производственного предприятия "Экопром";
- Терловский П.М. инженер научно-производственного предприятия "Экопром";
- Русаков Н.В. доктор медицинских наук НИИ экологии человека и гигиены окружающей среды им. А.Н.Сысина.

3. ВВЕЛЕНИЕ

В толще твердых бытовых и промышленных отходов, складированных на полигонах, под воздействием микрофлоры происходит биотермический анаэробный процесс распада органических составляющих отходов. Конечным продуктом этого процесса является биогаз, основную объемную массу которого составляют метан и диоксид углерода. Наряду с названными компонентами биогаз содержит пары воды, оксид углерода, оксиды азота, аммиак, углеводороды, сероводород, фенол и в незначительных количествах другие примеси, обладающие вредным для здоровья человека и окружающей среды воздействием. Количественный и качественный состав биогаза зависит от многих факторов, в том числе, от климатических и геологических условий места расположения полигона, морфологического и химического состава завозимых отходов, условий складирования (площадь, объем, глубина захоронения), влажности, плотности и т.д., и подлежит уточнению в каждом конкретном случае.

В настоящей методике использованы данные статистической обработки результатов, полученных АКХ им.К.Д.Памфилова и другими организациями, в том числе НПП "Экопром", методами полевых замеров на многих полигонах Московской области и лабораторных исследований. Это дает основание считать, что приведенные в методике величины, уточненные применительно к конкретным условиям, правомочно использовать при разработке проектов нормативов ПДВ для полигонов твердых бытовых и промышленных отходов и свалок Московского региона.

4. ОБЩАЯ ХАРАКТЕРИСТИКА ПОЛИГОНОВ ОТХОДОВ

На большей части полигонов и свалок Московской области основную массу поступающих отходов составляют бытовые (до 90%), остальные 10% являются промышленными отходами, разрешенными для захоронения совместно с бытовыми.

Морфологический состав твердых отходов, складируемых на полигонах и свалках, по усредненным данным исследований АКХ по Москве и Московской области [2] в процентах по массе следующий:

-	38.0
-	30.0
-	1.5
-	5.5
-	1.3
-	5.5
-	0.7
-	2.5
-	0.5
•	4.3
-	1.4
-	8.8
	- - -

Плотность (насыпная масса) отходов составляет 0.2 - 0.3 т/куб.м, влажность колеблется от 40 до 55%, содержание органического вещества (в процентах на сухую массу) - до 70%.

По общепринятой технологии захоронения отходов предусматривается планировка и уплотнение завозимых отходов, а также регулярная изоляция грунтом рабочих слоев.

В начальный период (около года) процесс разложения отходов носит характер их окисления, происходящего в верхних слоях отходов, за счет кислорода воздуха, содержащегося в пустотах и проникающего из атмосферы. Спустя год со времени закладки по мере естественного и механического уплотнения отходов и изолирования их грунтом усиливаются анаэробные процессы с образованием биогаза, являющегося

конечным продуктом биотермического анаэробного распада органических составляющих отходов под воздействием микрофлоры. Биогаз через толщу отходов и изолирующих слоев грунта выделяется в атмосферу, загрязняя ее. Если условия складирования не изменяются, процесс анаэробного разложения стабилизируется с постоянным по удельному объему выделением биогаза практически однго газового состава (при стабильности морфологического состава отходов).

Различают пять фаз процесса распада органической составляющей твердых отходов на полигонах:

1-ая фаза - аэробное разложение;

2-ая фаза - анаэробное разложение без выделения метана (кислое брожение);

3-яя фаза - анаэробное разложение с непостоянным выделением метана (смешанное брожение);

4-ая фаза - анаэробное разложение с постоянным выделением метана;

5-ая фаза - затухание анаэробных процессов.

Первая и вторая фазы имеют место в первые 10-15 дней с момента укладки, отходов, продолжительность протекания третьей фазы - от 180 до 500 дней. Длительность четвертой фазы - 10-30 лет, если условия складирования не изменяются.

Процесс минерализации отходов происходит в течение первого года - на 12 см, второго года - на 21 см, третъего года на 27 см и т.д.

Эмиссия биогаза с поверхности полигона идет равномерно, без аварийных и залповых выбросов.

5. РАСЧЕТ ВЫБРОСОВ ЗАГРЯЗНЯЮЩИХ ВЕЩЕСТВ С ПОЛИГОНОВ

Расчет выбросов загрязняющих веществ с полигонов отходов и свалок в данной методике приводится для нормального режима эксплуатации мест захоронения отходов. Возгорания отходов на участках складирования, работа автотранспорта и выбросы котельных (при их наличии) не учитываются и рассчитываются при необходимости по существующим соответствующим методикам.

Рассчитывются выбросы газообразных загрязняющих атмосферу веществ, входящих в состав биогаза.

На количественную характеристику выбросов загрязняющих веществ с полигонов отходов влияет большое количество факторов, среди которых:

- количество завозимых ежегодно отходов;
- влажность отходов;
- мощность слоя складированных отходов;
- климатические условия;
- состав отходов;
- соотношение углерода и общего азота.

На основании результатов многочисленных лабораторных исследований, проведенных на крупных поигонах отходов, составлена математическая модель определения удельного выхода биогаза за период его активной стабилизированной генерации. Эта модель описывается формулой:

$$Q_{t_1} = \frac{1.85G_0(1-10^{-kt})}{\left(\frac{59-W}{13}\right)^4},$$
 где:

 Q_{i_1} - удельный выход биогаза, куб.м/т.отходов;

$$G_0 = 1.868C_{arm}(0.014T + 0.28)$$

 $C_{\mathit{aкm}}$ - активный органический углерод, г/т.отходов:

T - температура в теле полигона, 0 C; температура в теле полигона колеблется от 28 до 32 0 C;

- k постоянная разложения, равная отношению углерода к общему азоту (C/N), определяется по "Методическим исследованиям свойств твердых отбросов" [3];
- t продолжительность периода стабилизированного выхода биогаза (четвертая фаза), год;

W - естественная влажность отходов, %.

Органические вешества, содержащиеся в отходах, обладают различной интенсивностью разложения. Так, резина, кожа, полимерные материалы и т.п. разлагаются микроорганизмами очень медленно, в то время как органические составляющие отходов, содержащие белковые вещества, крахмал, разлагаются очень быстро. Таким образом, можно считать, что органическая составляющая отходов состоит из "пассивного" (негенерирующего) органического вещества и "активного" (генерирующего) органического вещества. Активный органический углерод, входящий в формулу (1) относится к "активной" органике и определяется по "Методическим исследованиям свойств твердых отбросов" [3].

Для практических расчетов более удобно пользоваться известным уравнением выхода биогаза при метановом брожении:

$$Q_{t_1} = 10^{-6} R(100 - W)(0.92 X + 0.62 Y + 0.34 B),$$
 где: (2)

 Q_{t_i} - удельный выход биогаза за период активного выхода, кг/кг отходов;

W - средняя влажность отходов, %:

R - содержание органической составляющей в отходах, на сухую массу, %;

Ж - содержание жироподобных веществ в органике отходов, %;

Y - содержание углеводоподобных веществ в органике отходов, %;

B - содержание белковых веществ в органике отходов, %.

W, R, Ж,У и Б - определяются анализами отбираемых проб отходов.

Расчет выбросов биогаза ведется для условий стабилизированного процесса разложения при максимальном выходе биогаза (в период четвертой фазы).

Стабилизация процесса газовыделения наступает спустя в среднем два года после захоронения отходов.

Период активного выхода бногаза составляет в среднем двадцать лет. За это время генерируется около 80% от общего количества биогаза, получаемого с одной тонны отходов.

Для учета мощности слоя залегания отходов вводятся поправочные коэффициенты. При максимальной высоте полигона 4 метра количество выбрасываемого биогаза умножается на коэффициент 0.5, а при высоте от 2 до 4 метров эта величина умножается на коэффициент 0.4.

Количественный выход биогаза за год, отнесенный к одной тонне отходов, можно определить по формулам;

$$P_{y\delta} = \frac{0.8Q_{i_1}\rho_{i_2}}{t}$$
, кг/т.отходов в год, или: (3)

$$P_{po} = \frac{800Q_{t_2}}{t}$$
, кг/т.отходов в год, где: (4)

 $Q_{t_{\rm i}}$ - удельный выход биогаза, куб.м/т.отходов (формула 1),

 Q_{t_2} - удельный выход биогаза, кг/кг отходов (формула 2);

 $\rho_{\rm fg}$ - плотность биогаза, кг/куб.м;

t - период стабилизированного активного выхода биогаза, год.

Общее количество биогаза, выделившегося за период с начала эксплуатации полигона до момента расчета, определяется по формуле:

$$P_{oo} = P_{loo} P_{yo}(t_{succon} - 2), \text{ кг, где:}$$
 (5)

 $P_{t_{ad}}$ - количество отходов, завезенных на полигон за период с начала эксплуатации полигона до момента расчета, минус количество отходов, завезенное за последние два года, т;

 $t_{\text{яксти}}$ - время эксплуатации полигона, год.

Состав биогаза и концентрации компонентов в нем определяются анализами проб биогаза, отобранных в нескольких точках по площади полигона на глубине 0.5-1 метр.

Плотность биогаза определяется по закону аддитивности как средневзвешенная величина из плотностей всех его компонентов:

$$\rho_{\text{Gr}} = \frac{\sum_{i=1}^{n} C_{\text{ex}_{i}} \rho_{i}}{100}, \text{ кг/куб.м., где:}$$
 (6)

 $C_{\rm ex}$, - содержание і-того компонента в биогазе, весовые %;

 ρ_i - плотность і-того компонента биогаза, кг/куб.м;

п - количество компонентов в биогазе.

Средняя плотность биогаза составляет обычно 0.95-0.98 плотности воздуха, т.е. при плотности воздуха 1.2928 кг/куб.м средняя плотность биогаза будет:

С другой стороны, связь плотности биогаза, концентраций в нем компонентов и их весового процентного содержания определяются формулой:

$$C_{\theta K_i} = \frac{10^4 C_i}{\rho_{\epsilon_i}}, \%, \text{ где:}$$
 (7)

 C_i - концентрация і-того компонента в биогазе, мг/куб.м.

Решая совместно уравнения (6) и (7), получим формулу для определения плотности биогаза:

$$\rho_{\text{de}} = 10^{-3} \sqrt{\sum_{i=1}^{n} C_i \rho_i}, \text{ kg/ky6.m}$$
(8)

В нижеприведенной таблице для справки указаны плотности некоторых наиболее вероятных компонентов биогаза:

NoNo	Наименование	Плотность,
п.п.	вещества	кг/куб.м
1.	Метан	0.717
2.	Углерода диоксид	1.977
3.	Толуол	0.867
4.	Аммиак	0.771
5.	Ксилол	0.869
6.	Углерода оксид	1.250
7.	Азота диоксид	1.490
8.	Формальдегид	0.815
9.	Ангидрид сернистый	2.930
10.	Этилбензол	0.867
11.	Бензол	0.869
12.	Сероводород	1.540
13.	Фенол	1.071
14.	Водород цианистый	0.901

Рассчитав удельный годовой выход биогаза по формуле (4) и весовое процентное содержание компонентов в биогазе по формуле (7), можно определить удельные массы компонентов, выбрасываемые в год, по формуле:

$$P_{y\partial,z_i} = \frac{C_{x_i}P_{y\partial}}{100}$$
, кг/т.отходов в год (9)

Зная количество отходов, завозимое ежегодно на полигон, и удельные массы компонентов биогаза, выбрасываемые в год, можно определить максимальные разовые выбросы загрязняющих веществ с полигона:

$$P_{Mp_{i}} = \frac{P_{yo,z_{i}} \sum_{j=1}^{l_{yo,z_{i}}} P_{i}}{31536}, r/c, где:$$
 (10)

 P_{i} - количество отходов, завезенное в ј-тый год, т.;

 $t_{\text{мом}}$ - продолжительность эксплуатации полигона со времени открытия до момента расчета ("2" в настоящей формуле учитывает отходы, завезенные за последние перед расчетом два года).

В том случае, если период эксплуатации полигона превышает длительность четвертой фазы распада органики отходов, вместо $t_{\rm вссии}$ в формулу (10) подставляется продолжительность четвертой фазы.

Валовые выбросы вредных веществ определяются с учетом среднего коэффициента неравномерности образования биогаза в теплое и холодное время, равного 1.3:

$$P_{\text{валь}} = P_{\text{мр}_t} \frac{5 \times 31.536}{12} + P_{\text{мр}_t} \frac{7 \times 31.536}{1.3 \times 12} = 27.291 P_{\text{мр}_t}, \text{ т/год}$$
 (11)