РОССИЙСКОЕ АКЦИОНЕРНОЕ ОБЩЕСТВО ЭНЕРГЕТИКИ И ЭЛЕКТРИФИКАЦИИ "ЕЭС РОССИИ"

МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО АНАЛИЗУ ИЗМЕНЕНИЯ УДЕЛЬНЫХ РАСХОДОВ ТОПЛИВА НА ЭЛЕКТРОСТАНЦИЯХ И В ЭНЕРГООБЪЕДИНЕНИЯХ

РД 34.08.559-96

РОССИЙСКОЕ АКЦИОНЕРНОЕ ОБЩЕСТВО ЭНЕРГЕТИКИ И ЭЛЕКТРИФИКАЦИИ "ЕЭС РОССИИ"

МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО АНАЛИЗУ ИЗМЕНЕНИЯ УДЕЛЬНЫХ РАСХОДОВ ТОПЛИВА НА ЭЛЕКТРОСТАНЦИЯХ И В ЭНЕРГООБЪЕДИНЕНИЯХ

РД 34.08.559-96

Разработано Акционерным обществом "Фирма по наладке, совершенствованию технологии и эксплуатации электростанций и сетей ОРГРЭС"

Исполнитель Н.Л. АСТАХОВ

Утверждено Российским акционерным обществом энергетики и электрификации "ЕЭС России" 02.12.96 г. Вице-президент О.В. БРИТВИН

Настоящие Методические указания разработаны применительно к новому методу распределения общего расхода топлива энергетическими котлами электростанции между отпускаемыми ею электроэнергией и теплом. Новый метод введен в действие с 01.02.96 г. «Методическими указаниями по составлению отчета электростанции и акционерного общества энергетики и электрификации о тепловой экономичности оборудования: РД 34.08.552-95» (М.: СПО ОРГРЭС, 1995).

С выходом настоящих Методических указаний утрачивает силу «Методика анализа изменения экономичности энергообъединений», введенная в действие Эксплуатационным циркуляром № Т-3/80 «О совершенствовании анализа топливоиспользования в энергообъединениях.— Методика анализа изменения экономичности энергообъединений».

1. ОБЩИЕ ПОЛОЖЕНИЯ

1.1. В данных Методических указаниях в качестве первичных звеньев, определяющих уровень экономичности производства энергии на электростанциях и в энергообъединениях, приняты подгруппы оборудования электростанций.

Подгруппа оборудования — это совокупность либо пылеугольных, либо газомазутных котлов и совместно работающих с ними конденсационных турбоагрегатов или турбоагрегатов с регулируемыми отборами пара соответствующего давления свежего пара (а для энергоблоков — еще и одинаковой мощности).

1.2. Изменение удельного расхода тоглива по подгругие обусловливается изменением экономичности оборудования (уровень ремонтного и эксплуатационного обслуживания, средние электрические и тепловые нагрузки, внешние факторы), а также соотношения выработки электроэнергии и отпуска тепла внешним потреби-

телям за счет пара, частично или полностью отработавшего в турбоагрегатах (эффективности теплофикации).

- 1.3. При неизменных показателях по каждой из подгрупп оборудования удельный расход топлива по группе оборудования (совокупности пылеугольной и газомазутной подгрупп) и электростанции в целом определяется изменением долей участия каждой из подгрупп оборудования в общем отпуске энергии группой оборудования, электростанцией, т.е. изменением сгруктуры отпуска энергии.
- 1.4. Оценка изменения экономичности оборудования и изменения эффективности теплофикации производится с использованием показателей раздельного производства электроэнергии и тепла, соответствующих используемым ранее показателям конденсационного цикла.

В связи с этим анализ изменения удельных расходов топлива состоит из двух этапов:

анализа показателей раздельного производства электроэнергии и тепла¹;

анализа эффективности теплофикации.

Методика определения показателей раздельного производства приведена в приложении 1.

Примеры расчета составляющих изменения удельных расходов топлива приведены в приложениях 2-4.

- 1.5. Методические указания ориентированы на использование при расчетах в качестве исходной информации данных, содержащихся в отчетах о тепловой экономичности оборудования электростанций (макеты 15506-1 и 15506-2) и акционерных обществ энергетики и электрификации (АО-энерго) (макет 15505).
- 1.6. Наличие у показателя подстрочного индекса а означает его принадлежность к анализируемому, а индекса б к базовому периоду (по отношению к которому определяются составляющие изменения удельного расхода топлива).

Подстрочный индекс і указывает на принадлежность показателя к подгруппе оборудования, если такой индекс отсутствует, значит показатель определен для электростанции.

1.7. Для подгрупп оборудования (подгрупп энергетических или пиковых водогрейных котлов), по которым либо в базовом, либо в анализируемом периоде отсутствовал отпуск энергии, расчет по формулам (1), (5), (13) и (19) разд. 2 и 3 не производится, а соответ-

В дальнейшем для краткости — раздельное производство.

ствующая составляющая изменения удельного расхода топлива приравнивается нулю.

- 1.8. Для подгрупп оборудования (подгрупп энергетических и пиковых водогрейных котлов), по которым отпуск энергии отсутствовал только в базовом периоде, в формулы (3), (7), (16) и (21) вместо показателя базового периода подставляется показатель анализируемого периода.
- 1.9. Результаты расчетов по формулам Методических указаний, получаемые со знаком «минус», означают уменьшение удельного расхода топлива, а со знаком «плюс» его увеличение.
- 1.10. Уровень выполнения анализа изменения удельных расходов топлива можно изменить, приняв в качестве первичных звеньев: отдельные агрегаты (при анализе экономичности подгруппы оборудования электростанции); подгруппы оборудования АОэнерго; группы оборудования электростанции или АО-энерго; электростанции или АО-энерго в целом.

При этом следует иметь в виду, что составляющие изменения удельных расходов топлива по одному и тому же объекту за один и тот же период будут различны для различных уровней анализа (при равенстве их сумм).

2. ИЗМЕНЕНИЕ УДЕЛЬНОГО РАСХОДА ТОПЛИВА НА ЭЛЕКТРОЭНЕРГИЮ

По приведенным ниже формулам определяется влияние каждой из подгрупп оборудования на изменение удельного расхода топлива в целом по электростанции или АО-энерго¹ за счет изменения каждого из следующих факторов:

- 2.1. При раздельном производстве:
- 2.1.1. Экономичности оборудования

$$\Delta b_{3i}^{p,3K} = \left(b_{3ai}^{p} - b_{36i}^{p}\right) \alpha_{ai}^{3}; \qquad (1)$$

$$\alpha_i^3 = \frac{\Im_{\text{or }i}}{\Im_{\text{or}}},\tag{2}$$

где

b, р удельный расход топлива на электроэнергию при раздельном производстве, г/(кВт·ч);

Эот — отпуск электроэнергии, тыс. кВт-ч.

¹ В дальнейшем для краткости упоминается только электростанция.

2.1.2. Структуры отпуска электроэнергии

$$\Delta b_{3t}^{p \text{ crtp}} = \left(b_{36t}^{p} - b_{36}^{p}\right) \left(\alpha_{3t}^{3} - \alpha_{6t}^{3}\right). \tag{3}$$

2.1.3. Всего по подгруппе оборудования:

$$\Delta b_{3t}^{\mathrm{p}} = \Delta b_{3t}^{\mathrm{p}} {}^{\mathrm{s}\kappa} + \Delta b_{3t}^{\mathrm{p}} {}^{\mathrm{c}\mathrm{r}\mathrm{p}} \,. \tag{4}$$

- 2.2. При совместном производстве (изменение эффективности теплофикации):
- 2.2.1. Соотношения объемов выработки электроэнергии и отпуска тепла отработавшим паром

$$\delta b_{si}^{\mathsf{T}\phi \circ} = \left(\Delta b_{s6i}^{\mathsf{T}\phi \circ} - \Delta b_{sai}^{\mathsf{T}\phi \circ}\right) \alpha_{ai}^{\mathsf{3}} , \qquad (5)$$

гле

Δb_{3i}^{τφ, φ} — удельная экономия топлива по отпуску электроэнергии, уровень которой определяется соотношением выработки электроэнергии и отпуска тепла отработавшим паром, г/(кВт·ч):

$$\Delta b_{si}^{\dagger \dagger o} = b_{si}^{p} - b_{si}, \qquad (6)$$

где

 b_{3i} — фактический удельный расход топлива на электроэнергию, г/(кBт·ч).

2.2.2. Структуры отпуска электроэнергии

$$\Delta b_{3i}^{\mathsf{T}\Phi} \stackrel{\mathsf{crp}}{=} \left(\Delta b_{36}^{\mathsf{T}\Phi} \circ - \Delta b_{36i}^{\mathsf{T}\Phi} \circ \right) \left(\alpha_{\mathsf{a}i}^{\mathsf{o}} - \alpha_{6i}^{\mathsf{o}} \right). \tag{7}$$

2.2.3. Всего по подгруппе оборудования:

$$\Delta b_{3i}^{\mathsf{T}\Phi} = \delta b_{3i}^{\mathsf{T}\Phi} \,{}^{\mathsf{o}} + \Delta b_{3i}^{\mathsf{T}\Phi} \,{}^{\mathsf{c}\mathsf{T}\mathsf{p}} \,. \tag{8}$$

2.3. Итого по подгруппе оборудования:

$$\Delta b_{3i} = \Delta b_{3i}^{\mathrm{p}} + \Delta b_{3i}^{\mathrm{r}\phi} \,. \tag{9}$$

2.4. Общее изменение удельного расхода топлива по электростанции

Влияние на удельный расход топлива в целом по электростанции равно:

2.4.1. Каждой (с подстрочным индексом k) из n групп оборудования по каждому (с надстрочным индексом l) из m факторов —

сумме влияний пылеугольной и газомазутной подгрупп данной группы оборудования по данному фактору:

$$\Delta b_{3k}^{l} = \Delta b_{3ik}^{l \, \text{ny}} + \Delta b_{3ik}^{l \, \text{rm}} \,. \tag{10}$$

2.4.2. Каждой из групп оборудования всего — сумме влияний данной группы оборудования по всем m факторам:

$$\Delta b_{3k} = \sum_{l=1}^{l=m} \Delta b_{3k}^{l} . \tag{11}$$

2.4.3. Всех n подгрупп (или q групп) оборудования по всем m факторам:

$$\Delta b_3 = b_{3a} - b_{3b} = \sum_{i=1}^{l=m} \sum_{l=1}^{l=m} \Delta b_{3i}^l = \sum_{k=1}^{k=q} \sum_{l=1}^{l=m} \Delta b_{3k}^l . \tag{12}$$

Изменение абсолютного расхода топлива по каждому из факторов определяется как произведение значений изменения удельного расхода топлива и отпуска электроэнергии электростанцией в анализируемом периоде.

3. ИЗМЕНЕНИЕ УДЕЛЬНОГО РАСХОДА ТОПЛИВА НА ТЕПЛО

По приведенным ниже формулам определяется влияние каждой из подгрупп оборудования на изменение удельного расхода топлива в целом по электростанции за счет изменения каждого из следующих факторов:

- 3.1. При раздельном производстве:
- 3.1.1. Экономичности оборудования

$$\Delta b_{\text{T3}i}^{\text{p.3K}} = \left(b_{\text{r3}ai}^{\text{p.K3}} - b_{\text{r3}6i}^{\text{p.K3}}\right) \propto_{\text{a}i}^{\text{K3}} + \left(b_{\text{a}i}^{\text{nBK}} - b_{\text{b}i}^{\text{nBK}}\right) \propto_{\text{a}i}^{\text{nBK}}, \tag{13}$$

где

 b_{rs}^{p, κ_3} — удельный расход топлива по энергетическим котлам при раздельном производстве (не учитывает затрат электроэнергии на теплофикационную установку), кг/Гкал;

 $b_{\text{пвк}}$ — удельный расход топлива по пиковым водогрейным котлам, кг/Гкал;

 $\alpha_i^{\text{кз}}$, $\alpha_i^{\text{пвк}}$ — доля отпуска тепла энергетическими (свежим паром, через РОУ, из отборов и от конденсаторов турбоагрегатов) и пиковыми водогрейными котлами подгруппы оборудования в общем отпуске его электростанцией $Q_{\text{от}}$:

$$\alpha_i^{K9} = Q_{OT,i}^{K9} / Q_{OT};$$
 (14)

$$\alpha_{I}^{\text{пвк}} = Q_{\text{от I}}^{\text{пвк}} / Q_{\text{от}}. \tag{15}$$

3.1.2. Структуры отпуска тепла

$$\Delta b_{73i}^{p \ crp} = \left(b_{736i}^{p \ K3} - b_{736}^{p \ K}\right) \left(\alpha_{ai}^{K3} - \alpha_{6i}^{K3}\right) + \left(b_{6i}^{nBK} - b_{736}^{p \ K}\right) \left(\alpha_{ai}^{nBK} - \alpha_{6i}^{nBK}\right), \quad (16)$$

где $b_{r_3}^{p.\kappa}$ — средний по электростанции удельный расход топлива при раздельном производстве, не учитывающий затра г электроэнергии на теплофикационную установку, кг/Гкал.

3.1.3. Расхода энергии на теплофикационную установку

$$\Delta b_{r_{3}i}^{p.\,\text{Tenn}} = \frac{\Im_{\text{Tenn a}i}b_{3ai}^{p}}{Q_{\text{or a}}} - \frac{\Im_{\text{Tenn 6}i}b_{36i}^{p}}{Q_{\text{or 6}}},$$
 (17)

где $\mathfrak{I}_{\text{тепл}\,i}$ — затраты электроэнергии на теплофикационную установку, тыс. кВт-ч.

3.1.4. Всего по подгруппе оборудования:

$$\Delta b_{r_{2l}}^{\mathbf{p}} = \Delta b_{r_{2l}}^{\mathbf{p} \text{ sK}} + \Delta b_{r_{2l}}^{\mathbf{p} \text{ cTp}} + \Delta b_{r_{2l}}^{\mathbf{p} \text{ Terus}}. \tag{18}$$

- 3.2. При совместном производстве (изменение эффективности теплофикации):
- 3.2.1. Соотношения объемов выработки электроэнергии и отпуска тепла отработавшим паром

$$\delta b_{r3i}^{\mathsf{T}\phi}{}^{\circ} = \left(\Delta b_{r30i}^{\mathsf{T}\phi}{}^{\circ} - \Delta b_{r3ai}^{\mathsf{T}\phi}{}^{\circ}\right) \alpha_{ai}^{\mathsf{K}3} , \qquad (19)$$

где $\Delta b_{\text{тэн}}^{\text{тф.o}}$ — удельная экономия топлива по отпуску тепла, уровень которой определяется соотношением выработки электроэнергии и отпуска тепла отработавшим паром, кг/Гкал:

$$\Delta b_{rsi}^{\mathsf{T}\phi,o} = b_{rsi}^{\mathsf{p},\kappa_3} - b_{rsi}^{\kappa_3},\tag{20}$$

где

 $b_{r_3}^{\kappa_3}$ — фактический удельный расход топлива по энергетическим котлам, не учитывающий затрат электроэнергии на теплофикационную установку, кг/Гкал.

3.2.2. Структуры отпуска тепла

$$\Delta b_{\text{rgi}}^{\text{T}\phi,\text{crp}} = \left(\Delta b_{\text{rg6}}^{\text{T}\phi,\text{o}} - \Delta b_{\text{rg6}i}^{\text{T}\phi,\text{o}}\right) \left(\alpha_{\text{ai}}^{\text{K3}} - \alpha_{\text{6}i}^{\text{K3}}\right) + \Delta b_{\text{rg6}}^{\text{T}\phi,\text{o}} \left(\alpha_{\text{ai}}^{\text{BBK}} - \alpha_{\text{6}i}^{\text{BBK}}\right). \tag{21}$$

3.2.3. Расхода энергии на теплофикационную установку:

$$\Delta b_{rsi}^{\mathsf{T}\phi,\,\mathsf{Terin}} = \frac{\Delta b_{s6i}^{\mathsf{T}\phi,\,\mathsf{O}} \Theta_{\mathsf{Terin},6i}}{Q_{\mathsf{or}\,\,\mathsf{f}}} - \frac{\Delta b_{sai} \Theta_{\mathsf{Terin},ai}}{Q_{\mathsf{or}\,\,\mathsf{a}}}.\tag{22}$$

3.2.4. Всего по подгруппе оборудования:

$$\Delta b_{T_{3i}}^{\tau\phi} = \delta b_{T_{3i}}^{\tau\phi,o} + \Delta b_{T_{3i}}^{\tau\phi,c\tau p} + \Delta b_{T_{3i}}^{\tau\phi,\tau enn}. \tag{23}$$

3.3. Итого по подгруппе оборудования:

$$\Delta b_{\mathbf{r} \mathbf{j} i} = \Delta b_{\mathbf{r} \mathbf{j} i}^{\mathbf{p}} + \Delta b_{\mathbf{r} \mathbf{j} i}^{\mathbf{r} \mathbf{\phi}} . \tag{24}$$

3.4. Общее изменение удельного расхода топлива по электростанции

Влияние на удельный расход топлива в целом по электростанции каждой из групп оборудования, а также каждого из факторов определяется по формулам, аналогичным формулам (10) и (11).

Общее изменение удельного расхода топлива по электростанции в целом подсчитывается по формуле

$$\Delta b_{T3} = b_{T3a} - b_{T36} = \sum_{l=1}^{l=m} \sum_{l=1}^{l=m} \Delta b_{T3i}^{l} = \sum_{k=1}^{k=q} \sum_{l=1}^{l=m} \Delta b_{T3k}^{l}.$$
 (25)

Изменение абсолютного расхода топлива по каждому из факторов определяется как произведение значений изменения удельного расхода топлива и отпуска тепла электростанцией в анализируемом периоде.

ОПРЕДЕЛЕНИЕ УДЕЛЬНЫХ РАСХОДОВ ТОПЛИВА, ЗНАЧЕНИЯ КОТОРЫХ НЕ СОДЕРЖАТСЯ В ОТЧЕТАХ ЭЛЕКТРОСТАНЦИЙ

1. Электроэнергия при раздельном производстве:

$$b_3^{\mathrm{p}} = b_3 \kappa_{\mathrm{OTD}(\kappa)}^3, \tag{1.1}$$

гле

 b_{3} — фактический удельный расход тогилива, г/(кВт·ч);

г/(кВт-ч);

коэффициент увеличения расхода топлива на электроэнергию при раздельном производстве (при условном отсутствии отпуска тепла внешним потребителям от турбоагрегатов).

2. Тепло.

При определении удельных расходов топлива по энергетическим и пиковым водогрейным котлам нагрев воды в сетевых насосах не учитывается, поскольку данные о нем в отчетах электростанций и АО-энерго отсутствуют.

2.1. Пиковые водогрейные котлы.

По пиковым водогрейным котлам фактический удельный расход топлива и удельный расход топлива при раздельном производстве равны между собой:

$$b^{\text{пвк}} = \mathbf{B}_{\text{пвк}} \cdot 10^3 / Q_{\text{от}}^{\text{пвк}}, \qquad (1.2)$$

где

В_{пвк} — количество условного топлива, израсходованного пиковыми водогрейными котлами, т;

 $Q_{\text{от}}^{\text{пвк}}$ — отпуск тепла внешним потребителям пиковыми водогрейными котлами, Гкал

- 2.2. Энергетические котлы без учета затрат электроэнергии на теплофикационную установку:
 - 2.2.1. Фактически:

$$b_{\tau_3}^{\kappa_3} = \frac{B_{\tau_3} - B_{\Pi B K} - \Im_{\tau e \Pi \Pi} b_3 10^{-3}}{O_{e \tau}^{\kappa_3}} 10^3, \qquad (1.3)$$

где

 ${f B_{79}}$ — общий расход условного топлива на отпуск тепла, т;

Этепл — расход электроэнергии на теплофикационную установку, тыс. кВт-ч;

 $Q_{\text{от}}^{\text{кэ}}$ — отпуск тепла внешним потребителям, обеспеченный энергетическими котлами (свежим паром, от РОУ, из отборов и от конденсаторов турбоагрегатов), Гкал:

$$Q_{\text{ot}}^{\text{KS}} = Q_{\text{ot}} - Q_{\text{ot}}^{\text{nbk}}, \qquad (1.4)$$

где

 $Q_{\text{от}}$ — общий отпуск тепла внешним потребителям, Γ кал

2.2.2. При раздельном производстве:

$$b_{\rm T3}^{\rm p. K3} = b_{\rm T3}^{\rm K3} \kappa_{\rm OTD(K)}^{\rm T3},$$
 (1.5)

где

коэффициент увеличения расхода топлива энергетическими котлами на тепло при раздельном производстве (при условном отсутствии отпуска тепла внешним потребителям от турбоагрегатов):

- 2.3. Энергетические и пиковые водогрейные котлы в среднем без учета затрат электроэнергии на теплофикационную установку:
 - 2.3.1. Фактически:

$$b_{rs}^{k} = \frac{B_{rs}10^{3} - \Theta_{renn}b_{s}}{Q_{or}}.$$
 (1.6)

2.3.2. При раздельном производстве:

$$b_{\rm T9}^{\rm p.\kappa} = \frac{b_{\rm T3}^{\rm p.\kappa3} Q_{\rm o\tau}^{\rm \kappa3} + B_{\rm nBK} 10^3}{Q_{\rm o\tau}}.$$
 (1.7)

2.4. Энергетические и пиковые водогрейные котлы в среднем при раздельном производстве с учетом затрат электроэнергии на теплофикационную установку:

$$b_{r_3}^{p} = \frac{b_{r_3}^{p,\kappa_3} Q_{or}^{\kappa_3} + b_{s}^{p} \Im_{renn} + B_{ns\kappa} 10^3}{Q_{or}}.$$
 (1.8)

Приложение 2

ПРИМЕР РАСЧЕТА СОСТАВЛЯЮЩИХ ИЗМЕНЕНИЯ УДЕЛЬНОГО РАСХОДА ТОПЛИВА НА ЭЛЕКТРОЭНЕРГИЮ ПО АО-ЭНЕРГО

Таблица П2.1

				Исходны	е данные		Результат	ы расчета
			Отпуск элег	ктроэнергии		Коэф-		
Группа оборудова- ния	Подгруппа оборудо- вания	Период	тыс. кВт-ч	доля общего по АО-эн е рго	Фактичес- кий удельный расход топлива, г/(кВт·ч)	фициент увеличения расхода топлива при раз- дельном производст- ве	Удельный расход топлива при раздельном производстве, г/(кВт-ч)	Удельная экономия тогилива за с ет теплофикации, г/(кВт-ч)
			Э _{оті}	α,	b_{3i}	к ³ отр(к) і	$b_{\ni i}^{\mathrm{p}}$	$\Delta b_{3i}^{T\dot{\Phi},\alpha}$
Блоки 300К	ΓМ	a	16148	0,006887	319,297	1 003	320,254	0,957
Блоки 200К	ПУ	а	296048	0,126263	347,913	1,010	351.392	3,479
		б	262945	0,118059	353,652	1,009	356,835	3,183
	ГМ	а	554152	0,236343	340,508	1,008	343,232	2,724
		б	573655	0,257564	339,124	1,007	341,498	2,374
ГЭЦ-130	ПУ	а	369142	0,157437	315,269	1,264	398,50 0	83,231
		б	323526	0,145259	326,505	1,262	412,050	85,545
	ΓМ	а	419366	0,178857	319,313	1,245	397,545	78,232

:2

Из	менение				-1,200	_	-0,713	0,487
		б	2227228	1,0	353,925		399,176	45,251
АО-энерго		a	2344697	1,0	352,725		398,463	45,738
********			Эот	α³	<i>b</i> ₃		<i>b</i> ₂ ⁹	$\Delta b_3^{\tau \dot{\phi}.o}$
Прочее	ПУ	6	10828	0,004862	436,924	1,419	619,993	183,069
		б	175187	0,078657	381,855	1,244	475,027	93,172
	ΓМ	а	190175	0,081109	371,942	1,264	470,134	98,192
		б	152356	0,068406	408,130	1,267	517,100	108,970
ТЭЦ-90	ПУ	а	160388	0,068404	400,953	1,298	520,437	119,484
		б	35980	0,016155	417,204	1,0	417,204	0
	ΓМ	а	28932	0,012339	420,711	1,0	420,711	0
		б	2 51923	0,113111	437,066	1,019	445,370	8,304
КЭС-90	ПУ	а	3 10346	0,132361	427,532	1,025	438,221	10,689
		б	440828	0,197927	308,923	1,24 9	3 85, 84 5	76,922

Таблица П2.2

	1		Составляют	цие изменен	ия удельного г	асхода топли	ва, г/(кВт∙ч)	
		Раздел	ьное произв	одство		Теплофикаци	Я]
Группа оборудова- ния	Подгруппа оборудова- ния	Экономич- ность оборудова- ния	Структура отпуска электро- энергии	Beero	Соотношение объемов отпуска электро- энергин и тепла	Структура отпуска электро- энергии	Всего	Итого
		$\Delta b_{si}^{p,s\kappa}$	$\Delta b_{si}^{p,crp}$	Δb_{3i}^{p}	$\delta b_{i}^{T\Phi,o}$	$\Delta b_{ji}^{\tau \phi, c \tau p}$	$\Delta b_{3I}^{\dagger \dot{\phi}}$	Δb_{3i}
		1*	3*	4*	5*	7*	8*	9*
Блоки 300К	ΓМ	_	-0,543	-0,543		0,305	0,305	-0,238
Б локи 200К	ПУ	-0,687	-0,347	-1,034	-0,037	0,345	0,308	-0,726
	ΓМ	0,410	1,224	1,634	-0,083	-0,910	-0,993	0,641
	Σ	-0,277	0,877	0,600	-0,120	-0,565	0,685	-0,085
ТЭЦ-130	ПУ	-2,133	0,157	-1,976	0,364	-0,491	-0,127	-2,103
	ΓМ	2,093	0,254	2,347	-0,234	0,604	0,370	2,717
	Σ	-0,040	0,411	0,371	0,130	0,113	0,243	0,614
КЭ С-90	ПУ	-0,947	0,889	-0, 058	-0,316	0,711	0,395	0,337
	ΓМ	0,043	-0,069	-0,026	0	-0,173	-0,173	-0,199

*Номер расче	тной фор	мулы.						
АО-энерго		-1,390	0,678	-0,712	-1,432	0,944	-0,488	-1,200
		∆Ь, р. эк	$\Delta b_3^{\mathrm{p.crp}}$	Δbs	$\delta b_2^{\mathrm{T}\phi,o}$	$\Delta b_3^{T\phi.crp}$	$\Delta b_3^{\dagger \dot{\phi}}$	Δb_3
Прочес	ПУ		-1,073	-1,073	_	0,670	0,670	-0,403
	Σ	-0,169	0,186	0,017	-1,126	-0,117	-1,243	-1,226
	ΓМ	-0,397	0,186	-0,211	-0,4 07	-0,117	-0,524	-0,73 5
ТЭЦ-90	ПУ	0,228	0	0,228	-0,719	0	-0,719	-0,491
	Σ	-0,904	0,820	-0,084	-0 ,316	0,538	0,222	0,138

ПРИМЕР РАСЧЕТА СОСТАВЛЯЮЩИХ ИЗМЕНЕНИЯ УДЕЛЬНОГО РАСХОДА ТОПЛИВА НА ТЕПЛО ПО АО-ЭНЕРГО

Таблица ПЗ. І

Исходные данные

			Отпуск т	епла, Гкал	условног	ьий расход о топлива пло, т		Расход	Коэффици- ент увели- чення	
	Подгруппа оборудова- ния	Пери- од	Всего ПВК		Всего	ПВК	Средний удельный расход топлива, кг/Г кал	электро- энергии на тепло- фикацион- ную установку, тыс.кВт-ч	расхода топлива на тепло энергетическими котлами при раздельном производстве	
			$Q_{\text{or }i}$	$Q_{\text{OT I}}^{\Omega \text{BA}}$	$B_{\tau > i}$	B _{ilbk i}	b _{T3} i	Э _{теплі}	^К отр(к)і	
1	2	3	4	5	6	7	8	9	10	
Блоки 300К	ГМ	a	2411		405		167,980	60	1,003	
Блоки 200К	ПУ	a	21712	_	3764		173,360	310	1,010	
		б	19080		3296		172,746	275	1,009	
	ΓМ	а	28956		5027		173,608	60 0	1,010	

16

		б	21568		3726		172,756	428	1,008
ТЭЦ-130	ПУ	a	589369	_	83271		141,288	6713	1,258
		б	517472		73 295		141,641	6317	1,262
	ΓМ	а	970366	77326	137328	11850	141,522	10189	1,244
		б	440828	6221	60526	957	137,301	5274	1,258
КЭС-90	ПУ	а	35661		6565	-	184,095	713	1,025
		б	24548		4476		182,337	5 57	1,026
	ΓМ	a	_						-
		б	Spin-Spin			_			
ТЭЦ-90	пу	а	541168	23381	80109	3588	148,030	4445	1,300
		б	449092		67049	-	149,299	4787	1,267
	ΓМ	а	969069	45281	132913	6 948	137,155	4312	1,256
		6	945950	18764	129028	2864	136,400	3340	1,241
Прочее	ПУ	6	69956	3666	8879	572	126,923	928	1,391
			Q _{or}	$\mathcal{Q}_{ ext{ot}}^{ ext{nsk}}$	В	B _{ПВК}	b _{T3}	Этепл	к ^{тэ} отр(к)
АО-энерго		а	3158712	145988	449382	22386	142,267	27342	
		б	2488494	28651	350275	4393	140,759	21906	
	Изменение	•					1,508		

			Отпуск	по АО	Доля общего по АО-энерго отпуска тепла			ый рвсход 3 учета Э,		кг/Гкал	средний	Удель- ная эко- номия
	Под-		тепла энерге-			ф	актически	нй	при раз, произв	дельном одстве	при раздель-	топли- ва за
дования	I	Пери- од		энергс- тически- ми кот- лами		по энер- гетичес- ким котлам	по ПВК	средний	по энер- гетичес- ким котлам	средний	ном произ- водстве с уче- том Этепл	счет тепло- фика- ции (без учета Э _{тепл})
			Q_{ori}^{Kr}	α_i^{ks}	од ^{пвк}	b _{raí}	b_i^{IIBK}	b ^κ _{τэi}	b ^{p.x} σ	b _{T3l}	b_{rol}^{p}	$\Delta b_{\mathrm{T3}i}^{\mathrm{T}\phi,o}$
			1.4*	14*	15*	1.3*	1.2*	1.6*	1.5*	1.7*	1.8*	20*
11	2	3	4	5	6	7	8	9	10	11	12	13
Блоки 300К	ГМ	a	2411	0,000763		160,034	_	160,034	160,514	160,514	168,484	0,480
Блоки 200К	ПУ	a	21712	0,006874		168,393	_	168,393	170,077	170,077	175,094	1,684
		б	19080	0,007667		167,650		167,650	169,159	169,159	174,302	1,509
	ГΜ	a	28956	0,009167	~	166,553	_	166,553	168,218	168,218	175,330	1,665
		б	21568	0,008667		166,027		166,027	167,355	167,355	174,132	1,328
ТЭЦ-130	ПУ	a	58 936 9	0,186585	_	137,697	_	137,697	173,223	173,223	177,762	35,526
		б	517472	0,207946	_	137,655		137,655	173,720	173,720	170 750	20.005
		•	J.11.2	0,207740		131,033		137,033	173,720	173,720	178,750	36,065

18

		6	2459843	,	0,011513	-	153,328	•	171,725	171,513	175,438	34,289
АО-энерго		a	3012724	0,953782	0,046218	138,613	153,341	139,295	173,552	172,618	176,326	34,939
			$Q_{\text{ot}}^{\text{ko}}$	α ^{k3}	отшяк	b _{тэ}	b ^{TIBK}	b _{тэ}	b_{rs}^{rs}	$b_{ au extsf{9}}^{ extsf{p.ix}}$	b ^p _{T9}	$\Delta b_{\tau j}^{\uparrow \dot{\Phi}, o}$
Прочее	ПУ	б	66290	0,026639	0,001473	119,197	156,028	121,127	165,803	165,291	173,515	46,606
		6	927186	0,372589	0,007541	134,696	152,633	135,052	167,158	166,8 70	168 ,547	32,4 62
	ГМ	a	923788	0,292457	0,014335	134,621	153,442	135,500	169,084	168,353	17 0,445	34,463
		5	449092	0,180467	-	144,949	_	144,949	183,650	183,650	189,162	38, 701
ТЭЦ-90	ПУ	a	517787	0,163923	0,007403	144,342	153,458	144,736	187,645	186,168	190,443	43,303
		б	_		_	_	_	_		_	•	
	ГМ	а	_							_		•
		б	24548	0,009865		172,419	_	172,419	176,902	176,902	187,007	4,483
K3C-90	ПУ	а	35661	0,911290	_	175,547		175 ,547	1 7 9,936	179,936	188,698	4,389

0,013

1,677

1,827

1,105

0,888

0,650

-0,034705 0,034705 1,177

0,174647 0,002499 133,316 153,834 133,605 167,711 167,515 172,131 34,395

434607

Изменение

*Номер расчетной формулы.

Таблица ПЗ.3

Составляющие изменения удельного топлива, кт/Гкал

				· · · · · · · · · · · · · · · · · · ·	Раздельное г	производство)		
		Экономи	чность обор	удования	Струк	тура отпуска	тегиа	Расход	
Группа оборудова- ния	Под- группа обору- дования	Энергети- ческие котлы	пвк	Всего	Энергети- ческие котлы	пвк	Всего	энергин на тепло- фикацион- ную установку	Итого
	1	$\Delta b_{\tau > i}^{\mathbf{p}, \mathbf{s} \mathbf{\kappa}, \mathbf{k} \mathbf{s}}$	∆ <i>Б</i> р.эк.пвк	Δb ^{p,aκ}	$\Delta b_{\mathrm{TH}}^{\mathrm{p,etp.xo}}$	$\Delta b_{\mathrm{Ta}i}^{\mathrm{p,crp.пвк}}$	∆b _{Tэi}	$\Delta b_{\text{тэ}i}^{\mathbf{p.remn}}$	$\nabla p_{\mathbf{b}}^{\mathbf{r} \ni i}$
		13*	13*	13*	16*	16*	16*	17*	18*
1	2	3	4	5	6	7	8	9	10
Блоки 300К	ΓМ				-0,008		-0,008	0,006	-0,002
Блоки 200К	ПУ	0,006		0,006	0,002		0,002	-0,00 5	0,003
	ΓM	0,008		0,008	-0,002		-0,002	0,006	0,012
	Σ	0,014		0,014	0,000		0,000	0,001	0,015
ТЭЦ-130	ПУ	-0, 093		-0,093	-0,047		-0,047	-0,199	-0,339
•	ΓМ	0,721	-0,014	0,707	-0,411	-0,389	-0,800	0,465	0,372
	Σ	0,628	-0,014	0,614	-0,458	-0,389	-0,847	0,266	0,033
K ∋C-90	ПУ	0,034		0,034	0,007	_	0,007	-0,001	0,040
ТЭЦ-90	ПУ	0,655		0,655	-0,201	-0,134	-0,335	-0,262	0,058
·	ΓM	0,563	0,012	0,575	0,349	-0,128	0,221	0,004	0,800
	Σ	1,218	0,012	1,230	0,148	-0,262	-0,114	-0,258	0,858
Прочее	ПУ				0,152	0,023	0,175	-0,231	-0,056
		∆Ь ^{р.эк.жэ}	∆Ь ^{р.эк пвк}	∆Ь ^{р.эк}	Δ <i>b</i> ^{p,cτp,κ3}	∆Ь ^{р.стр.пвк}	ДЬ ^{р.стр}	ΔЬ ^{р.тецл} тэ	$\Delta b_{T3}^{\mathrm{p}}$
АО-энерго		1,894	-0,002	1,892	-0,159	-0,628	-0,787	-0,217	0,888

Окончание таблицы ПЗ.3

1				Теплоф	икация				
		Соотноше-	Струг	тура отпуска	тепла	Расход			
Группа оборудова- ния	Подгруппа оборудова- ния	ние объ- емов отпус- ка электро- энергии и тепла	Энергети- ческие котлы	пвк	Bcero	энергии на теплофика- ционную установку	Bcero	Итого	
		$\delta b_{\mathrm{T3}l}^{\mathrm{T}\Phi.0}$	$\Delta b_{ { m to} i}^{{ m T} \phi, { m cr} p, { m kS}}$	Δb ^{Tφ.crp.usκ} Toi	$\Delta b_{T3l}^{T\phi,cTp}$	$\Delta b_{\tau ji}^{\tau \phi, \tau e n \pi}$	$\Delta b_{1\phi}^{Tal}$	$\Delta b_{_{{f T}>i}}$	
		19*	21*	21*	21*	22*	23*	24*	
1	2	11	12	13	14	15	16	17	
Блоки 300К	ΓМ		0,026		0,026	0,000	0,026	0,024	
Блоки 200К	ПУ	-0,001	-0,026		-0,026	0,000	-0,027	-0,024	
	ΓM	-0,003	0,016		0 ,016	0,000	0,013	0,025	
	Σ	-0,004	0,010	_	-0,010	0,000	-0,014	0,001	
ТЭЦ-130	ПУ	0,100	0,038	_	0,038	0,040	0,178	-0,161	
	ГМ	0,283	-0,011	0,754	0,743	-0,089	0,937	1,309	
	Σ	0,383	0,027	0,754	0,781	-0,049	1,115	1,148	
КЭ С-90	ПУ	0,001	0,042		0,042	0,000	0,043	0,083	
ТЭЦ-90	ПУ	-0,754	0,073	0,254	0,327	0,041	-0,386	-0,328	
	ГМ	-0,5 85	-0,146	0,233	0,087	-0,009	-0 ,50 7	0,293	
	Σ	-1,339	-0,073	0,487	0,414	0,032	-0,893	-0,035	
Прочее	ПУ		0,328	-0,051	0,277	0,068	0,345	0,289	
		$\delta b_{\tau_3}^{\tau \phi.o}$	Δh ^{τφ.στρ.κο}	∆Ь ^{тф.стр.пвк}	$\Delta b_{\tau j}^{\tau \phi, c \tau p}$	$\Delta b_{_{T9}}^{^{\mathrm{T}}\Phi,\mathrm{Tenn}}$	$\Delta b_{\tau_3}^{\tau \phi}$	∆b ₁₃	
АО-энерго		-0,959	0,3 40	1,190	1,530	0,051	0,622	1,510	
*Номер рас	четной форг	мулы.							

Примечания к приложению 3:

1. Увеличение удельного расхода топлива на тепло (кг/Гкал) в целом по АО-энерго составило:

фактического $\Delta b_{rs} = 1,508$ (гр. 8 табл. ПЗ.1 и гр. 17 табл. ПЗ.3);

при раздельном производстве (с учетом Θ_{res}) $\Delta b_{res}^p = 0.888$ (гр. 12 табл. ПЗ.2 и гр. 10 табл. ПЗ.3).

2. Увеличение фактического удельного расхода топлива (кг/Гкал) вследствие снижения эффективности теплофикации равно:

$$\Delta b_{r9}^{r\phi} = \Delta b_{r9} - \Delta b_{r9}^p = 1,508 - 0,888 = 0,620$$

(см. гр. 16 табл. П3.3).

3. Изменение удельного расхода топлива при раздельном производстве без учета $\Theta_{\text{тепл}}$ составило $\Delta b_{\text{гз}}^{\text{p.k}} = 1,105$ (гр. 11 табл. ПЗ.2). Оно равно сумме двух составляющих: влияния изменения экономичности оборудования $\Delta b_{\text{гз}}^{\text{p.sk}} = 1,892$ (гр. 5 табл. ПЗ.3) и структуры отпуска тепла $\Delta b_{\text{гз}}^{\text{p.crp}} = -0,787$ (гр. 8 табл. ПЗ.3).

ДЕТАЛИЗАЦИЯ АНАЛИЗА

Приведенные в основном тексте Методических указаний формулы позволяют определить влияние на удельный расход топлива по электростанции в целом изменения только удельных расходов топлива подгрупп оборудования. Для определения влияния показателей котлов и турбоагрегатов предлагается следующий способ:

в развернутом виде представляются формулы для расчета изменения (условные обозначения и единицы измерения соответствуют РД 34.08.552-95):

удельного расхода топлива на электроэнергию при раздельном производстве:

$$\Delta b_{3}^{p} = b_{3a}^{p} - b_{36}^{p} = b_{36}^{p} \left[\frac{q_{\tau a}^{p} \left(100 + q_{\tau a}^{cH} \right) \eta_{\kappa 6}^{6p} \kappa_{Qa}}{q_{\tau 6}^{p} \left(100 + q_{\tau 6}^{cH} \right) \eta_{\kappa a}^{6p} \kappa_{Q6}} \times \frac{\left(100 - q_{\kappa 6}^{cH} \right) \left(100 - \overline{9}_{36}^{cH} \right) \eta_{\tau n6}}{\left(100 - q_{\kappa 6}^{cH} \right) \left(100 - \overline{9}_{36}^{cH} \right) \eta_{\tau n6}} - 1}{\left(100 - q_{\kappa 6}^{cH} \right) \left(100 - \overline{9}_{36}^{cH} \right) \eta_{\tau n6}} \right], \tag{4.1}$$

гле

$$q_{\tau}^{\mathbf{p}} = q_{\tau} \mathbf{K}_{\mathbf{orp}(\tau)}; \qquad (4.2)$$

 удельного расхода топлива по энергетическим котлам при раздельном производстве:

$$\Delta b_{\text{T3}}^{\text{p,K3}} = b_{\text{T3a}}^{\text{p,K3}} - b_{\text{T36}}^{\text{p,K3}} = b_{\text{T36}}^{\text{p,K3}} \left[\frac{\left(100 + \alpha_{\text{NoT,a}}^{\text{K3}} \right) \eta_{\text{K6}}^{\text{fp}} \kappa_{Qa}}{\left(100 + \alpha_{\text{noT,6}}^{\text{K3}} \right) \eta_{\text{Ka}}^{\text{fp}} \kappa_{Q6}} \times \right. \\ \times \frac{\left(100 - q_{\text{K6}}^{\text{ch}} \right) \left(100 - \overline{3}_{36}^{\text{ch}} \right) \left(100 - \overline{3}_{76}^{\text{ch}} \right) \eta_{\text{Tn6}}}{\left(100 - q_{\text{Ka}}^{\text{ch}} \right) \left(100 - \overline{3}_{3a}^{\text{ch}} \right) \left(100 - \overline{3}_{76}^{\text{ch}} \right) \eta_{\text{Tna}}} - 1 \right];$$
(4.3)

- эффекта теплофикации по отпуску электро энергии:

$$\Delta \left(\Delta b_{3}^{\mathsf{T}\phi,o} \right) = \Delta b_{3a}^{\mathsf{T}\phi,o} - \Delta b_{36}^{\mathsf{T}\phi,o} = \Delta b_{36}^{\mathsf{T}\phi,o} \left[\frac{q_{\mathsf{T}a}^{\mathsf{p}} \left(100 + q_{\mathsf{T}a}^{\mathsf{CH}} \right) \eta_{\mathsf{K}6}^{\mathsf{f}p}}{q_{\mathsf{T}6}^{\mathsf{p}} \left(100 + q_{\mathsf{T}6}^{\mathsf{CH}} \right) \eta_{\mathsf{K}a}^{\mathsf{f}p}} \right]$$

$$\times \frac{\kappa_{Qa} \left(100 - q_{\kappa 6}^{ch}\right) \left(100 - \overline{\vartheta}_{36}^{ch}\right) \eta_{\tau n6} \left(1 - \xi_{cp a}\right) \alpha_{\sigma \tau a}^{\kappa 3}}{\kappa_{Q6} \left(100 - q_{\kappa u}^{ch}\right) \left(100 - \overline{\vartheta}_{2a}^{ch}\right) \eta_{\tau na} \left(1 - \xi_{cp.6}\right) \alpha_{\sigma \tau 6}^{\kappa 3}} - 1 \right], \tag{4.4}$$

где

$$\alpha_{\text{ot}}^{\text{K3}} = \frac{\Delta Q_{\text{3(otp)}}}{\left(Q_{\text{K}}^{\text{6p}} - Q_{\text{K}}^{\text{cH}}\right) \eta_{\text{Tn}} + \Delta Q_{\text{3(otp)}}}; \tag{4.5}$$

эффекта теплофикации по отпуску тепла:

$$\Delta \left(\Delta b_{r9}^{\tau\phi o}\right) = \Delta b_{r9a}^{\tau\phi o} - \Delta b_{r96}^{\tau\phi o} = \Delta b_{r96}^{\tau\phi o} = \left[\frac{\left(100 + \alpha_{nor a}^{\kappa9}\right)\eta_{\kappa6}^{6p}\kappa_{Qa}}{\left(100 + \alpha_{nor 6}^{\kappa9}\right)\eta_{\kappa a}^{6p}\kappa_{Qb}}\right] \times \frac{1}{\left(100 + \alpha_{nor 6}^{\kappa9}\right)\eta_{\kappa a}^{6p}\kappa_{Qb}}$$

$$\times \frac{\left(100 - q_{\kappa 6}^{\text{cH}}\right) \left(100 - \overline{\mathfrak{I}}_{96}^{\text{cH}}\right) \left(100 - \overline{\mathfrak{I}}_{7a}^{\text{cH}}\right) \eta_{\text{TR}6} \left(1 - \xi_{\text{cp a}}\right) \alpha_{\text{ora}}^{\kappa 3}}{\left(100 - q_{\kappa a}^{\text{cH}}\right) \left(100 - \overline{\mathfrak{I}}_{9a}^{\text{cH}}\right) \left(100 - \overline{\mathfrak{I}}_{76}^{\text{cH}}\right) \eta_{\text{TR}a} \left(1 - \xi_{\text{cp.6}}\right) \alpha_{\text{or6}}^{\kappa 3}} - 1\right]; \tag{4.6}$$

рассчитываются предварительные значения влияния каждого *J*-го промежуточного показателя на изменение удельного расхода топлива *i*-й подгруппы оборудования, определенного

по формуле (4.1):
$$\Delta b_{3ij}^{p \text{ пp}} = b_{36i}^{p} \left(\frac{\Pi_{ij}q}{\Pi_{ij3}} - 1 \right);$$
 (4.7)

по формуле (4.3):
$$\Delta b_{73ij}^{\text{p.кэ.np}} = b_{796i}^{\text{p.ks}} \left(\frac{\Pi_{ij}}{\Pi_{ij}} - 1 \right);$$
 (4.8)

по формуле (4.4):
$$\Delta \left(\Delta b_{3ij}^{\tau \phi, o} \right)^{np} = \Delta b_{56i}^{\tau \phi} \left(\frac{\Pi_{ijs}}{\Pi_{ijs}} - 1 \right);$$
 (4.9)

по формуле (4.6):
$$\Delta \left(\Delta b_{\tau 3 i j}^{\tau \phi, o} \right)^{n p} = \Delta b_{\tau 5 6 i}^{\tau \phi, o} \left(\frac{\Pi_{i j 4}}{\Pi_{i j 5}} - 1 \right)$$
, (4.10)

где Π_{ii} и Π_{ii} — значения каждого из промежуточных показателей соответственно в числителе и знаменателе соответствующих формул;

определяется сумма предварительных значений влияния всех показателей, входящих

в формулу (4.1):
$$\Delta b_{3i}^{\text{p.np}} = \sum_{1}^{7} \Delta b_{3ij}^{\text{p.np}}$$
; (4.11)

в формулу (4.3):
$$\Delta b_{rsi}^{\mathbf{p}.\kappa_{3}.\mathbf{np}} = \sum_{i}^{7} \Delta b_{rsij}^{\mathbf{p}.\kappa_{3}.\mathbf{np}}$$
; (4.12)

в формулу (4.4):
$$\Delta \left(\Delta b_{3i}^{\mathsf{T}\phi,o} \right)^{\mathsf{np}} = \sum_{1}^{9} \Delta \left(\Delta b_{3ij}^{\mathsf{T}\phi,o} \right)^{\mathsf{np}}$$
; (4.13)

в формулу (4.6):
$$\Delta \left(\Delta b_{rsi}^{\tau\phi.o}\right)^{np} = \sum_{i}^{y} \Delta \left(\Delta b_{rsij}^{\tau\phi.o}\right)^{np}$$
; (4.14)

рассчитываются уточненные значения влияния каждого из промежуточных показателей на удельные расходы топлива подгруппы оборудования:

$$\Delta b_{3ij}^{\mathrm{p}} = \Delta b_{3ij}^{\mathrm{p.np}} \frac{\Delta b_{3i}^{\mathrm{p}}}{\Delta b_{3i}^{\mathrm{p.np}}}; \tag{4.15}$$

$$\Delta b_{\text{raij}}^{\text{p.k3}} = \Delta b_{\text{raij}}^{\text{p.k3.np}} \frac{\Delta b_{\text{raij}}^{\text{p.k3.np}}}{\Delta b_{\text{raij}}^{\text{p.k3.np}}}; \qquad (4.16)$$

$$\Delta \left(\Delta b_{3ij}^{\tau \phi, o} \right) = \Delta \left(\Delta b_{3ij}^{\tau \phi, o} \right)^{np} \frac{\Delta \left(\Delta b_{3i}^{\tau \phi, o} \right)}{\Delta \left(\Delta b_{3i}^{\tau \phi, o} \right)^{np}}; \tag{4.17}$$

$$\Delta \left(\Delta b_{r \ni y}^{\uparrow \phi} \right) = \Delta \left(\Delta b_{r \ni y}^{\tau \phi} \right)^{\text{np}} \frac{\Delta \left(\Delta b_{\tau \ni i}^{\tau \phi} \right)}{\Delta \left(\Delta b_{\tau \ni i}^{\tau \phi} \right)^{\text{np}}}; \tag{4.18}$$

определяется значение влияния каждого из промежуточных показателей на удельный расход топлива по элек гростанции в целом:

$$\Delta b_{\rm sy}^{\rm p \ s\kappa} = \Delta b_{\rm sy}^{\rm p} \alpha_{\rm ar}^{\rm s}; \tag{4.19}$$

$$\Delta b_{\mathsf{T}^{3}y}^{\mathsf{p}} = \Delta b_{\mathsf{T}^{3}y}^{\mathsf{p}} \alpha_{\mathsf{a}\mathsf{i}}^{\mathsf{k}_{\mathsf{j}}} + \Delta b_{\mathsf{j}}^{\mathsf{n}_{\mathsf{b}\mathsf{k}}} \alpha_{\mathsf{a}\mathsf{i}}^{\mathsf{n}_{\mathsf{b}\mathsf{k}}}; \tag{4.20}$$

$$\delta b_{sy}^{\mathsf{T}\phi} \circ = \Delta \left(\Delta b_{sy}^{\mathsf{T}\phi} \circ \right) \alpha_{sy}^{\mathsf{a}}; \tag{4.21}$$

$$\delta b_{rsij}^{\tau\phi} = \Delta \left(\Delta b_{rsij}^{\tau\phi} \right) \alpha_{ni}^{\kappa s}. \tag{4.22}$$

Пример расчета влияния промежуточных показателей на изменение удельных расходов топ тива подгруппы оборудования

Исходные значения удельных расходов топлина по подгруппе оборудования:

$$\begin{split} b_{36_{1}}^{p} &= 367,834; \quad b_{3\alpha_{1}}^{p} &= 415,521; \quad \Delta b_{36_{1}}^{\tau\varphi} \circ = 65,842; \\ \Delta b_{3\alpha_{1}}^{\tau\varphi} \circ &= 72,633; \quad \Delta b_{31}^{p} &= 47,687; \quad \Delta \left(\Delta b_{31}^{\tau\varphi} \circ\right) = 6,791; \\ b_{736_{1}}^{p} &= 174,324; \quad b_{73\alpha_{1}}^{p} &= 188,558; \quad \Delta b_{736_{1}}^{\tau\varphi} \circ = 31,203; \\ \Delta b_{73\alpha_{1}}^{\tau\varphi} \circ &= 32,960; \quad \Delta b_{73_{1}}^{p} \circ = 14,234; \quad \Delta \left(\Delta b_{73_{1}}^{\tau\varphi} \circ\right) = 1,757. \end{split}$$

Исходные значения промежуточных показателей и результаты расчетов приведены в табл. П4.1.

Таблица П4.1

Промежу	точный по	казатель		Значен	не влияния	промежуто	чного показ	ателя на из	мененне	
	Значение	в периоде	b	p o <i>l</i>	$b_{ au}^{ m p}$	кэ	Δb _{7l} ο		Δ <i>b</i> ^{τφ ο}	
Услов- иое обо-	базовом	анализи- русмом	предвари- тельное	уточнен- ное	предвари- тельное	уточнен- ное	предвари- тельное	уточнен- ное	предвари- тельное	уточнен- ное
значение	Π _{σij}	Π _{αj}	Δb ^{p πp}	$\Delta b_{\mu}^{\mathrm{p}}$	$\Delta b_{ m ray}^{ m p \ K m s \ np}$	$\Delta b_{ au s ij}^{ ext{p k3}}$	$\Delta (\Delta b_{sy}^{T \Phi o})^{n p}$	$\Delta(\Delta b_{sy}^{\tau\phi})$	$\Delta (\Delta b_{T3ij}^{T\dot{\Phi}})^{trp}$	$\Delta(\Delta b_{{ m T3}y}^{{ m t} \varphi}{}^{ m o})$
	-		4.7*	4 15*	4 8*	4.16*	4.9*	4.17*	4.10*	4 18*
д р	2083	2142	10,419	10,946			1,865	2,199		
$100 + q_{\mathrm{T}}^{\mathrm{CH}}$	101,0	102,0	3,642	3,826			0,652	0,769	_	
$100 + \alpha_{nor}^{k9}$	101,2	102,2			1,723	1,762			0,308	0,395
$\eta_{\kappa}^{\mathrm{fp}}$	90,0	87,0	12,684	13,325	6,011	6,148	2,270	2,676	1,076	1,380
κ_Q	1,0	1,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
$100-q_{ m K}^{ m CH}$	9 8,0	97,0	3,792	3,984	1,797	1,838	0,679	0,8 00	0,322	0,413
100 – Б сн	94,03	91,28	11,082	11,642	5,252	5,372	1,984	2,339	0,940	1,205
$100 - \overline{3}_{T}^{CH}$	98,5	97,0			-2 ,655	-2,715			-0,475	-0,609
η_{TR}	98,5	97,5	3,773	3,964	1,788	1,829	0,675	0 ,796	0,320	0,410
1 - ζ _{cp}	0,3522	0,3444					-1,458	-1,719	-0,691	-0,886
$\alpha_{ot}^{\kappa_3}$	0,5082	0,5012		_	_		-0,907	-1,069	-0,430	-0,551
			Δb ^{p np}	∇p_b^{31}	ΔЬ ^{р кэ пр}	Δb ^{p κ3}	$\Delta(\Delta b_{3\ell}^{\tau \phi \ o})^{\pi p}$	$\Delta(\Delta b_{3i}^{\dagger \dot{\varphi} \ o})$	$\Delta(\Delta b_{T3I}^{T\phi o})^{Tp}$	$\Delta (\Delta b_{13i}^{\mathrm{T}\dot{\Phi}})$
			411*		4 12*		4 13*		4 14*	
Итого			45,392	47,687	13,916	14,234	5,760	6,791	1,370	1,757

СОДЕРЖАНИЕ

Подписано к печати 14.03.97

Печать офсетная Заказ № 95/97 Усл. печ.л. 1,62 Уч.-изд. **л. 1,6** Издат. № 97072

Формат 60×84 1/16 Тираж 450 экз.

Производственная служба передового опыта эксплуатации энергопредприятий ОРГРЭС 105023, Москва, Семеновский пер., д. 15 Участок оперативной полиграфии СПО ОРГРЭС 109432, Москва, 2-й Кожуховский проезд, д. 29, строение 6 Сверстано на ПЭВМ