

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

ГОСУДАРСТВЕННАЯ СИСТЕМА ОБЕСПЕЧЕНИЯ ЕДИНСТВА ИЗМЕРЕНИЙ

УСТАНОВКИ ПОВЕРОЧНЫЕ НЕЙТРОННОГО ИЗЛУЧЕНИЯ

МЕТОДИКА ПОВЕРКИ

FOCT 8.521-84

Издание официальное

РАЗРАБОТАН Государственным комитетом СССР по стандартам ИСПОЛНИТЕЛИ

Ю. И. Брегадзе, д-р техн. наук; П. Ф. Масляев, канд. техн. наук

ВНЕСЕН Государственным комитетом СССР по стандартам

Член Госстандарта Л. К. Исаев

УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по стандартам от 27 декабря 1984 г. № 4947

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

Государственная система обеспечения единства измерений

УСТАНОВКИ ПОВЕРОЧНЫЕ НЕЙТРОННОГО ИЗЛУЧЕНИЯ

Методика поверки

ГОСТ 8.521—84

State system for ensuring the uniformity of measurements.

Sets for calibrating neutron radiation.

Methods of verification

OKCTY 01)8

Постановлением Государственного комитета СССР по стандартам от 27 декабря 1984 г. № 4947 срок введения установлен с 01.01.86

Настоящий стандарт распространяется на поверочные установки нейтронного излучения с широким пучком нейтронов (далееустановки) типа КИС-НРД-МБ и установки с коллимированным пучком нейтронов типов УКПН-1М, КИС-НРД-МБм, предназначенные для поверки дозиметров нейтронного излучения и радиометров в диапазоне мощности поглощенной дозы от $2\cdot 10^{-10}$ до $8\cdot 10^{-4}$ Гр/с, в диапазоне эквивалентной дозы нейтронного излучения от $5\cdot 10^{-10}$ до $5\cdot 10^{-5}$ Зв/с, в диапазоне плотности потока быстрых и тепловых нейтронов от 10^4 до 10^{10} с $^{-1}$ м $^{-2}$ и устанавливает методику их первичной и периодической поверок.

Технические требования к установкам приведены в обязательном приложении 1.

1. ОПЕРАЦИИ ПОВЕРКИ

1.1. При проведении поверки должны быть выполнены следующие операции:

внешний осмотр (п. 4.1);

опробование (п. 4.2);

определение метрологических параметров (п. 4.3).

2. СРЕДСТВА ПОВЕРКИ

2.1. При проведении поверки должны быть применены следующие средства:

образцовые установки 1-го разряда по ГОСТ 8.347—79 и ГОСТ 8.031—82:

Издание официальное

Перепечатка воспрещена

образцовый дозиметр мощности поглощенной дозы нейтронного излучения 1-го разряда по ГОСТ 8.347—79;

образцовые радиометры нейтронов 1-го разряда по ГОСТ

8.031-82:

компараторы (дозиметры нейтронного излучения, радиометры нейтронов), со средним квадратическим отклонением результата измерений не более 2%, с устройством контроля стабильности;

термометр по ГОСТ 2045—71; психрометр по ГОСТ 6353—52;

барометр по ГОСТ 6359-75.

2.2. Средства поверки подготавливают к работе в соответствии с требованиями нормативно-технической документации (далее -НТД) на них.

3. УСЛОВИЯ ПОВЕРКИ

3.1. Проверку проводят при следующих условиях внешней среды:

температура (20 ± 10) °C;

относительная влажность $(65\pm20)\%$ при $20\,^{\circ}$ С; атмосферное давление (100 ± 4) кПа.

3.2. Допускается проводить поверку при других значениях, если средства поверки сохраняют свои метрологические параметры в заданных пределах при этих условиях.

4. ПРОВЕДЕНИЕ ПОВЕРКИ

4.1. Внешний осмотр

При внешнем осмотре должно быть установлено:

наличие эксплуатационной документации (формуляра или паспорта, технического описания) и свидетельства о поверке; соответствие комплектности установки (за исключением ЗИП)

требованиям НТД:

наличие маркировки на установке;

отсутствие видимых повреждений и неисправностей;

отсутствие загрязнений и ржавчины на указателях расстояний, мешающих отсчету показаний;

наличие паспортов на входящие в комплект установки радионуклидные источники нейтронов.

4.2. Опробование

Опробование проводят согласно НТД на конкретную установку.

4.3. Определение метрологических параметров

4.3.1. Определение погрешности установки, связанной с отклонением от закона обратных квадратов

Выбирают радионуклидный источник с максимальным значе-

нием потока нейтронов.

На расстояниях R_i от радионуклидного источника нейтронов равных 0,6; 1,0; 1,5; 2,0 м для установки типа УКПН-1М и 0,6; 1,0; 1,5; 2,0; 3,0 м для установок типов КИС-НРД-МБ и КИС-НРД-МБм измеряют мощность поглощенной дозы или эквивалентной дозы нейтронного излучения или плотности потока быстрых нейтронов или тепловых нейтронов с помощью образцовых дозиметров нейтронного излучения или образцовых радиометров нейтронов или компаратора.

Отклонение среднего значения результатов наблюдений мощности поглощенной или эквивалентной дозы нейтронного излучения или плотности потока нейтронов от значения мощности поглощенной или эквивалентной дозы нейтронного излучения или плотности потока быстрых нейтронов, рассчитанного по закону обратных

квадратов Θ_i определяют в процентах по формуле

$$\theta_{i} = \left| \frac{A_{i}}{A_{1}} - \frac{(R_{1} - \Delta R)^{2}}{(R_{i} - \Delta R)^{2}} \right| \cdot 100, \tag{1}$$

где A_i , A_1 — средние значения результатов наблюдений мощности поглощенной или эквивалентной дозы нейтронного излучения или плотности потока быстрых нейтронов на расстояниях R_i и $R_1 = 1$ м соответственно; ΔR — значение поправки на положение эффективного центра источника нейтронов, которую принимают равной нулю для установки типа КИС-НРД-МБ, а при поверке установок типов УКПН-1М и КИС-НРД-МБм значение ΔR выбирают по ГОСТ 8.355—79.

Средние значения результатов наблюдений мощности поглощенной или эквивалентной дозы нейтронного излучения или плотности потока быстрых нейтронов A_i , A_1 при поверке установки типа КИС-НРД-МБ определяют как разность средних значений соответствующих величин, полученных при измерениях без поглощающего конуса и с поглощающим конусом.

Порядок измерений с поглощающим конусом должен соответ-

ствовать НТД порядку на установку типа КИС-НРД-БМ.

Средние результаты наблюдений A_i , A_1 при поверке установок по плотности потока тепловых нейтронов определяют как разность средних значений плотности потока тепловых нейтронов, полученных при измерениях без кадмиевого экрана и с ним.

Порядок работы с кадмиевым экраном должен соответство-

вать НТД на конкретную установку.

Число наблюдений мощности поглощенной или эквивалентной дозы нейтронного излучения или плотности потока быстрых или тепловых нейтронов и продолжительность наблюдений выбирают такими, чтобы среднее квадратическое отклонение результата из-

мерений соответствующей величины не превышало 1% для установок 1-го разряда и 2% для образцовых установок 2-го разряда. Пример определения необходимого числа наблюдений приведен

в справочном приложении 5.

Среднее значение результатов наблюдений и оценка среднего квадратического отклонения результата измерений Θ_i мощности поглощенной или эквивалентной дозы нейтронного излучения или плотности потока быстрых или тепловых нейтронов определяют по ГОСТ 8.207—76.

За значение погрещности установки, связанной с отклонением от закона обратных квадратов, принимают максимальное значение Θ_h из отклонений Θ_i , рассчитанных по формуле (1). Значение погрешности Θ_h не должно превышать 2% для образцовых установок 1-го разряда и 4% для образцовых установок 2-го разряда.

Допускается использовать установку как образцовую соответствующего разряда в ограниченном диапазоне расстояний от радионуклидного источника нейтронов, где значения Θ_t не превышают указанных выше значений Θ_h . При этом должно быть выполнено условие $\frac{R_{\min}}{\epsilon} < \frac{1}{\epsilon}$.

нено условие $\frac{R_{\min}}{R_{\max}} < \frac{1}{3}$.

4.3.2. Определение доверительной границы погрешности

При определении доверительной границы погрешности применяют следующие методы:

метод прямых измерений;

метод сличения при помощи компаратора.

4.3.2.1. Определение доверительной границы погрешности мето-

дом прямых измерений.

Образцовым дозиметром нейтронного излучения или радиометром быстрых нейтронов для каждого радионуклидного источника нейтронов (239 Pu—Be, 238 Pu—Be, 252 Cf), входящего в состав установки, проводят не менее 15 наблюдений мощности поглощенной и (или) эквивалентной дозы нейтронного излучения или плотности потока быстрых или тепловых нейтронов на расстоянии ($1\pm0,002$) м от центра радионуклидного источника нейтронов.

Среднее значение результатов наблюдений и оценку среднего квадратического отклонения результата измерения соответствую-

щих величин определяют в соответствии с ГОСТ 8.207—76.

Для установок типов УКПН-1М и КИС-НРД-МБм за результат измерения мощности поглощенной или эквивалентной дозы нейтронного излучения или плотности потока быстрых нейтронов берут соответственно средние значения результатов наблюдений мощности поглощенной или эквивалентной дозы нейтронного излучения или плотности потока быстрых нейтронов, а для установки типа КИС-НРД-МБ — разность средних значений результатов наблюдений соответствующих величин, измеренных без поглощающего конуса и с поглощающим конусом.

За результат измерения плотности потока тепловых нейтронов берут разность средних значений результатов наблюдений плотности потока тепловых нейтронов, полученных при измерениях без кадмиевого экрана и с кадмиевым экраном.

Примечание. Поток нейтронов радионуклидного источника нейтронов, используемый при поверке нейтронных радиометров по ГОСТ 8.355—79, определяется по формуле

$$\theta = \frac{4\pi A_1}{K_{\Lambda}} (R_1 - \Delta R)^2, \tag{2}$$

где ΔR — поправка на положение эффективного центра источника, значение которой выбирается также, как в п. 5.3.1; A_1 — результат измерения плотности потока быстрых нейтронов в с $^{-1}$ м $^{-2}$; K_{δ} — коэффициент, значение которого для установки типа КИС-НРД-МБ принимают равным единицє; для установок типов УКПН-1М и КИС-НРД-МБм выбирают по ГОСТ 8.355—79.

Доверительную границу погрешности установки определяют в процентах по формуле

$$\delta_0 = K \sqrt{\frac{1}{3} (\theta_0^2 + \theta_R^2 + \theta_K^2) + S^2}$$
, (3)

где Θ_0 — погрешность образцового дозиметра нейтронного излу• чения или образцового радиометра быстрых нейтронов из свидетельства;

 Θ_R — погрешность определения расстояния;

 Θ_{K} — погрешность, определяемая по п. 5.3.1;

К — коэффициент, зависящий от соотношения случайной и неисключенной систематической погрешности и доверительной вероятности по ГОСТ 8.207—76;

S — оценка среднего квадратического отклонения результата измерения мощности поглощенной или эквивалентной дозы нейтронного излучения или плотности потока быстрых или тепловых нейтронов по ГОСТ 8.207—76.

4.3.2.2. Определение доверительной границы погрешности методом сличения при помощи компаратора.

Метод сличения при помощи компаратора допускается только в случаях, когда совпадает тип образцовой и поверяемой установки и совпадает тип радионуклидных источников, входящих в комплект установок.

Измерения с помощью компаратора проводят последовательно на образцовой установке и поверяемой установке для каждого типа радионуклидного источника нейтронов на расстоянии (1±0,002) м от центра радионуклидного источника нейтронов. При этом для каждого источника проводят не менее 15 наблюдений величины, измеряемой компаратором.

Мощность поглощенной или эквивалентной дозы нейтронного излучения или плотность потока быстрых или тепловых нейтронов на поверяемой установке $A_{\rm n}$ для каждого радионуклидного источника нейтронов определяют по формуле

$$A_{\pi} = \frac{F_{\pi}}{F_0} A_0, \tag{4}$$

где A_0 — мощность поглощенной или эквивалентной дозы нейтронного излучения или плотность потока быстрых или тепловых нейтронов на образцовой установке для радионуклидного источника нейтронов конкретного типа; F_0 — среднее значение результатов наблюдений величины, измеряемой компаратором на образцовой установке, для конкретного типа радионуклидного источника нейтронов; F_{π} — среднее значение результатов наблюдений величины, измеряемой компаратором на поверяемой установке (из свидетельства на образцовую установку).

При поверке установок по мощности поглощенной или эквивалентной дозы или по плотности потока быстрых нейтронов установок типа КИС-НРД-МБ F_0 и F_π определяют как разность средних значений результатов наблюдений величин, полученных при измерениях компаратором на установках с поглощающим конусом

и без поглощающего конуса.

При поверке установок по плотности потока тепловых нейтронов F_0 и F_π определяют как разность средних значений результатов наблюдений плотности потока тепловых нейтронов, полученных при измерениях компаратором без кадмиевого экрана и с кадмиевым экраном.

За результат измерения мощности поглощенной или эквивалентной дозы нейтронного излучения или плотности потока быстрых или тепловых нейтронов принимают значения соответствующих

величин, рассчитываемых по формуле (4).

По требованию потребителя дополнительно определяют мощность поглощенной и (или) эквивалентной дозы от сопутствующего гамма-излучения. В иных случаях мощность поглощенной дозы — для Pu—Ве — 20%

²⁵²Cf — 40%

мощность эквивалентной дозы — для

Pu-Be - 2% $^{252}Cf - 4\%$.

Доверительную границу погрешности установки определяют в процентах по формуле (3). При этом в качестве Θ_0 берут значение погрешности образцовой установки (из свидетельства) и S^2 определяют как сумму ($S^2_0 + S^2_n$), где S_0 и S_n —оценка средних квадратических отклонений результатов измерений величины, измеряемой компаратором на образцовой и поверяемой установках соответственно.

Пример расчета предела допускаемой основной погрешности

приведен в справочном приложении 5.

4.3.3. За предел допускаемой основной погрешности установки принимают значение доверительной границы погрешности при доверительной вероятности 0,95.

4.3.4. Предел допускаемой основной погрешности установки не должен превышать погрешностей, указанных в ГОСТ 8.347—79 и ГОСТ 8.031—82 для образцовых источников нейтронов соответствующего разряда.

4.3.5. Результаты поверки заносят в протокол, форма которо-

го приведена в обязательном приложении 4.

5. ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

5.1. При проведении поверки установок необходимо соблюдать требования действующих «Норм радиационной безопасности» (НРБ-76), «Основных санитарных правил работы с радиоактивными веществами и другими источниками ионизирующих излучений» (ОСП-72/80).

6. ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

6.1. Положительные результаты государственной поверки установки оформляют:

при первичной — записью в паспорте;

при периодической поверке — выдачей свидетельства установленной формы, оборотная сторона свидетельств приведена в обязательных приложениях 2 и 3.

6.2. Положительные результаты ведомственной поверки оформляют выдачей документа по форме, установленной ведомствен-

ной метрологической службой.

6.3. Установки, не удовлетворяющие требованиям настоящего стандарта, к выпуску в обращение и к применению не допускают, свидетельство аннулируют, а в паспорт вносят запись о непригодности.

ОБЩИЕ ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ

1. Установки должны быть изготовлены в соответствии с требованиями настоящего стандарта по рабочим чертежам, утвержденным в установленном порядке.

2. Установки должны обеспечивать возможность использования в их составе Pu—Ве и ^{252}Cf радионуклидных источников нейтронов с потоками, выбираемыми из ряда $n \cdot 10^k$, где k — целое число от 4 до 10; n — действительное

число, $1 \le n < 10$.

- 3. Установки, предназначенные для использования в их составе радионуклидных источников нейтронов с потоками нейтронов более $10^7 \, \mathrm{c}^{-1}$, должны иметь в своем составе защитный контейнер для хранения не менее 2 радионуклидных источников и должны быть снабжены устройством для дистанционной подачи радионуклидных источников из защитного контейнера в рабочее положение.
- 4. Установки должны быть снабжены градуировочной линейкой с ценой деления не более 1 мм и направляющими, обеспечивающими размещение на них держателя блока детектирования с максимальным линейным размером не менее 240 мм.
 - 5. Установки типа КИС-НРД-МЮ должны содержать в своем составе:

поглощающий конус из полиэтилена с 3—5% естественного бора (по весу), представляющий собой усеченный конус длиной не менее 400 мм, у которого диаметр меньшего основания должен превышать не менее чем на 10 мм максимальный линейный размер используемых в установке радионуклидных источников нейтронов, а диаметр большего основания выбирают из ряда 200, 250, 300 мм;

щаровой замедлитель из полиэтилена с полостью в центре для размещения радионуклидных источников нейтронов, обеспечивающий замедление быстрых нейтронов для Pu—Ве радионуклидного источника нейтронов не менее

10% от полного потока нейтронов.

6. Установки типа УКПН-1М, КИС-НРД-МБм должны содержать в своем составе тепловую насадку из полиэтилена, создающую долю тепловых нейтронов не менее 20% от полной плотности потока нейтронов для радионуклидного источника нейтронов.

7. Установки доджны содержать в своем составе кадмиевый экран толщи-

ной 1 мм и диаметром 300 мм.

8. Установки должны содержать в своем составе юстировочную систему, обеспечивающую возможность определения расстояния между центром радионуклидного источника нейтронов и блоком детектирования с погрешностью не превышающей ±1 мм.

9. Установки должны обеспечивать возможность изменения расстояний между центром радионуклидных источников, находящихся в рабочем положении, и блоком детектирования вдоль градуировочной линейки в диапазоне с ниж-

ней границей не более 0,5 м и верхней границей не менее 2 м.

10. Смещение центра источника и эффективного центра блока детектирования относительно горизонтальной оси (оси пучка нейтронов) и смещение центра кадмиевого экрана или центров оснований поглощающего конуса относительно оси, проходящей через центр радионуклидного источника нейтронов и эффективный центр блока детектирования, не должно превышать 5 мм.

ПРИЛОЖЕНИЕ 2 Обязательное

ФОРМА ЗАПОЛНЕНИЯ ОБОРОТНОЙ СТОРОНЫ СВИДЕТЕЛЬСТВА ПРИ ПОВЕРКЕ ПО МОЩНОСТИ ПОГЛОЩЕННОЙ ИЛИ ЭКВИВАЛЕНТНОЙ ДОЗЫ

 Установка поверочная нейтронного излучения типа ——— 	
	. № <u></u>
с радионуклидным источником нейтронов типа	- №
2. Принадлежащая	
3. Поверена методом	
с помощьюобразцового дозиметра, компаратора	
и образцовой установки, тип №	
4. Значение мощности поглощенной, эквивалентной	дозы
нейтронного излучения на расстоянии 1 м от центра радион	уклидного источ-
ника нейтронов составляет	с погрешностью,
не превышающей	
5. Диапазон допустимых расстояний от центра радионукли нейтронов () м.	идного источника
6. Срок действия свидетельства до	
Поверку проводил подпись, фамилия, инициал	Ы

ФОРМА ЗАПОЛНЕНИЯ ОБОРОТНОЙ СТОРОНЫ СВИДЕТЕЛЬСТВА ПРИ ПОВЕРКЕ ПО ПЛОТНОСТИ ПОТОКА НЕЙТРОНОВ

1. Установка поверочная нейтронного излучения типа
с радионуклидным источником типа№
2. Принадлежащая наименование предприятия
3. Поверена методом—
с помощью — образцового радиометра нейтронов;
компаратора и образцовой установки, тип №
4. Значение плотности потока быстрых нейтронов на расстоянии 1 м от центра радионуклидного источника составляет
с погрешностью не превышающей — — % с доверительной вероятностью 0,95. Диапазон допустимых расстояний от центра радионуклидного источника нейтронов () м. 5. Значение плотности потока тепловых нейтронов на расстоянии 1 м от
центра радионуклидного источника нейтронов составляєт с погрешностью, не превышающей с доверительной вероятностью 0,95. Днапазон допустимых расстояний от центра радионуклидного источника нейтронов () м.
6. Срок действия свидетельства до
Примечание. Допускается выдавать несколько свидетельств на одну установку с каждым радионуклидным источником нейтронов в отдельности.

ПРИЛОЖЕНИЕ 4 Обязательное

ФОРМА ПРОТОКОЛА ПОВЕРКИ ПОВЕРОЧНОЙ УСТАНОВКИ НЕЙТРОННОГО ИЗЛУЧЕНИЯ

Тип	—Nº ——	год	выпуска	 .	-с радионук-
лидными источник	ами типа —			. №	
Принадлежащая					
Метод поверки — Тип, № образцово Условия поверки:					
	Давление				
	Влажность				
	Результаты	измерений			

Таблица 1

Расстояние <i>R</i> , м	Показания образцового прибора	Среднее значение результатов наблю- дений А į	Отклонение от закона обратных квадратов $\theta_{m{i}}$
0,6 1,0 1,5 2,0 3,0			

Погрешность установки, связанная с отклонением от закона обратных квадратов $\Theta_k = \Theta_{\text{1max}}$

Таблица 2 Среднее Расстояние СКО результата Наблю-Результаты значение გ. % R. M ления наблюдений измерений. S. % результатов Установка пригодна к эксплуатации в качестве образновой разряда. Выдано свидетельство № на срок до198.....г.

> ПРИЛОЖЕНИЕ 5 Справочное

Поверитель----

ПРИМЕР ОБРАБОТКИ РЕЗУЛЬТАТОВ ИЗМЕРЕНИЙ ПРИ ПОВЕРКЕ УСТАНОВОК НЕЙТРОННОГО ИЗЛУЧЕНИЯ ПО МОЩНОСТИ ЭКВИВАЛЕНТНОЙ ДОЗЫ

1 Поверку установки УКПН-1M с радионуклидным источником 252 Сf по мощности эквивалентной дозы нейтронного излучения проводят с помощью образцового дозиметра нейтронов 1-го разряда.

2. Составляющие неисключенной систематической погрешности:

- $\Theta_0 = 8\%$ предел допускаемой основной погрешности образцового дозиметра (из свидетельства);
 - $\Theta_R = 0,2\%$ погрешность определения расстояния (технические требования на установку).
 - 3. Погрешность установки Θ_h определяют следующим образом.

Измеряют мощность эквивалентной дозы H_i не менее 9 раз на расстоянии 0,6 м. Полученные значения заносят в табл. 1.

							7	`абли	ца 1
Номер наблюдения	1	2	3	4	5	6	7	8	9
Мощность эквивалентной дозы \dot{H}_{4} , мкЗв/с	35,13	26,63	36,23	29,13	28,33	29,43	29,53	30,13	30,63

Среднее значение результатов наблюдений \ddot{H} вычисляют по формуле

$$\overline{\dot{H}} = \frac{1}{n} \sum_{l=1}^{n} \dot{H}_{l}$$

$$\overline{H} = \frac{1}{9} \sum_{i=1}^{9} (35, 13 + 26, 63 + \dots + 30, 63),$$

где n — число наблюдений.

Среднее значение результатов наблюдений, приведенных в табл. 1, равно 30,91 мкЗв/с.

4. Определяют оценку S_H СКО результата наблюдений в процентах по формуле

$$S_{n} = \frac{100}{\overline{H}} \sqrt{\sum_{i=1}^{n} (\dot{H}_{i} - \overline{\dot{H}})^{2}},$$

где n — число наблюдений.

СКО результата наблюдений, вычисленное по результатам, приведенным в табл. 1, составляет 9,3%.

Вычисляют отношение $\left(\frac{S_n}{S}\right)^2$, где

S—СКО результата измерений, равное 2% для образцовых установок 2-го разряда

$$\left(\frac{S_{R}}{S}\right)^{2} = \left(\frac{9.3}{2}\right)^{2} = 21.6.$$

Полученное значение отношения округляют до ближайшего большого целого числа, которое является требуемым числом наблюдений.

Таким образом, n=22, поэтому необходимо дополнительно провести 13 наблюдений.

 Результаты наблюдений и их обработки заносят в протокол поверки, форма которого приведена в обязательном приложении 4.

Аналогично проводят наблюдения и их обработку для каждого расстояния.

В нашем примере получены следующие значения отклонений Θ_i , приведенные в табл. 2, для различных расстояний.

					7	Габлица 2
R, м	0,6	1,0	1,5	2,0	3,0	4,0
θ_{i}	0,038	0	0,0045	0,0035	0,0023	0,0015

За значение погрешности, связанной с отклонением от закона обратных квадратов, принимают максимальное значение $\Theta_i = 0.038$. Из полученного результата следует, что поверяемая установка по погрешности Θ_k удовлетворяет

требованиям настоящего стандарта для установок 2-го разряда в диапазоне расстояний от 0,6 до 3 м.

6. Основную погрешность установки определяют на расстоянии 1 м. Мощность эквивалентной дозы составляет 11,00 мкЗв/с.

Результаты наблюдений приведены в табл. 3

								Табл	ица З
Номер наблюдения п	1	2	3	4		5	6	7	8
Мощность эквивалент- ной дозы \dot{H}_i , мкЗв/с	12,23	10,88	9,85	13,	,76	11,95	12,5	10,70	13,25
Номер наблюдения <i>п</i>	9	10	11		12	1	.3	14	15
Мощность эквивалентной дозы \dot{H}_{i} , мкЗв/с	13,11	12,08	11,8	57	10,0	03 10	0,12	13,05	12,33

Среднее значение результатов наблюдений H=11,83 мкЗв/с. 7. Оценка СКО результата измерений, вычисленная по формуле

$$S = \frac{100}{\overline{H}} \sqrt{\sum_{i=1}^{n} \frac{(\dot{H}_{i} - \overline{H})^{2}}{n(n-1)}}$$

составляет 2,75%.

8 Доверительную границу погрешности поверяемой установки определяют в процентах по формуле (3) настоящего стандарта. Значение коэффициента K при значении коэффициента Стьюдента t=2,12 для n=15 и доверительной вероятности 0.95 вычисляют по формуле

$$K = \frac{\sum_{t=1}^{3} \theta_{t}^{2}}{S + \sqrt{\frac{\sum_{t=1}^{3} \theta_{t}^{2}}{3}}} = \frac{t \cdot S + 1, 1 \sqrt{\frac{\theta_{0}^{2} + \theta_{R}^{2} + \theta_{K}^{2} \cdot 10^{4}}{6\theta_{0}^{2} + \theta_{R}^{2} + \theta_{K}^{2} \cdot 10^{4}}}}{S + \sqrt{\frac{\frac{\theta_{0}^{2} + \theta_{R}^{2} + \theta_{K}^{2} \cdot 10^{4}}{3}}}{S + \sqrt{\frac{\theta_{0}^{2} + \theta_{R}^{2} + \theta_{K}^{2} \cdot 10^{4}}{3}}}} = \frac{2,12 \cdot 2,75 + 1,1 \sqrt{\frac{8^{2} + 0,2^{2} + 0,038^{2} \cdot 10^{4}}{3}}} = 1,98}{2,75 + \sqrt{\frac{8^{2} + 0,2^{2} + 0,038^{2} \cdot 10^{4}}{3}}} = 1,98$$

$$\delta_{0} = 1,98 \sqrt{\frac{8^{2} + 0,2^{2} + 0,038^{2} \cdot 10^{4}}{3}} + 2,75^{2} = 11,38\%.$$

По ГОСТ 8.347—79 предел допускаемой основной погрешности для установок 2-го разряда $\delta_0 = 11$ — $15\,\%$. Таким образом, из полученных результатов следует, что поверяемая установка может быть использована в качестве образцовой 2-го разряда.

Редактор А. Л. Владимиров Технический редактор В. И. Тушева Корректор В. Ф. Малютина

Сдано в наб 16 01 85 Подп. в неч. 10.04 85 1,0 усл. п. л. 1,25 усл. кр.-отт. 0,86 уч.-изд. л. Тир. 16 000 Цена 5 коп.

	Единица				
Величина	Наименование	Обозначение			
	паименование	международно е	русское		
0 С Н О В Н Ы	Е ЕДИНИ	цы си			
Длина	метр	m	м		
Macca	килограмм	kg	κr		
Время	секунда	5	c		
Сила электрического тока	ампер	A	A		
Термодинамическая температура	кельвин	К	K		
Количество вещества	моль	mol	моль		
Сила света	кандела	cd	кд		
дополните	' Льные ед	, Тини цы си	I		
Плоский угол	радиан	rad	рад		
Телесный угол	стерадиан	sr	ср		

ПРОИЗВОДНЫЕ ЕДИНИЦЫ СИ, ИМЕЮЩИЕ СПЕЦИАЛЬНЫЕ НАИМЕНОВАНИЯ

		0			
Величина	Наименова	Обозн	ачение	выражение через основные и до-	
	ние	междуна родное	русское	полнительные единицы СИ	
Частота	герц	Hz	Гц	c-1	
Сила	ньютон	N	н	м кг с ^{—2}	
Давление	паскаль	Pa	Па	M ⁻¹ · KF C ⁻²	
Энергия	джоуль	J	Дж	м² кг С ^{—2}	
Мощность	ватт	W	Вт	M2 KL.C_3	
Количество электричества	кулон	С	Кп	c∙A	
Электрическое напряжение	вольт	V	В	м ² кг с ⁻³ · A ⁻¹	
Электрическая емкость	фарад	F	Ф	M ⁻² Kr ⁻¹ ⋅C ⁴ A ²	
Электрическое сопротивление	ОМ	Ω	Om	м ² кг с ^{—3} · А — ²	
Электрическая проводимость	сименс	S	CM	M-3KL-1.C3 A2	
Поток магнитной индукции	вебер	Wb	B 6	м ² кг· с ⁻² A ⁻¹	
Магнитная индукция	тесла	T	Tn	кг с ^{—2} А ^{—1}	
Индуктивность	генри	H	Гн	м ² кг с ⁻² А ⁻²	
Световой поток	люмен	lm	лм	кд ср	
Освещенность	люкс	1x	лк	м ^{—2} кд ⋅ ср	
Активность радионуклида	беккерель	Bq	Бк	c-1	
Поглощенная доза ионизирую-	грэй	Gy	Гр	M ² ⋅ C ⁻²	
щего излучения					
эквивалентная доза излучения	зиверт	Sv	3₅	M2 ⋅ C-2	