ВОЛОКНО ШТАПЕЛЬНОЕ И ЖГУТ ХИМИЧЕСКИЕ

Методы определения влажности

Издание официальное

Предисловие

1 РАЗРАБОТАН Межгосударственным техническим комитетом по стандартизации МТК 316 «Искусственные волокна и нити», Закрытым акционерным обществом «Акционерный научно-исследовательский центр промышленности вискозных волокон» (ЗАО «АНИЦ ВИСКОЗА»)

ВНЕСЕН Госстандартом России

2 ПРИНЯТ Межгосударственным советом по стандартизации, метрологии и сертификации (протокол № 22 от 6 ноября 2002 г.)

За принятие проголосовали:

Краткое наименование страны по МК (ИСО 3166)004—97	Код страны по МК (ИСО 3166)004—97	Наименование национального органа по стандартизации
Азербайджан Армения Беларусь Казахстан Кыргызстан Молдова Российская Федерация Таджикистан Туркменистан	AZ AM BY KZ KG MD RU TJ TM	Азгосстандарт Армгосстандарт Госстандарт Республики Беларусь Госстандарт Республики Казахстан Кыргызстандарт Молдовастандарт Госстандарт России Таджикстандарт Главгосслужба «Туркменстандартлары»

³ Постановлением Государственного комитета Российской Федерации по стандартизации и метрологии от 16 мая 2003 г. № 144-ст межгосударственный стандарт ГОСТ 10213.3—2002 введен в действие непосредственно в качестве государственного стандарта Российской Федерации с 1 апреля 2004 г.

4 B3AMEH ΓΟCT 10213.3—73

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

ВОЛОКНО ШТАПЕЛЬНОЕ И ЖГУТ ХИМИЧЕСКИЕ

Методы определения влажности

Staple chemical fibre and tow. Moisture test methods

Дата введения 2004-04-01

1 Область применения

Настоящий стандарт распространяется на химические штапельное волокно и жгут и устанавливает методы определения влажности.

Стандарт не распространяется на углеродное, асбестовое и стеклянное волокно.

2 Нормативные ссылки

В настоящем стандарте использованы ссылки на следующие стандарты:

ГОСТ 10213.0—2002 Волокно штапельное и жгут химические. Правила приемки и метод отбора проб

ГОСТ 10213.1—2002 Волокно штапельное и жгут химические. Метод определения линейной плотности

ГОСТ 10681—75 Материалы текстильные. Климатические условия для кондиционирования и испытания проб и методы их определения

ГОСТ 17824—81 Полиамиды, нити, волокна полиамидные. Методы определения экстрагируемых веществ

ГОСТ 24104—2001 Весы лабораторные. Общие технические требования

ГОСТ 25336—82 Посуда и оборудование лабораторные стеклянные. Типы, основные параметры и размеры

ГОСТ 27244—93 Производство химических волокон. Термины и определения

ГОСТ 29332—92 Волокна и нити химические. Методы определения массовой доли замасливателя

3 Определения

В настоящем стандарте применяют следующие термины с соответствующими определениями:

- 3.1 штапельное химическое волокно: По ГОСТ 27244.
- 3.2 химический жгут: По ГОСТ 27244.
- 3.3 фактическая влажность: По ГОСТ 10213.0.
- 3.4 кондиционная влажность: По ГОСТ 10213.0.

4 Сушность методов

Сущность методов состоит в определении разности масс исходной и высушенной до постоянной массы пробы химического штапельного волокна или жгута и расчете их влажности.

5 Средства испытаний и вспомогательные устройства

5.1 Для проведения испытаний применяют следующую аппаратуру и вспомогательные материалы.

Издание официальное

ГОСТ 10213.3-2002

- 5.1.1 Для определения влажности применяют сушильный шкаф, обеспечивающий высушивание проб при температуре (67 \pm 2) °C или (108 \pm 2) °C.
- 5.1.2 Для определения влажности также применяют сушильный текстильный аппарат, обеспечивающий следующие параметры:
 - циркуляцию воздуха в рабочем объеме аппарата;
 - автоматическое регулирование температуры в диапазоне 60—130 °C с погрешностью ± 2 °C;
- взвешивание пробы с погрешностью не более 0,1 г; или сушильный аппарат с высушиванием проб в потоке горячего воздуха, обеспечивающий следующие параметры:
 - объем подаваемого для сушки воздуха 1,5—2,5 м³/мин;
 - колебания температуры воздуха, подаваемого к пробе ± 2 °C;
- контроль температуры воздуха непосредственно перед его подачей в корзину с погрешностью $\pm~2~^{\circ}\mathrm{C};$
- изоляцию корзины от излучения тепла нагревательного устройства (размер корзины должен быть таким, чтобы проба занимала от $\frac{1}{3}$ до $\frac{3}{4}$ ее объема);
 - арретировку и изоляцию весов сушильного аппарата от влияния тепла;
 - измерение массы пробы с погрешностью не более 0,1 % измеряемой массы.
- 5.1.3 Весы лабораторные по ГОСТ 24104 с погрешностью взвешивания не более 0,1 % измеряемой величины.
 - 5.1.4 Стаканчики для взвешивания по ГОСТ 25336 или другому нормативному документу.
 - 5.1.5 Эксикаторы по ГОСТ 25336.
 - 5.1.6 Сосуд или пакет влагонепроницаемые.

При возникновении разногласий влажность штапельных химических волокон и жгута, изготовленных из природных полимеров, определяют в сушильном аппарате, влажность штапельных химических волокон и жгута, изготовленных из синтетических полимеров, определяют в сушильном шкафу.

6 Порядок подготовки к проведению испытаний

6.1 Из лабораторной пробы, отобранной по ГОСТ 10213.0, последовательно в два-три приема из разных мест отбирают элементарные пробы небольшими пучками штапельного волокна или жгута. Массу и количество элементарных проб для определения фактической или кондиционной влажности, в зависимости от применяемой аппаратуры, устанавливают в соответствии с таблицей 1.

Таблица 1

Аппаратура	Количество элементарных проб	Масса элементарной пробы, г
Сушильные аппараты Сушильный шкаф	1 2	100—250 3—5

- 6.2 Отобранную для определения фактической влажности или кондиционной влажности элементарную пробу помещают в сосуд или пакет, массу которого определяют предварительно.
- 6.3 Пробу, отобранную для определения фактической влажности, помещают во влагонепроницаемый сосуд или пакет немедленно.

Пробу, отобранную для определения кондиционной влажности, кондиционируют в климатических условиях по ГОСТ 10681. Длительность кондиционирования — по ГОСТ 10213.1.

- 6.4 Массу элементарной пробы определяют как разность между массой элементарной пробы с тарой и массой тары.
- 6.5 Сушильный аппарат или сушильный шкаф перед испытанием прогревают до (108 ± 2) °C или до (67 ± 2) °C для поливинилхлоридного волокна. Весы сушильного аппарата уравновешивают.
- 6.6 Для определения влажности стаканчики предварительно прокаливают при температуре по 6.5 в сушильном шкафу до постоянной массы и после охлаждения в эксикаторе в течение не менее 10 мин взвешивают на лабораторных весах с погрешностью не более 0,0002 г.
- 6.7 Для штапельного волокна и жгута, кроме поливинилхлоридного, полиакрилонитрильного и волокна из природных полимеров при испытании в сушильном аппарате определяют массовую долю замасливателя до и после высушивания пробы по ГОСТ 29332, при испытании в сушильном шкафу только до высушивания.

6.8 Для штапельных волокон и жгута, содержащих низкомолекулярные соединения (HMC), при испытании в сушильном аппарате определяют массовую долю HMC до и после высушивания пробы по ГОСТ 17824.

7 Порядок проведения испытаний

7.1 Пробы штапельного волокна и жгута, предназначенные для определения фактической влажности, и пробы, предназначенные для определения кондиционной влажности, высушивают при температуре (108 ± 2) °C, кроме проб поливинилхлоридного волокна, которые высушивают при температуре (67 ± 2) °C.

7.2 Определение фактической и кондиционной влажности в сушильном шкафу

7.2.1 Для определения фактической влажности штапельного волокна или жгута в сушильном шкафу в стаканчик для взвешивания из сосуда или из пакета с элементарной пробой по 6.2 по всей глубине пробы быстро, в три-четыре приема, пинцетом кладут волокно и плотно закрывают стаканчик крышкой.

Для определения кондиционной влажности в стаканчик для взвешивания помещают пробу, кондиционированную по 6.3, и закрывают стаканчик крышкой.

- 7.2.2 Стаканчики с пробами взвешивают на лабораторных весах с погрешностью не более $0.0002~\mathrm{r}.$
- 7.2.3 Стаканчики с элементарными пробами штапельного волокна или жгута помещают в сушильный шкаф, снимают крышки стаканчиков и кладут рядом. Стаканчики располагают на одной полке шкафа. Высушивание проводят при температуре, указанной в 7.1.

Во время высушивания отверстия в верхней части сушильного шкафа должны быть открыты для обеспечения выхода влажного воздуха.

Первое взвешивание стаканчиков с элементарными пробами проводят не менее чем через 2 ч после загрузки в шкаф для всех видов волокон, кроме поливинилхлоридного, для которого это время составляет 4 ч. Каждый стаканчик для взвешивания закрывают крышкой, вынимают из шкафа, помещают для охлаждения в эксикатор и выдерживают не менее 10 мин.

Перед взвешиванием крышку стаканчика нужно быстро поднять и опустить, чтобы давление воздуха внутри стаканчика стало одинаковым с давлением окружающего воздуха. После этого стаканчики с пробами взвешивают с погрешностью не более 0,0002 г.

Продолжительность высушивания между последующими взвешиваниями должна быть не менее $20\,$ мин.

Высушивание считают законченным, если разность между двумя последующими взвешиваниями каждой пробы не превышает 0,002 г.

7.3 Определение фактической и кондиционной влажности в сущильном аппарате

- 7.3.1 Определяют массу соответствующей элементарной пробы с погрешностью не более $0,1\,\%$ измеряемой величины.
 - 7.3.2 Разрыхленную пробу помещают в корзину сушильного аппарата равномерным слоем.
- 7.3.3 Корзину с подготовленной к высушиванию пробой помещают в сушильный аппарат, нагретый до температуры, указанной в 7.1. Затем аппарат закрывают, пропускают воздушный поток и высушивают пробу до постоянной массы.

Не менее чем через 30 мин определяют массу пробы с погрешностью не более 0,1 % измеряемой величины. Во время взвешивания перекрывают воздушный поток (закрывают заслонку и выключают вентилятор).

Взвешивание повторяют через каждые 20 мин до достижения постоянной массы, т. е. до тех пор, пока результаты двух последовательных измерений будут отличаться не более чем на $0,1\,\%$ от последнего измерения.

При определении влажности в сушильном аппарате в потоке горячего воздуха первое взвешивание проводят через 6 мин, а все последующие взвешивания — через каждые 3 мин.

Высушивание считают законченным, если разность между двумя последующими взвешиваниями не превышает 0.1~% измеряемой величины.

8 Правила обработки результатов испытаний

8.1 Фактическую влажность W_{ϕ} , или кондиционную влажность W_{κ} , %, штапельного волокна

ГОСТ 10213.3—2002

из природных полимеров, полиакрилонитрильного и поливинилхлоридного штапельного волокна и жгута при испытании в сушильном аппарате вычисляют по формулам

$$W_{\Phi_1} = \frac{m - m_c}{m_c} \, 100,\tag{1}$$

$$W_{\rm K_{\rm I}} = \frac{m_{\rm K} - m_{\rm K}'}{m_{\rm K}'} \, 100, \tag{2}$$

где m — масса элементарной пробы, предназначенной для определения фактической влажности, до высушивания, г;

 $m_{\rm c}$ — масса элементарной пробы, предназначенной для определения фактической влажности, после высушивания, г;

 $m_{\rm k}$ — масса элементарной пробы, предназначенной для определения кондиционной влажности, до высушивания, г;

 $m_{\kappa}{}'$ — масса элементарной пробы, предназначенной для определения кондиционной влажности, после высушивания, г.

8.2 Фактическую влажность $W_{\phi 2}$ или кондиционную влажность $W_{\kappa 2}$, %, штапельного волокна и жгута, кроме указанных в 8.1, при испытании в сушильном шкафу вычисляют по формулам (1) и (2), если массовую долю замасливателя не определяют. В случае определения массовой доли замасливателя расчет ведут по формуле

$$W_{\Phi_2}(W_{\kappa_2}) = \frac{m - (m_3 + m_c')}{m_3 + m_c'} 100, \tag{3}$$

где т— масса пробы до снятия замасливателя и высушивания, г;

 m_3 — масса замасливателя, определенная по ГОСТ 29332, г;

 $m_{\rm c}$ — масса пробы после высушивания до постоянной массы (после снятия замасливателя, г). 8.3 Фактическую влажность W_{Φ_3} , %, штапельного волокна и жгута, кроме указанных в 8.1, при испытании в сушильном аппарате, в случае определения массовой доли замасливателя и НМС (6.7, 6.8) вычисляют по формуле

$$W_{\Phi_3} = \frac{m - m_c}{m_c} 100 - (B_1 - B_2) - (K_1 - K_2) , \qquad (4)$$

где B_1 — массовая доля замасливателя в пробе до высушивания;

 B_2 — массовая доля замасливателя в пробе после высушивания, %; K_1 — массовая доля НМС в пробе до высушивания, %; K_2 — массовая доля НМС в пробе после высушивания, %.

8.4 Вычисления проводят с точностью до второго десятичного знака.

8.5 За окончательный результат испытаний принимают среднеарифметическое результатов двух параллельных определений (кроме определений влажности в сушильном аппарате), допускаемое расхождение между которыми не должно превышать 10 % (от большего значения) для штапельных волокон и жгута, изготовленных из синтетических полимеров и 15 % для штапельных волокон и жгута, изготовленных из природных полимеров

При превышении расхождения испытание повторяют и за окончательный результат принимают среднеарифметическое значение результатов четырех определений.

Вычисления проводят с точностью, большей на один знак цифр, чем указано в норме, установленной нормативным документом на продукцию с последующим округлением до числа значащих цифр нормы.

8.6 Результаты испытаний должны быть оформлены протоколом, приведенным в приложении А.

ПРИЛОЖЕНИЕ А (обязательное)

Протокол (журнал) испытаний

Протокол испытаний должен содержать следующие данные: наименование продукции; обозначение нормативного документа на продукцию; обозначение настоящего стандарта; номер партии; используемую аппаратуру для высушивания проб; массу элементарных проб для высушивания; массу высушенных элементарных проб; фактическую влажность и (или) кондиционную влажность; дату проведения испытаний; подпись лица, проводившего испытания.

ГОСТ 10213.3-2002

УДК 677.4:543.812:006.354

MKC 59.060.20

M99

ОКСТУ 2209

Ключевые слова: штапельное химическое волокно, химический жгут, влажность

Редактор Т.П. Шашина Технический редактор В.Н. Прусакова Корректор В.И. Варенцова Компьютерная верстка С.В. Рябовой

Изд. лиц. № 02354 от 14.07.2000. Сдано в набор 27.05.2003. Подписано в печать 16.06.2003. Усл. печ. л. 0,93. Уч.-изд. л. 0,60. Тираж 197 экз. С 10825. Зак. 515.

Изменение № 1 ГОСТ 10213.3—2002 Волокно штапельное и жгут химические. Методы определения влажности

Принято Межгосударственным советом по стандартизации, метрологии и сертификации (протокол № 30 от 29.12.2006)

Зарегистрировано Бюро по стандартам МГС № 5543

За принятие изменения проголосовали национальные органы по стандартизации следующих государств: AM, BY, KZ, KG, MD, RU, TJ, TM, UA [коды альфа-2 по МК (ИСО 3166) 004]

Дату введения в действие настоящего изменения устанавливают указанные национальные органы по стандартизации *

Раздел 2. Пятый абзац изложить в новой редакции:

«ГОСТ 17824—2005 Полиамиды, волокна, ткани нолиамидные. Методы определения экстрагируемых веществ».

Пункты 5.1.3—5.1.5 изложить в новой редакции:

- «5.1.3 Весы специального (1) класса точности по ГОСТ 24104, наибольший предел взвешивания (НПВ) 200 г, цена деления (d) 0.0001 г.
 - 5.1.4 Стаканчики для взвешивания СН-85/15 по ГОСТ 25336.
 - 5.1.5 Эксикаторы 2—250 по ГОСТ 25336».

Раздел 5 дополнить пунктом — 5.2:

«5.2 Допускается применять другие средства измерений и оборудование, имеющие технические и метрологические характеристики, не уступающие указанным».

Пункт 6.6. Заменить слова: «не менее 10 мин взвешивают на лабораторных весах с погрешностью не более 0,0002 г» на «не менее 30 мин и взвешивают».

Пункт 6.7 изложить в новой редакции:

^{*} Дата введения в действие на территории Российской Φ едерации — 2008-01-01.

«6.7 При одновременном определении влажности и массовой доли замасливателя штанельных волокон и жгута при испытании в сушильном аннарате массовую долю замасливателя определяют до и после высушивания пробы по ГОСТ 29332.

При определении влажности и массовой доли замасливателя штапельных волокон и жгута при испытании в сушильном шкафу массовую долю замасливателя определяют до высушивания на одних и тех же элементарных пробах».

Пункт 7.2.2. Исключить слова: «на лабораторных весах с погрешностью не более 0,0002 г».

Пункт 7.2.3. Третий абзац. Заменить слова: «не менее чем через 2 ч» на «через 1,5 ч»; «не менее 10 мин» на «не менее 30 мин»;

четвертый абзац изложить в новой редакции:

«Затем стаканчики взвешивают. Перед высушиванием крышку стаканчика быстро поднимают и опускают».

Пункты 8.1—8.5 изложить в новой редакции:

«8.1 Фактическую влажность W_{ϕ} (или кондиционную влажность W_{κ}), %, штапельного волокна и жгута, если массовую долю замасливателя не определяют, вычисляют по формуле

$$W_{\oplus}(W_{K}) = \frac{m - m_{C}}{m_{C}} 100,$$
 (1)

- где *т* масса элементарной пробы, предназначенной для определения фактической или кондиционной влажности, до высушивания, г;
 - $m_{\rm e}$ масса элементарной пробы, предназначенной для определения фактической или кондиционной влажности, после высушивания, г.
- 8.2 Фактическую влажность W_{ϕ} (или кондиционную влажность W_{κ}), %, штапельного волокна и жгута при испытании в сушильном шкафу в случае определения массовой доли замасливателя вычисляют по формуле

$$W_{\Phi}(W_{K}) = \frac{m - (m_3 + m_C)}{m_3 + m_C} 100,$$
 (2)

где m — масса пробы до снятия замасливателя и высушивания, г;

 m_3 — масса замасливателя, определенная по ГОСТ 29332, г;

 $m_{\rm e}^{-}$ — масса пробы после высушивания (после снятия замасливателя), г.

8.3 Фактическую влажность W_{ϕ} , %, штапельного волокна и жгута при испытании в сушильном аппарате в случае определения массовой доли замасливателя и ПМС вычисляют по формуле

$$W_{\Phi} = \frac{m - m_{\rm c}}{m_{\rm c}} 100 - (B_1 - B_2) - (K_1 - K_2), \qquad (3)$$

где B_1 — массовая доля замасливателя в пробе до высушивания, %;

 B_2 — массовая доля замасливателя в пробе до высушивания, %;

 K_1^2 — массовая доля НМС в пробе до высушивания, %; K_2 — массовая доля ПМС в пробе после высушивания, %;

8.4 Вычисление проводят с точностью до второго десятичного знака.

8.5 За результат испытания принимают среднеарифметическое результатов двух параллельных определений, расхождение между которыми не превышает значения предела повторяемости, равного 2,8S_x.

Если разница между результатами двух параллельных определений превышает значение предела повторяемости, проводят еще два параллельных определения.

Если разница между максимальным и минимальным значениями ре**зу**льтатов четырех определений не превышает значения $3,6S_{c}$, за результат испытания принимают среднеарифметическое результатов всех четырсх определений. В противном случае за результат испытания принимают медиану результатов четырех определений, т. с. среднеарифметическое значение между вторым и третьим результатами определения, расположенными в порядке возрастания.

Стандартное отклонение повторяемости S_r и стандартное отклонение воспроизводимости S_R определяют в зависимости от значения измеряемой величины W, %, в соответствии с таблицей 2.

Таблица 2

Диапазон изменения влажности <i>W</i> , %	Стандартное отклонение повторяемости S_r % влажности	Стандартное отклонение воспроизводимости S_R , $\%$ влажности
От 0,0 до 5,0	0,028 + 0,019 W	0,026 + 0,202 W
Св. 5,0	0,125 — 0,002 <i>W</i>	0,477 - 0,102 W

Окончательный результат испытания округляют до десятичного знака нормы».

(ИУС № 10 2007 г.)