

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

СИСТЕМА ПОКАЗАТЕЛЕЙ КАЧЕСТВА ПРОДУКЦИИ

УСКОРИТЕЛИ ЭЛЕКТРОНОВ ДЛЯ ЛУЧЕВОЙ ТЕРАПИИ

НОМЕНКЛАТУРА ПОКАЗАТЕЛЕЙ

ΓΟCT 4.490-89 (CT C3B 6189-88)

Издание официальное

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

Система показателей качества продукции

УСКОРИТЕЛИ ЭЛЕКТРОНОВ ДЛЯ ЛУЧЕВОЙ ТЕРАПИИ

ГОСТ 4.490—89

Номенклатура показателей

Product-quality index system. Electron accelerators (CT C3B 6189—88) for radiotherapy. Index nomenclature

CKII 69 1000

Дата введения 01.01.90

Настоящий стандарт распространяется на ускорители электронов для лучевой терапии и устанавливает номенклатуру показателей.

1. Номенклатура показателей качества ускорителей электронов для лучевой терапии должна соответствовать установленной в табл. 1.

Таблица 1

Наименование показателя качества	Единицы показателя качества	Примечание
ПОКАЗ	АТЕЛИ НАЗНАЧ	ТЕНИЯ
1. Вид генерируемого ионизирующего излучения 2. Номинальные значения электронов: 1) при облучении электронами; 2) при облучении тормозным излучением	— МэВ (Дж)	Ускоренные электроны, тормозное излучение Для ускоренных электронов приводится наиболее вероятная энергия на поверхности объекта. Для тормозного излучения—граничная энергия. Методы измерения и вычисления значений этих энергий приведены в приложениях 1 и 2
3. Пределы регулирования: 1) энергии ускоренных электронов; 2) граничной энергии тормоэного излучения	МэВ (Дж)	

Продолжение табл. 1

1	
Единицы показателя качества	Примечание
%	Показатель определяется от- ношением разности измерен- ного и заданного значений энергии к заданному значе-
%	нию энергии Показатель определяется за время не менее 0,5 ч работы ускорителя в установленном режиме
_	Показатель определяется как отношение практического пробега электронов (R_p) к глубине залегания 80% -ного значения (дальнего) поглощенной дозы (R_{30}) $G = \frac{R_p}{R_{30}}$
MKC	(см. график приложения 2) Показатель определяется по длительности импульса тока пучка ускоренных электронов
c ⁻¹	на мишени Показатель определяется из- мерением частоты следования импульсов тока пучка уско-
мм	ренных электронов Показатель определяется на нормальном лечебном расстоянии вдоль главных осей поля по 50% ной изодозной кривой Диапазоны определяются в случае возможности непрерывного изменения размеров по-
Гр/с	лей облучения Показатель определяется в условиях, изложенных в приложении 1
Гр/с	
	показателя качества % мкс с-1 мм

Продолжение табл. 1

		Прооолжение табл. 1
Наименование показателя качества	Единицы показателя качества	Примечание
12. Относительная неравномерность распределения поглощенной дозы по полю облучения для:	%	Показатель определяется в условиях, изложенных в приложении 1
1) ускоренных электронов; 2) тормозного излучения 13. Относительная несимметрия полей облучения для: 1) ускоренных электронов; 2) тормозного излучения	%	Показатель определяется максимальным отношением большего значения поглощенной дозы в двух любых точках, симметричных относительно оси пучка в ус-
14. Индекс гомогенности	_	ловиях измерения, изложенных в приложении I Отношение площадей полей, ограниченных 90%-ной и 50%-
15. Относительная погрешность калибровки монитора дозы	%	ной изодозами Показатель определяется по формуле $\delta_{\kappa} = \frac{100}{R} \sqrt{\sum_{i=1}^{n} \frac{(R-R_{i})^{2}}{n-1}},$
		\overline{R} $i=1$ $n-1$ где R_i — отношение показания монитора дозы к измеренному значению поглощенной дозы в i -м измерении; $\overline{R} = \frac{1}{n} \sum_{i=1}^{n} R_i$,
		 R — среднее значение отно- шения, определенное из п из- мерений. В каждом измерении дости-
16. Относительная погрешность воспроизведения заданного значения поглощенной дозы	%	гается доза 1÷2 Гр Показатель определяется в условиях, изложенных в при- ложении 1, в различных ре- жимах облучения в процессе
17. Размеры полутеней полей облучения: 1) ускоренных электронов; 2) тормозного излучения	мм	эксплуатации Расстояние между 80%-ной и 20%-ной изодозной кривой для полей облучения с максимальными размерами (100×100) мм по их главным осям

Наименование показателя качества	Единицы показателя качества	Примечание
18. Клинообразные фильтры		
1) количество		
2) энергия	МэВ, (Дж)	
3) размеры поля	MM	
4) ослабляющий фактор кли-	%	
на	· · · · · · · · · · · · · · · · · · ·	
5) угол клина		
19. Максимальный угол ро-		
тации поворотной части излу- чателя		
20. Пределы изменения уг-	°/мин	
ловой скорости ротации по-	/ MIIII	
воротной части излучателя		
21. Максимальный угол по-	•	
ворота диафрагмы вокруг оси		
радиационной головки		
22. Максимальная погреш-	MM	
ность индикации положения		
изоцентра при ротации пово- ротной части излучателя и по-		
вороте диафрагмы		
23. Максимальная погреш-		
ность цифровой индикации:		
1) углов ротации поворот-	°	
ной части излучателя		
2) поворота диафрагмы	• • •	
3) размеров полей облуче- ния	MM	
24. Максимальное отклоне-		
ние границ светового поля от		
границ поля облучения	MM	
1) ускоренных электронов		
2) тормозного излучения		
25. Максимальная погреш-	MM	
ность имитации оси пучка 26. Нормальное лечебное		
расстояние	м	
27 Пределы индикации рас-		
стояния «источник-кожа»	M	
28 Максимальная погреш-		
ность индикации расстояния	мм	
«источник-кожа»		
29. Минимальные расстоя-		
ния между нижним краем радиационной головки или кол-		
лимационной системы и изо-		
центром для.	M	}
1) ускоренных электронов		j
2) тормозного излучения		
		Ì

Продолжение табл. 1

		11 роболжение 1 иож 1
Наименование показателя качества	Единицы показателя качества	Примечание
30. Расстояние от изоцентра до пола	м	
ПОКАЗАТЕЛИ ЭК	(СП <mark>ЛУАТАЦИО</mark> Н	нных условии
31. Длительность ввода ускорителя в режим готовности	мин	Показатель определяется после выключения ускорителя более чем на 6 ч
32. Допустимая длительность непрерывной работы ускорителя в режиме готовнос-	ų	
ти и режиме излучения 33. Максимальный уровень акустической мощности 34. Параметры электричес- кой сети:	дБ(A)	По ГОСТ 23941—79
 1) число фаз 2) напряжение 3) частота 	— В Гд	
4) потребляемая мощность: в режимах готовности и из- лучения в режиме ожидания 35. Допустимая относитель-	кВт	
ная нестабильность параметров электрической сети: 1) напряжения 2; частоты 36. Параметры потребляемой воды во внешнем контуре ох-	%	
лаждения ускорителя: 1) расход 2) максимальная температу-	м ⁸ /ч °С	
ра на входе в теплообменник 3) давление 37. Тепловая мощность, ко-	Па кВт	
торую необходимо отвести вентиляцией от ускорителя 38. Параметры окружающей среды:		
1) диапазон температуры	°C	<u> </u>
2) максимальная относи- тельная влажность	%	1
ПОКАЗАТЕЛИ РАД	ДИАЦИОННОЙ	БЕЗОПАСНОСТИ
39. Относительное значение паразитного излучения в по- лезном пучке ускоренных электронов	%	Показатель определяется отношением поглощенной дозы тормозного излучения, измеренной на оси пучка на расстоянии 100 мм за практичес-

		Tipocomicentae Idon, 1
Наименование показателя качества	Единицы показателя качества	Примечание
40. Паразитное излучение в режиме тормозного облучения: 1) относительное значение поглощенной дозы на поверхности фантома к поглощенной	%	ким пробегом (R_p), к поглощенной дозе ускоренных электронов в максимуме распределения по глубине Дополнительным показателем влияния паразитного излучения служит глубина зале-
дозе в максимуме распределения по глубине 2) относительное значение поглощенной дозы нейтронного излучения к дозе тормозного излучения на оси пучка 41. Максимальные относительные значения излучения	04	гания максимума осевой глубинной дозы Показатель определяется при граничных энергиях тормозного излучения свыше 10 МэВ
утечки: 1) вдоль траектории пучка 2) в плоскости расположе-	%	Показатель определяется максимальным значением отношения поглощенной дозы в любой точке на расстоянии 1 м от траектории пучка при закрытой диафрагме к поглощенной дозе на оси пучка Показатель определяется
ния пациента		токазатель определяется максимальным значением отношения поглощенной дозы в любой точке плоскости (кроме зоны поля максимального размера) радиусом 2 м, расположенной на нормальном лечебном расстоянии при закрытой диафрагме, к поглощенной дозе на оси пучка
3) в пределах максимально- го размера поля		Показатель определяется максимальным значением отношения поглощенной дозы в любой точке в пределах максимального размера поля на нормальном лечебном расстоянии при закрытой диафрагме к поглощенной дозе на оси пучка. В случае неполного закрытия диафрагмы отверстие должно быть закрыто слоем материала с кратностью ослабления не менее 100

Продолжение табл. 1

Наименование показателя качества	Единицы показателя качества	Примечание
42. Максимальное значение мощности дозы в режиме готовности в месте нахождения	Гр/мин	
пациента 43. Максимальное значение мощности дозы, создаваемой остаточной наведенной активностью, через определенное время после полного выклю-	Гр/мин	
чения ускорителя 44. Количество каналов в системе мониторирования до-	-	
зы 45. Максимально допустимое относительное отклонение по- казаний каналов системы мо- ниторирования дозы	%	

- 2. Показатели надежности, транспортабельности, стандартизации и унификации, патентно-правовые, экономические — по ГОСТ 4.477—87.
- 3. Пояснения к терминам, применяемым в настоящем стандарте, приведены в приложении 3.

УСЛОВИЯ ИЗМЕРЕНИЯ РАДИАЦИОННЫХ ПАРАМЕТРОВ УСКОРИТЕЛЕЙ

1. Измерения проводятся в водном фантоме или другом тканеэквивалентном фантоме на оси пучка и в плоскости, перпендикулярной оси пучка, на стандартной глубине.

2. Стандартная глубина составляет:

для тормозного излучения — 100 мм;

для электронных пучков — в соответствии с требованиями табл. 2.

Таблина 2

Энергия электронов,	Стандартвая глубина,
МэВ	м и
Or 1 до 10 Св. 10 » 20 » 20 » 50	10 или на глубине максимального поглощения 20 или на глубине максимального поглощения 30 или на глубине максимального поглощения

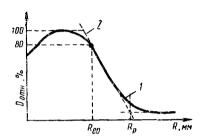
3. Поверхность фантома в случае тормозного излучения для изоцентрических ускорителей находится на 100 мм выше изоцентра, а при неподвижном излучателе— на нормальном лечебном расстоянии.

В случае потока электронных пучков поверхность фантома располагают на

нормальном лечебном расстоянии.

4. Относительную неравномерность распределения поглощенной дозы по полю облучения и симметрию полей, в случае тормозного излучения, определяют на стандартной глубине в водном фантоме в области, ограниченной прямыми линиями, соединяющими точки на кривых распределения, отстоящие на расстоянии $d_{\rm m}$ и $d_{\rm c}$ от геометрической границы поля для главных и диагональных осей соответственно.

Значения $d_{\mathbf{m}}$ и $d_{\mathbf{c}}$ для различных размеров поля приведены в табл. 3.


Таблица 3

IM M		
	Расстояния, определяющие область измерения	
Размеры поля, F	d _m	d_{α}
От 50 до 100 Св. 100 до 300 » 300	0,1 F 30	0,2 F 60

Неравномерность и симметрия полей в случае потока электронных пучков определяется на стандартной глубине в водном фантоме в области, ограниченной прямыми линиями, соединяющими точки на кривых распределения по главным и диагональным осям, отстоящие от геометрической границы поля на расстоянии 20 и 30 мм соответственно.

ПРИЛОЖЕНИЕ 2 Рекомендиемое

1. ОПРЕДЕЛЕНИЕ НАИБОЛЕЕ ВЕРОЯТНОЙ ЭНЕРГИИ УСКОРЕННЫХ ЭЛЕКТРОНОВ НА ПОВЕРХНОСТИ ОБЪЕКТА (ФАНТОМА) В ДИАПАЗОНЕ 1—50 МэВ (0,16—8 пДж)

 $D_{\text{отн}}$ — относительная поглощенная доза или относительный конизационный ток; R — глубина в водном фантоме; 1 — кривая осевой относительной глубинной дозы или ионизации; 2 — касательная в точке перегиба.

Наиболее вероятная энергия электронов на поверхности фантома в диапазоне 1—50 МэВ (0,16—8 пДж) определяется по кривой осевой относительной глубинной дозы или ионизации в водном фантоме (см. чертеж) при условиях измерения, изложенных в приложении 1.

Значение наиболее вероятной энергии ускоренных электронов на поверх-

ности объекта (фантома) ($E_{\rm p,o}$), в МэВ, определяют по формуле

$$E_{p,0} = C_1 + C_2 R_p + C_3 R_{p^2}, \tag{1}$$

гле $C_1 - 2.2 \cdot 10^{-1}$ МэВ; $C_2 - 1.98 \cdot 10^{-1}$ МэВ/мм; $C_3 - 2.5 \cdot 10^{-5}$ МэВ/мм²; R_2 — практический пробег, мм.

2. ОПРЕДЕЛЕНИЕ ГРАНИЧНОЙ ЭНЕРГИИ ТОРМОЗНОГО ИЗЛУЧЕНИЯ В ДИАПАЗОНЕ 4—50 МэВ (0,64—8 лДж)

Граничная энергия тормозного излучения в диапазоне 4—50 МэВ (0,64—8 пДж) определяется измерением ионизации или поглощенной дозы в водном фантоме на глубине 100 и 200 мм на оси пучка при размерах поля облучения (100×100) мм на поверхности фантома, которая расположена на нормальном лечебном расстоянии.

C. 10 FOCT 4.490-89 (CT C3B 6189-88)

Граничную энергию тормозного излучения (Е), МэВ, определяют по формуле

$$E = \frac{b_1 + b_2 \cdot \frac{I_{100}}{I_{200}}}{I + b_3 \cdot \frac{I_{100}}{I_{200}}},$$
 (2)

где b_1 — минус 3,025; b_2 — 0,906;

 b_3 — минус 0,728;

 I_{100} — ионизационный ток или поглощенная доза на глубине 100 мм; I_{200} — ионизационный ток или поглощенная доза на глубине 200 мм.

термины, применяемые в стандарте, и пояснения

Термин	Пояснение
1. Излучение утечки	Иопизирующее излучение, которое проникает через радиационную защиту излучателя ускорителя
2. Изодозная кривая	Кривая на плоскости, соединяющая точки одинаковой средней мощности поглощенной дозы
3. Изоцентр	Центр сферы минимального радиуса, через ко- торую проходит ось пучка излучения при всех углах ротации излучателей
4. Ослабляющий фактор клина (фактор клина) 5. Нормальное лечебное расстояние	Отношение значений поглощенных доз на оси пучка излучения с клином и без клина Расстояние, измеренное вдоль оси пучка от виртуального источника тормозного излучения до изоцентра (в случае изоцентрических ускорителей) или до выбранной плоскости (для неизоцентрических ускорителей). В случае электроного излучения расстояние измеряется вдоль оси пучка от виртуального источника электронов до выбранной плоскости
6. Паразитное излучение	Все ионизирующее излучение, кроме полезного вида излучения
7. Поле облучения	Поле на нормальном лечебном расстоянии, ограчиченное 50%-ной изодозой
8. Режим ожидания	Состояние оборудования ускорителя, при котором имеется возможность выбора основных эксплуатационных параметров
9. Режим готовности	Состояние оборудования ускорителя, когда подтверждено выполнение всех предварительных операций и излучение может быть включено одним действием
10. Ось пучка	Прямая линия, соединяющая фокус с центром поля облучения
11. Угол клина	Угол, определенный наклоном прямой, соединяющей две гочки на изодозе, проходящей через точку на центральной оси пучка, находящуюся на стандартной глубине измерения (см. приложение 1); при этом расстояния точек от оси пучка равны и соответствуют 1/4 размера поля облучения
12. Фокус	Ценгр эффективного источника излучения

ИНФОРМАЦИОННЫЕ ДАННЫЕ

- Постановлением Государственного комитета СССР по стандартам от 26.04.89 № 1125 стандарт Совета Экономической Взаимопомощи СТ СЭВ 6189—88 «Ускорители электронов для лучевой терапии. Номенклатура показателей качества» введен в действие непосредственно в качестве государственного стандарта СССР с 01.01.90
- 2. Срок проверки 1995 г. Периодичность проверки — 5 лет.
- 3. ВВЕДЕН ВПЕРВЫЕ
- 4. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

Обозначение НГД, на который	Номер пункта, подпункта,
дана ссылка	перечисления, приложения
ΓΟCT 4.477—87	2
ΓΟCT 23941—79	1 (показатель 33)

Редактор В. С. Бабкина Технический редактор О. Н. Никитина Корректор В. С. Черная

Сдано в наб. 25.05.89 Подп. в печ. 04.09.89 1,0 усл. п. л. 1,0 усл. кр.-отт. 0,80 уч.-изд. л. Тир. 3000 Цена 5 к.

	Единица		
Величина	Намменование	Обозначен не	
55/144/112	Hanmenosanne	международное	русское
основны	Е ЕДИНИ	пы си	
Длина	метр	m	м
Macca	килограмм	kg	κľ
Время	секунда	s	c
Сила электрического тока	ампер	A	Α
Термодинамическая температура	кельвин	K	K
Количество вещества	моль	mol	моль
Сила света	кандела	cd	кд
дополните	Льные е,	циницы си	1
Плоский угол	радиан	rad	рад
Телесный угол	стерадиан	sr	ср

ПРОИЗВОДНЫЕ ЕДИНИЦЫ СИ, ИМЕЮЩИЕ СПЕЦИАЛЬНЫЕ НАИМЕНОВАНИЯ

Величина	Единица			B
	Наименова- ние	Обозначение		Выражение через основные и до-
		междуна- родное	русское	полнительные единицы СИ
Частота	герц	Hz	Гц	c-1
Сила	ньютон	N	Н	M·KT·C-2
Давление	паскаль	Pa	Па	M-1 - KF - C-2
Энергия	джоуль	J	Дж	M2 · Kr · C-2
Мощность	ватт	W	Вт	M2.KF.C-3
Количество электричества	кулон	C	Кл	c·A
Электрическое напряжение	вольт	V	В	M2-KL-C-3-A-1
Электрическая емкость	фарад	F	Ф	M-2KT-1.C4.A2
Электрическое сопротивление	OM	Ω	OM	M2-KT-C-3-A-2
Электрическая проводимость	сименс	S	CM	M~2Kr~1·c3·A2
Поток магнитной индукции	вебер	Wb	B 6	M2 · Kr · C-2·A-1
Магнитная индукция	тесла	T	T'n	кг·с-2·А-1
Индуктивность	генри	Н	Гн	M2 · KT · C -2 · A-2
Световой поток	люмен	lm	лм	кд - ср
Освещенность	люкс	lx	лк	м ⁻² ⋅ кд ⋅ ср
Активность радионуклида	беккерель	Bq	Бк	c-1
Поглощенная доза ионизирую-	йеал	Gy	Гр	M ² ⋅ C ⁻²
щего излучения	i	1		
Эквивалентная доза излучения	зиверт	Sv	3a	M2 · C-2