Табак

ОПРЕДЕЛЕНИЕ ОСТАТОЧНЫХ КОЛИЧЕСТВ ХЛОРОРГАНИЧЕСКИХ ПЕСТИЦИДОВ

Газохроматографический метод

Издание официальное

Предисловие

1 РАЗРАБОТАН Техническим комитетом по стандартизации ТК 153 «Табак и табачные изделия», ВНИИТТИ

ВНЕСЕН Госстандартом России

- 2 ПРИНЯТ И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Госстандарта России от 24 ноября 1999 г. № 427-ст
- 3 Настоящий стандарт представляет собой аутентичный текст международного стандарта ИСО 4389—97 «Табак. Определение остаточных количеств хлорорганических пестицидов. Газохроматографический метод», кроме разделов 2, 4, 5, 6
 - 4 ВВЕДЕН ВПЕРВЫЕ

Содержание

1	Область применения
2	Нормативные ссылки
3	Сущность метода
4	Реактивы
5	Аппаратура
6	Отбор проб и подготовка образцов для испытаний
7	Проведение анализа
8	Обработка результатов
9	Сходимость, воспроизводимость и предел обнаружения
10	Отчет о проведении испытаний б
Пр	риложение А Образцы хроматограмм
Пр	риложение Б Результаты межлабораторных испытаний 8
Пr	риложение В Библиография

ГОСУДАРСТВЕННЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

Табак

ОПРЕДЕЛЕНИЕ ОСТАТОЧНЫХ КОЛИЧЕСТВ ХЛОРОРГАНИЧЕСКИХ ПЕСТИЦИДОВ

Газохроматографический метод

Tobacco. Determination of organochlorine pesticide residues.

Gas chromatographic method

Дата введения 2000-11-01

1 Область применения

Настоящий стандарт устанавливает газохроматографический метод определения остаточных количеств пестицидов в табаке, включая листовой табак. Метод применим для определения в листовом табаке хлорорганических пестицидов, перечисленных в таблице 1. В частности, метод рекомендуется для определения веществ с пределами обнаружения, приведенными в таблице 1.

Таблица 1 — Перечень пестицидов и пределы их обнаружения

Вещество	Общепринятое название	Предел обнаружения, мкг/г			
Альдрин	Альдрин	0,02			
<i>Транс</i> -хлордан	Хлордан	0,02			
П, п'-ДДЭ	_	0,02			
О, n'-ДДТ	_	0,04			
П, и'-ДДТ	ддт	0,06			
Дильдрин	Дильдрин	0,02			
α-эндосульфан	Эндосульфан	0,03			
ГХБ	Гексахл ор бензол	0,02			
α -ГХЦГ или α -БГХ	ГХЦГ или БГХ	0,02			
β-Г ХЦГ или β-БГХ	ГХЦГ или БГХ	0,02			
ү-ГХЦГ или ү-БГХ	Гамма-ГХЦГ (Линдан) или гамма-БГХ	0,01			
δ-ГХЦГ или δ-БГХ	ГХЦГ или БГХ	0,02			
Гептахлор	Гептахлор	0,02			
Гептахлор эпоксид	_	0,02			
<i>о, п</i> '-ТДЭ или <i>о, п</i> '-ДДД	_	0,03			
<i>n, n</i> '-ТДЭ или <i>n, n</i> '-ДДД	тдэ	0,02			
о, п'-ДДЭ	_	0,03			

2 Нормативные ссылки

В настоящем стандарте использованы ссылки на следующие стандарты:

ГОСТ 1770-74 Посуда мерная лабораторная стеклянная. Цилиндры, мензурки, колбы, пробирки. Технические условия

ГОСТ 5789—78 Толуол. Технические условия.

ГОСТ 6709—72 Вода дистиллированная. Технические условия

ГОСТ 24104—88 Весы лабораторные общего назначения и образцовые. Общие технические условия

ГОСТ 25336-82 Посуда и оборудование лабораторные стеклянные. Типы, основные параметры и размеры

ГОСТ 29169—91 (ИСО 648-77) Посуда лабораторная стеклянная. Пипетки с одной меткой ГОСТ 30040—93 (ИСО 4874—81) Табак. Отбор проб из партий сырья. Основные положения

3 Сущность метода

Остаточные количества пестицидов извлекают из высушенной и размолотой пробы, спешанной с флоризилом, путем экстракции гексаном в аппарате Сокслета. Остаточные количества пестицидов определяют в экстракте без дальнейшей очистки на газовом хроматографе с электронно-захватным детектором.

4 Реактивы

Для определения остаточных количеств хлорорганических пестицидов применяют следующие реактивы:

4.1 Общие положения

Все реактивы должны быть пригодны для анализа остатков пестицидов. Все растворители перед использованием проверяют на чистоту путем холостого определения (7.2 и 7.5). Хроматограмма, полученная для растворителей при холостом определении, не должна иметь пиков, превышающих шумы детектора и совпадающих по времени удерживания с определяемыми пестицидами.

Используют дистиллированную воду по ГОСТ 6709 или воду эквивалентной чистоты.

4.2 н-Гексан [1]

4.3 Стандартные вещества

Стандартные вещества хлорорганических пестицидов, приведенных в таблице 1, гарантированной степени чистоты с содержанием действующего вещества не менее 95 %.

 Π р и м е ч а н и е — В качестве стандарта для хлордана (техническая смесь) используется *транс*-хлордан. Если определяется количество α -эндосульфана, то *транс*-хлордан рекомендуется для определения суммы остаточных количеств α -эндосульфана, β -эндосульфана и сульфата эндосульфана.

4.4 Внутренний стандарт

В качестве внутреннего стандарта допускается использовать хлорорганический пестицид, вышедший из употребления, — мирекс.

 Π р и м е ч а н и е — Мирекс — общее название для додекахлоропентацикло [5.2.1.0^{2,6}.0^{3,9}.0^{5,8}] декана.

В качестве внутреннего стандарта могут использовать и другие вещества, отвечающее требованиям, предъявляемым к внутреннему стандарту.

4.5 Толуол по ГОСТ 5789.

4.6 Приготовление основного раствора внутреннего стандарта

На лабораторных весах по ГОСТ 24104 взвешивают с точностью до 0,0001 г, 0,02 г мирекса в мерную колбу вместимостью 100 см³, растворяют в H-гексане и доводят объем раствора до метки.

4.6.1 Приготовление раствора внутреннего стандарта

В мерную колбу вместимостью 200 см^3 переносят пипеткой 5 см³ основного раствора внутреннего стандарта (4.6) и доводят объем раствора до метки μ -гексаном. Полученный раствор внутреннего стандарта концентрацией примерно 5 мкг/см³ хранят при температуре от 0 °C до 4 °C в темноте. При этих условиях раствор стабилен в течение 6 мес.

4.7 Стандартные растворы пестицидов

Все растворы пестицидов хранят в колбах с притертыми пробками при температуре от $0\,^{\circ}$ С до $4\,^{\circ}$ С в темноте. При этих условиях растворы стабильны в течение $6\,$ мес.

4.7.1 Приготовление основных стандартных растворов пестицидов

В отдельные мерные колбы вместимостью 100 см³ взвешивают с точностью до 0,0001 г, по 0,02 г каждого пестицида, растворяют в *н*-гексане и доводят объем раствора до метки. Концентрация индивидуальных стандартных растворов составляет примерно 200 мкг/см³.

 Π р и м е ч а н и е — При приготовлении индивидуального стандартного раствора β -ГХЦГ пестицид растворяют в толуоле, так как растворимость его в μ -гексане ограничена.

4.7.2 Приготовление смешанного стандартного раствора А

В мерную колбу вместимостью 200 см³ переносят пипеткой по 5 см³ индивидуального стандартного раствора каждого пестицида (4.7.1) и доводят объем раствора до метки μ -гексаном (или толуолом, если учтены условия 4.7.1). Концентрация полученного раствора составляет примерно 5 мкг/см³ каждого пестицида.

4.7.3 Приготовление смешанного стандартного раствора В

В мерную колбу вместимостью 10 см^3 переносят пипеткой 1 см^3 смешанного стандартного раствора A (4.7.2) и доводят объем раствора до метки μ -гексаном. Концентрация полученного раствора составляет примерно 0,5 мкг/см 3 каждого пестицида.

4.7.4 Приготовление рабочего стандартного раствора пестицидов для калибровки

В мерную колбу вместимостью 100 см^3 переносят пипеткой по 1 см^3 смешанного стандартного раствора А (4.7.2) и раствора внутреннего стандарта (4.6.1) и доводят объем раствора до метки μ -гексаном. Концентрация полученного раствора составляет примерно $0,05 \text{ мкг/см}^3$ каждого пестицида и внутреннего стандарта.

4.8 Флоризил®, 60—100 меш

 Π р и м е ч а н и е — Флоризил® — адсорбент для хроматографии на основе кремнекислого магния. Диапазон 60-100 меш соответствует диапазону отверстий 250-150 мкм.

4.8.1 Требования к флоризилу®

Качество флоризила[®] — одна из наиболее важных характеристик метода. Активность флоризила[®] должна быть достаточна для удержания коэкстрактивных веществ, извлекаемых из образца, и давать возможность элюироваться остаточным количеством пестицидов. Флоризил[®] должен быть предварительно подготовлен по 4.8.2. При проведении анализа необходимо использовать только флоризил[®], прошедший испытания уровня активности по 4.8.3.

4.8.2 Подготовка флоризила®

Флоризил[®] помещают в кварцевый тигель и нагревают в муфельной печи в течение 5 ч при температуре 550 °C. Дают флоризилу[®] остыть в эксикаторе, не содержащем осушителя, и переносят в круглодонную колбу. Добавляют по 5 см³ воды на каждые 100 г флоризила[®] и тщательно перемешивают в течение 1 ч, вращая колбу. Оставляют флоризила[®] в плотно закрытой колбе не менее чем на 48 ч для равномерного распределения влаги. Активность флоризила[®] проверяют по 4.8.3.

4.8.3 Проверка уровня активности флоризила®

Уровень активности флоризила[®] проверяют экстракцией дильдрина из раствора в *н*-гексане. Раствор должен иметь концентрацию, эквивалентную концентрации в экстракте из табака, содержащем 1,0 мкг/г дильдрина. Уровень активности флоризила® достаточен, если выход дильдрина составляет более 95 %.

Проверяют уровень активности для каждой вновь приготовленной порции флоризила[®].

4.9 Метилфенилсиликон DB-5 — стационарная жидкая фаза, по нормативной документации.

5 Аппаратура

Во избежание загрязнения растворителей очень важно тщательно очищать всю стеклянную посуду перед употреблением и избегать использования пластиковых контейнеров и смазки для кранов.

Обязательно применение мерных колб по ГОСТ 1770 и мерных пипеток по ГОСТ 29169.

- 5.1 Ротационный вакуумный испаритель ИР-1М [2] или другой испаритель с аналогичными техническими характеристиками.
- 5.2 Мельница электрическая лабораторная [3] или другая мельница с аналогичными техническими характеристиками. Частицы размолотого табака должны проходить через сито размером отверстий 2 мм.
 - 5.3 Термостат с вентиляцией.
 - 5.4 Муфельная печь [4], обеспечивающая температуру на менее 600 °C.

ГОСТ Р 51359-99

- 5.5 Колбонагреватель [5].
- 5.6 Аппарат Сокслета для непрерывной экстракции НЭТФ по ГОСТ 25336.
- 5.7 Обратный холодильник по ГОСТ 25336.
- 5.8 Эксикатор Э по ГОСТ 25336.
- 5.9 Кварцевые тигли [6].
- 5.10 Газовый хроматограф.
- 5.10.1 Основные требования к хроматографу

На газовом хроматографе работают по инструкции изготовителя. Испаритель, термостат и детектор должны быть снабжены отдельными нагревательными элементами. Условия хроматографирования приведены в 5.10.2—5.10.7. Другие условия хроматографирования должны быть обоснованы.

5.10.2 Температура

Температура испарителя — 180-210 °C. Температура детектора — 290-340 °C.

Если используются другие условия, то они должны обеспечивать разделение всех компонентов, как показано на образце хроматограммы (приложение А; рисунок А.1).

Программирование температуры:

```
    Начальная температура
    Начальное время хроматографирования при 40 °C
    1-й этап программирования температуры
    2-й этап программирования температуры
    последующее хроматографирование
    общее время хроматографирования
    — 40 °C;
    — 2 мин;
    — 20 °C/мин от 40 °C до 150 °C;
    — 3 °C/мин от 150 °C до 270 °C;
    — 15 мин при 270 °C;
    — 62 мин 30 с.
```

5.10.3 Скорости потоков газов

Скорости потоков газов должны быть установлены в соответствии с инструкцией изготовителя прибора и опытом аналитика.

Рекомендуемые скорости потоков газов:

Скорости потоков газа должны быть установлены в соответствии с инструкцией к хроматографу и условиями анализа

Ориентировочные скорости потоков газов:

```
    газ-носитель — гелий
    продувочный газ — азот
    продувка прокладки
    продув делителя потоков
    4 см³/мин;
    30 см³/мин;
    5 см³/мин;
    30 см³/мин;
```

5.10.4 Ввод проб

В испаритель хроматографа вводят 2 мкдм³ анализируемого раствора и закрывают клапан делителя потока на 1 мин.

5.10.5 Устройство для ввода образца

Используют автоматический дозатор проб или любое другое соответствующее устройство для ввода проб.

При ручном введении проб рекомендуется применять микрошприц вместимостью 1-5 мкдм³. Перед введением растворов микрошприц промывают не менее 10 раз μ -гексаном, а затем пять раз анализируемым раствором.

После введения пробы микрошприц промывают н-гексаном не менее пяти раз.

5.10.6 Хроматографическая колонка

Рекомендуется кварцевая капиллярная колонка:

```
длина -30 \text{ м}; внутренний диаметр -0.32 \text{ мм}; стационарная жидкая фаза -\text{DB-5} (5 % метилфенилсиликона); толщина слоя -0.25 \text{ мкм}.
```

Эффективность колонки должна быть достаточной для удовлетворительного разделения всех компонентов. Пример подобного разделения показан на образце хроматограммы (приложение A, рисунок A.1).

 Π р и м е ч а н и е — Может быть использована любая другая жидкая фаза, обеспечивающая разделение анализируемых пестицидов.

5.10.7 Детектор

Электронно-захватный детектор с пороговой чувствительностью (сигнал детектора, равный удвоенному значению шумов), 0.0015 мкг n, n-ДДТ в 2 мкдм³ введенного раствора.

5.11 Весы лабораторные по ГОСТ 24104 с пределом взвешивания 200 г и погрешностью взвешивания 0,001 г

6 Отбор проб и подготовка образцов для испытаний

6.1 Отбор образцов

Образцы отбирают в соответствии с ГОСТ 30040. Отбор образцов должен проводиться очень тщательно и гарантировать представительность пробы.

6.2 Подготовка проб для испытаний

Пробы для испытаний высушивают в термостате (5.3) до содержания влажности примерно 5 % при температуре не выше 50 °C в течение 2 ч.

Высушенные пробы измельчают, избегая при измельчении табака нагрева пробы выше 50 °С, так, чтобы частицы табака полностью проходили через отверстия сита размером 2 мм (5.2). Для анализа может быть использован и измельченный табак, но его влажность не должна превышать 10 %.

До анализа пробы табака хранят в герметичных контейнерах в темноте. В случае хранения проб до анализа более одного месяца, необходимо обеспечить их хранение в холодильнике при температуре ниже минус 8 °C.

7 Проведение анализа

7.1 Отбор проб для анализа

Навеску табака массой 5 г, взвешенную с точностью до 0,01 г, помещают в химический стаканчик вместимостью 50 см³, добавляют 5 г предварительно активированного флоризила[®] и тщательно перемешивают. Дальнейшее определение проводят по 7.2 и 7.3.

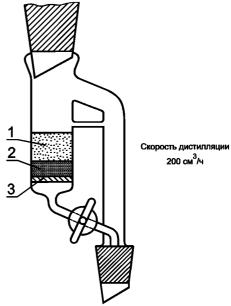
7.2 Экстракция

В аппарат Сокслета (рисунок 1) вносят 5 г предварительно активированного флоризила[®] (4.8), а затем подготовленную навеску образца (7.1) таким образом, чтобы образовалось два отдельных слоя.

 Π р и м е ч а н и е — Для определения степени извлечения пестицидов по время экстракции необходимо осторожно пипеткой внести на верхний слой стандартные растворы соответствующих пестицидов.

В круглодонную колбу вместимостью 150-250 см³ приливают 60 см³ *н*-гексана (4.2) и 1 см³ раствора внутреннего стандарта (4.6.1).

Собирают аппарат Сокслета (рисунок 1), обеспечивая надежную герметичность всех соединений и включают колбонагреватель (5.5).


Степень нагрева колбонагревателя и кран на аппарате Сокслета регулируют таким образом, чтобы скорость дистилляции была не менее 200 см^3 в час. Высота слоя *н*-гексана над табаком должна поддерживаться на постоянном уровне путем регулирования крана на аппарате Сокслета. Не допускается полное выпаривание раствора в круглодонной колбе. Продолжительность экстракции составляет 4 ч 30 мин.

После окончания экстракции дают экстракту остыть в течение 30 мин и отбирают аликвоту для анализа на хроматографе. Конечный объем экстракта не фиксируется.

7.3 Приготовление градуировочных растворов для проверки диапазона линейности

В три мерные колбы вместимостью 100 см³ вносят по 10 см^3 , 5 см^3 и 1 см^3 смешанного раствора A (4.7.2), добавляют по 1 см^3 внутреннего стандарта (4.6.1) и доводят объем растворов до метки H-гексаном.

В две мерные колбы вместимостью 100 см³ и 200 см³ вносят по 1 см³ смешанного раствора Б (4.7.3). В колбу вместимостью 100 см³ дополнительно вносят 1 см³ раствора

1 — табак + Флоризил®; 2 — флоризил®; 3 — пористая фильтрующая пластина № 1 размером пор 100-120 мкм

Рисунок 1 — Часть аппарата Сокслета, используемая для экстракции табака

внутреннего стандарта (4.6.1), а в колбу вместимостью $200 \text{ см}^3 - 2 \text{ см}^3$, доводят объем растворов до метки *н*-гексаном. Концентрации полученных растворов пестицидов составляют примерно 0,5, 0,25, 0,05 и 0,0025 мкг/см³.

Эти растворы используют для проверки диапазона линейности электронно-захватного детектора. Диапазон линейности устанавливают перед началом работы на детекторе и после ремонтно-профилактических работ детектора или связанной с ним электронной схемы.

7.4 Калибровка

Если линейность показаний детектора соблюдается, то для калибровки может быть использован один стандартный раствор (4.7.4).

7.5 Газовая хроматография

После выхода хроматографа на режим проверяют чувствительности детектора путем трехкратного введения стандартного калибровочного раствора (4.7.4). Сходимость результатов не должна отличаться от среднего значения более чем на \pm 5 %.

В испаритель хроматографа вводят по 2 мкдм³ анализируемого образца в двухкратной повторности, затем стандартного раствора и рассчитывают средние значения.

Образцы хроматограмм стандартного калибровочного раствора и экстракта табака приведены в приложении А (рисунки А.1 и А.2).

8 Обработка результатов

Содержание пестицидов в пробе определяют методом внутреннего стандарта.

Поправочный коэффициент $E_{\rm n}$ рассчитывают для каждого пестицида по формуле

$$E_{\Pi} = \frac{c_{\text{necr}}}{A_{\text{necr}}} \times \frac{A_{\text{BCT}}}{c_{\text{scr}}}, \tag{1}$$

где $c_{\text{пест}}$ — концентрация пестицида в стандартном калибровочном растворе, мкг/см³;

 $A_{\text{пест}}$ — площадь или высота пика пестицида в стандартном растворе (4.7.4);

 $A_{\text{вст}}$ — площадь или высота пика внутреннего стандарта (мирекса) в стандартном калибровочном растворе;

 $c_{\rm вст}$ — концентрация внутреннего стандарта в стандартном калибровочном растворе, мкг/см³. Содержание остаточных количеств каждого пестицида $X_{\rm n}$, мкг/г, сухого табака, вычисляют по формуле

$$X_{\Pi} = \frac{A_{\Pi} \cdot E_{\Pi} \cdot Q_{\text{BCT}} \cdot 100}{A_{\pi} \cdot m \cdot (100 - W)}, \qquad (2)$$

где $A_{\rm n}$ — площадь или высота пика соответствующего пестицида в экстракте образца;

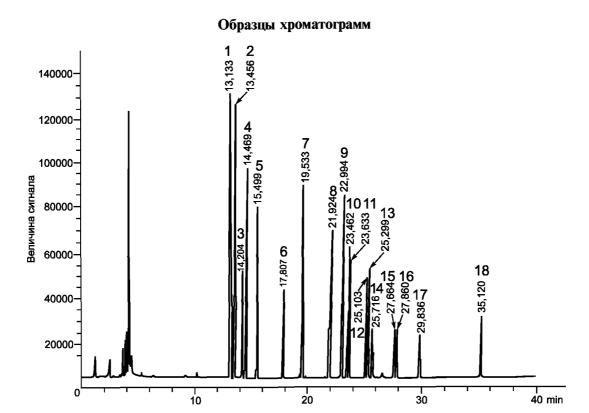
 $\ddot{A_{\rm B}}$ — площадь или высота пика внутреннего стандарта в экстракте образца;

 $Q_{\rm вст}$ — количество раствора внутреннего стандарта, добавленного в экстрагирующий раствор, мкг (примерно 5 мкг);

m — масса навески табака (7.1), г;

W— влажность высущенного табака (6.2), %.

9 Сходимость, воспроизводимость и предел обнаружения


Подробности совместного исследования точности метода приведены в приложении Б.

10 Отчет о проведении испытаний

В отчете от испытаниях должен быть приведен использованный метод анализа и приведены результаты в миллиграммах на грамм сухого табака всех идентифицированных остатков пестицидов. Должны быть указаны все условия анализа, отличные от приведенных в данном стандарте или принятые как оптимальные, которые могут повлиять на результаты.

В отчете приводят все сведения, необходимые для полной идентификации образца.

ПРИЛОЖЕНИЕ А (справочное)

 $1-\alpha$ -ГХЦГ; $2-\Gamma$ ХБ; $3-\beta$ -ГХЦГ; $4-\gamma$ -ГХЦГ; $5-\delta$ -ГХЦГ; 6- гептахлор; 7- альдрин; 8- гептахлор эпоксид; 9- *транс*-Хлордан; 10- о, n'-ДДЕ; $11-\alpha$ -эндосульфан; 12- дильдрин; 13- п, n'-ДДЕ; 14- о, n'-ДДД; 15- эндосульфан; 17- о, n'-ДДТ; 18- п, n'-ДДТ

Рисунок А.1 — Хроматограмма стандартного калибровочного раствора, содержащего по $0{,}005~{\rm mkr/cm}^3$ каждого пестицида

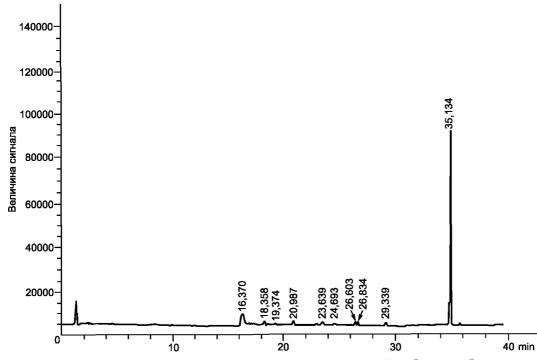


Рисунок А.2 — Хроматограмма экстракта холостой пробы образца табака

ПРИЛОЖЕНИЕ Б (справочное)

Результаты межлабораторных испытаний

В таблице Б.1 приведены данные по оценке средней степени обнаружения, стандартного отклонения сходимости (S_r) и стандартного отклонения воспроизводимости (S_R), которые были получены при совместном исследовании 12 лабораториями с использованием образцов с четырьмя искусственными уровнями содержания пестицидов (F_1 , F_2 , F_3 , F_4).

В каждой лаборатории анализировали по два образца каждого уровня в двухкратной повторности и, таким образом, было представлено по 48 определений для каждого пестицида на каждом уровне.

В совместном эксперименте исследовалась также возможность анализа остаточных количеств эндрина и β-эндосульфана помимо 17 пестицидов, приведенных в таблице Б.2. Результаты исследований показали, что эти два пестицида нельзя анализировать данным методом.

Таблица Б.1 — Степень обнаружения и стандартные отклонения сходимости и воспроизводимости

Наименование пестицида	Уровень содержания пестицидов F_1				Уровень содержания пестицидов F_2				Предел обнару-
	Содержа- ние, мкг/г	Обнару- жение, %	<i>S</i> _r , %	S _R , %	Содержа- ние, мкг/г	Обнару- жение, %	<i>S</i> _r , %	S _R ,	жения, мкг/г
α-ΓΧЦΓ	0,0995	79	12	27	0,4975	102	14	18	0,02
β-ГХЦГ	0,1000	89	17	25	0,5000	99	10	15	0,02
ү-ГХЦГ (линдан)	0,1005	100	26	34	0,5025	101	15	16	0,01
δ-ГХЦГ	0,1020	62	13	27	0,5100	88	7	18	0,02
ГХБ	0,1000	109	9	19	0,5000	105	16	18	0,02
Гептахлор	0,1020	100	13	19	0,5100	105	13	15	0,02
Альдрин	0,1000	83	13	24	0,5000	100	14	14	0,02
Гептахлор эпоксид	0,1025	84	15	29	0,5125	89	16	19	0,02
транс-Хлордан	0,0995	86	8	23	0,4975	96	6	14	0,02
о, п'-ДДЕ	0,1010	105	12	25	0,5050	106	9	11	0,03
α-эндосульфан	0,1010	73	14	36	0,5050	81	9	15	0,03
Дильдрин	0,1015	84	15	34	0,5075	87	23	27	0,02
<i>п, п</i> '-ДДЕ	0,1000	104	10	21	0,5000	115	6	17	0,02
Эндрин	0,0995	53	12	35	0,4975	59	30	31	0,03
β-эндосульфан	0,1000	12	17	24	0,5000	12	19	21	0,02
о, п'-ДДД	0,1005	111	9	20	0,5025	109	6	10	0,03
n, n'-ДДД	0,1010	117	14	29	0,5050	113	8	20	0,02
о, п'-ДДТ	0,1015	106	11	27	0,5075	109	10	18	0,04
<i>п, п'</i> -ДДТ	0,1005	104	13	24	0,5025	111	8	21	0,06

Окончание таблицы Б.1

Наименование пестицида	Уровень содержания пестицидов F_3				Уровень содержания пестицидов F_4				Предел
	Содержа- ние, мкг/г	Обнару- жение, %	<i>S</i> _r , %	S _R , %	Содержа- ние, мкг/г	Обнару- жение, %	S _r , %	S _R , %	обнару- жения, мкг/г
α-ГХЦГ	0,9950	105	8	13	4,9750	95	11	18	0,02
β-ГХЦГ	1,0000	100	6	11	5,0000	86	5	14	0,02
ү-ГХЦГ (линдан)	1,0050	109	9	19	5,0250	100	7	29	0,01
8-ГХЦГ	1,0200	96	9	15	5,1000	90	12	22	0,02
ГХБ	1,0000	105	8	13	5,0000	88	8	16	0,02
<u>Г</u> ептахлор	1,0200	107	12	16	5,1000	101	13	25	0,02
Альдрин	1,0000	107	8	14	5,0000	103	7	25	0,02
Гептахлор эпоксид	1,0250	97	16	18	5,1250	91	11	24	0,02
транс-Хлордан	0,9950	102	4	10	4,9750	99	6	18	0,02
о, п'-ДДЕ	1,0100	110	4	7	5,0500	101	8	19	0,03
α-эндосульфан	1,0100	83	10	18	5,0500	77	10	23	0,03
Дильдрин	1,0150	93	13	22	5,0750	95	14	31	0,02
<i>n, n</i> ′-ДДЕ	1,0000	120	4	15	5,0000	112	6	21	0,02
Эндрин	1,0995	58	19	41	4,9750	78	26	43	0,03
β-эндосульфан	0,9950	14	15	21	5,0000	12	9	22	0,02
о, п'-ДДД	1,0000	114	5	10	5,0250	100	9	12	0,03
n, n'-ДДД	1,0050	116	6	19	5,0500	119	13	25	0,02
о, n'-ДДТ	1,0100	109	7	14	5,0750	102	8	10	0,04
n, n'-ДДТ	1,0050	117	5	22	5,0250	116	11	21	0,06

Таблица Б.2— Химическая номенклатура в соответствии с рекомендациями Международного союза теоретической и прикладной химии (ИЮПАК)

теоретической и прикладной химии (итоттак)							
Название пестицида	Химическое название в соответствии с ЮПАК						
α-ГХЦГ	1,3,5/2,4,6-гексахлорциклогексан						
β-ГХЦГ	1, 2,4/3,6-гексахлорциклогексан						
ү-ГХЦГ (линдан)	1,2,3,4,5,6-гексахлорциклогексан						
δ-ГХЦГ	1,2,3/4,5,6-гексахлорциклогексан						
ГХБ	Гексахлорбензол						
Гептахлор	1,4,5,6,7,8,8-гептахлор-3а,4,7,7а-тетрагидро-4,7-метаноинден						
Альдрин	(1R,4S,4aS,5S,8R,8aR)-1,2,3,4,10,10-гексахлор-1,4,4a,5,8,8a-гексагидро-1,4-эндо- экзо-5,8-диметаннафталин						
Гептахлорэпоксид	1,4,5,6,7,8,8-гептахлор-2,3-эпокси-3а,4,7,7а-тетрагидро-4,7-метаноинден						
<i>Транс-</i> хлордан	1,2,4,5,6,7,8,8-октахлор-2,3,3а,4,7,7а-гексагидро-4,7-метаноинден						
о, п'-ДДЭ	1,1-дихлор-2-(2-хлорфенил)-2-(4-хлорфенил)этилен						
α-эндосульфан	(1,4,5,6,7,7-гексахлор-8,9,10-тринорборн-5-ен-2,3-иленбисметилен)сульфит-І						
Дильдрин	(1R,4S,4aS,5R,6R,7S,8S,8aR)-1,2,3,4,10,10-гексахлор-1,4,4a,5,6,7,8,8a-октагидро-6,7-эпокси-1,4: 5,8-диметаннафталин						
<i>п, п'-</i> ДДЭ	1,1-дихлор-2,2-бис(4-хлорфенил)этилен						
o, n'-ДДД	1,1-дихлор-2-(2-хлорфенил)-2-(4-хлорфенил)этан						
n, n'-ДДД	1,1-дихлор-2,2-бис(4-хлорфенил)этан						
o, n'-ДДТ	1,1,1-трихлор-2-(2-хлорфенил)-2-(4-хлорфенил)этан						
<i>п, п'</i> -ДДТ	1,1,1-трихлор-2,2-бис(4-хлорфенил)этан						

приложение в (справочное)

Библиография

- ТУ 6-09-3375—78 н-Гексан. Технические условия
 ТУ 25-11-917—76 Ротационный вакуумный испаритель ИР-1М. Технические условия
 ТУ 46-22-236—79 Мельница электрическая лабораторная. Технические условия
 ТУ 79 РСФСР 337—72 Муфельная печь. Технические условия
 ТУ 92-75—76 Колбонагреватель электрический. Технические условия

- [6] ТУ 25-11-1004—75 Кварцевые тигли. Технические условия

УДК 663.974.001.4 : 006.354 OKC 65.160

H89

ОКСТУ 9193

Ключевые слова: хлорорганические пестициды, газожидкостная хроматография, методы анализа

Редактор *Т.П. Шашина* Технический редактор *В.Н. Прусакова* Корректор *В.И. Варенцова* Компьютерная верстка *В.И. Грищенко*

08.95. Сдано в набор 07.12.99. Уч.-изд. л. 1,20. Тираж 352 экз. Изд. лиц. № 021007 от 10.08.95.

Подписано в печать 17.01.2000. C4190. Зак. 22.

Усл. печ. л.1,86.

ИПК Издательство стандартов, 107076, Москва, Колодезный пер., 14. Набрано в Издательстве на ПЭВМ Филиал ИПК Издательство стандартов — тип. "Московский печатник", 103062, Москва, Лялин пер., 6. Плр № 080102