

ГОСУДАРСТВЕННЫ Й СТАНДАРТ СОЮЗА ССР

МАШИНЫ ЭЛЕКТРИЧЕСКИЕ ВРАЩАЮЩИЕСЯ

УСЛОВНЫЕ ОБОЗНАЧЕНИЯ ДЛЯ ОПИСАНИЯ СИНХРОННЫХ МАШИН

> ΓΟCT 27430—87 (ΜЭΚ 34—10)

Издание официальное

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

машины электрические вращающиеся

Условные обозначения для описания синхронных машин

ΓΟCT 27430—87

Electrical rotary machines. Sonventions for description of synchronous machines

(M3K 34-10)

ОКП 33 0000

Срок действия с 01,07.88 по 01,01.94

Настоящий стандарт устанавливает некоторые правила описания параметров синхронных машин в относительных единицах, базирующихся на принятых для электрических и магнитных цепей обозначениях.

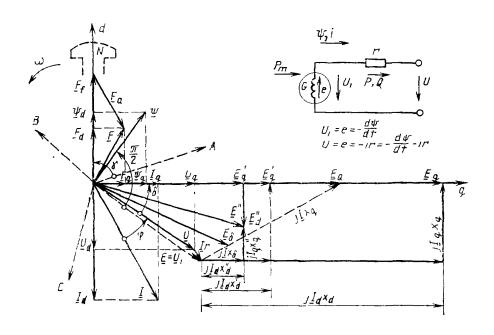
1. ВЕКТОРНЫЕ ДИАГРАММЫ

- 1.1. При построении векторных диаграмм синхронных машин следует исходить из нижеперечисленных положений:
- 1) за положительное направление вращения векторной диаграммы вместе с осями принимают вращение против часовой стрелки; это же направление принимают положительным для угловых измерений;
- 2) продольная ось опережает поперечную ось на 90 электрических градусов;
- 3) магнитный поток (потокосцепление) и магнитодвижущую силу любой обмотки (цепи) считают положительными, когда их направление совпадает с положительным направлением соответствующей оси:
- 4) составляющие вектора считаются положительными, если их направление совпадает с положительным направлением соответствующей оси;
- 5) направление продольной оси вектора магнитодвижущей силы обмотки возбуждения совпадает с положительным направлением продольной оси;
- 6) ток считают положительным, если он создает положительный магнитный поток (потокосцепление) в соответствующей обмотке (цепи);

Издание официальное

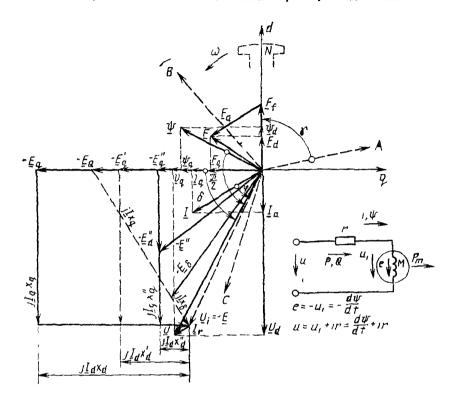
Перепечатка воспрещена

C. 2 FOCT 27430-87 (M9K 34-10)


7) индуктированная э.д.с. имеет полярность, препятствующую изменению потокосцепления и удовлетворяющую уравнению $e=-\frac{d}{d}\frac{\psi}{t}$ (для установившегося режима с постоянной угловой скоростью индуктированную э.д.с. можно также представить как $E=-\mathrm{j}\omega\psi$).

Это условное обозначение в сочетании с индексом f означает, что э. д. с. в любой ветви цепи считается положительной, если она замкнута на сопротивление; при этом она создает положительный ток в этой ветви:

8) составляющие всех параметров по продольной и поперечной осям (тока, напряжения, э.д.с. и т. д.) обозначают в соответствии с осью, к которой они относятся.


Подробные и упрощенные векторные диаграммы синхронных машин приведены на черт. 1—6.

Принципиальная схема и векторная диаграмма перевозбужденного синхронного генератора с базовыми параметрами генератора

Черт. 1

Принципиальная схема и векторная диаграмма недовозбужденного синхронного двигателя с базовыми параметрами двигателя

Черт. 2

2. МАТЕМАТИЧЕСКОЕ ОПИСАНИЕ СИНХРОННЫХ МАШИН

- 2.1. Для более подробного описания синхронных машин и их математического представления необходимо дополнительно учитывать следующие положения:
- 1) при рассмотрении генератора его активная мощность считается положительной, когда она передается от генератора к сети (к нагрузке). При рассмотрении двигателя его активная мощность считается положительной, если она забирается от источника электрической энергии;
- 2) скольжение считается положительным, если частота вращения ротора ниже синхронной;
- 3) напряжение возбуждения является положительным, если оно создает положительный ток индуктора;

- 4) все вращающие моменты, двигающие вращающиеся части в положительном направлении вращения, считаются положительными (например, при нормальной установившейся работе генератора механический момент на валу является положительным, а соответствующий электромагнитный момент генератора отрицательным; при нормальной работе двигателя механический момент на валу отрицательным, а электромагнитный момент положительным); в случае нескольких моментов, действующих на ротор, следует брать их алгебраическую сумму;
- 5) реактивную мощность синхронной машины считают положительной при перевозбуждении в генераторном режиме и при недовозбуждении в двигательном режиме.

Примечание. Положительное значение реактивной мощности Q соответствует исходному направлению активной мощности P.

2.2. Следующие уравнения синхронных машин, написанные в соответствии с известной теорией двух реакций (без составляющих нулевой последовательности), соответствуют указанным выше допущениям и векторным диаграммам черт. 1—6.

Все величины указаны в относительных значениях:

время представляется значением, обратным величине номинальной угловой частоты $1/\omega_n$;

напряжения, ток и поток, отнесенные к обмотке статора — к их номинальным амплитудным значениям;

мощность — к номинальной кажущейся мощности (вольтампер);

момент — к номинальному кажущемуся моменту, соответствующему номинальной кажущейся мощности;

активные и реактивные сопротивления, отнесенные к обмотке статора — к полному номинальному сопротивлению.

Рекомендуется при рассмотрении самой машины в качестве основных значений принимать номинальные значения.

УРАВНЕНИЯ СИНХРОННЫХ МАШИН

Отдельные уравнения генератора

Отдельные уравнения двигателя

$$\begin{array}{ll} u_d = -u\sin\delta = -p\,\psi_d - \psi_q p\,\gamma - ri_d & u_d = -u\sin\delta = p\psi_d + \psi_q p\,\gamma + ri_d \\ u_q = u\cos\delta = \psi_d p\,\gamma - p\,\psi_q - ri_q & u_q = -u\cos\delta = -\psi_d p\,\gamma + p\,\psi_q + ri_q \end{array}$$

Общие уравнения двигателей и генераторов

$$u_f = p \psi_f + r_f i_f$$

$$Q = p \psi_{kd} + r_{kd} i_{kd} \quad k = 1, 2 \dots n$$

$$Q = p \psi_{ka} + r_{ka} i_{kd} \quad k = 1, 2 \dots m$$

$$P = u_d i_d + u_q i_q$$
 $Q = u_d i_q - u_q i_d$
 $m = -\psi_d i_q - \psi_q i_d$
 $m_m + m = \tau_j p^2 \gamma$
 $\psi_d = x_d i_d + x_{afd} i_f + \sum_{k=1}^{k=n} x_{akd} i_{kd}$
 $\psi_q = x_q i_q + \sum_{k=1}^{k=m} x_{akq} i_{kq}$
 $\psi_f = x_{ffd} i_f + x_{afd} i_d + \sum_{k=1}^{k=n} x_{fkd} i_{kd}$
 $\psi_{kd} = x_{akd} i_d + x_{fkd} i_f + \sum_{j=1}^{j=n} x_{kjd} i_{jd} \quad k = 1, 2 \dots n$
 $\psi_{kq} + x_{akq} i_q + \sum_{j=1}^{j=m} x_{kjq} i_{jq} \quad k = 1, 2 \dots m$
где $E, e -$ электродвижущая сила, э. д. с.;

F — магнитодвижущая сила, м. д. с.;

I, i — ток;

т — момент; Р — активная мощность;

 $p = \frac{d}{dt}$ — дифференциальный оператор;

Q — реактивная мощность;

r — сопротивление;

U, u — напряжение на зажимах;

x — реактивное сопротивление;

 γ — угол между вектором фазы A и продольной осью;

б — угол между вектором напряжения якоря и поперечной осью;

т — постоянная времени;

ф — угол между векторами тока и напряжения;

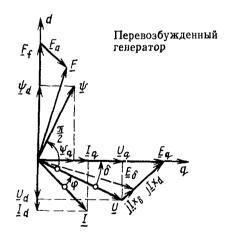
Ψ. ψ — потокосцепление;

ω - угловая частота;

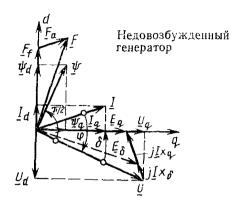
J — момент инерции.

Примечание. Когда указаны и прописные и строчные буквы, **е**тносятся к векторным, вторые — к мгновенным значениям,

C. 6 FOCT 27430-87 (M9K 34-10)

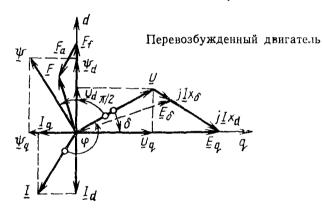

Подстрочные индексы обозначают:

- a обмотки якоря;
- d, q продольная и поперечная оси;
 - f обмотка возбуждения;
 - i внутренний;
- і, к порядковый номер демпферных цепей;
 - *m* механический:
 - n номинальное значение;
 - б воздушный зазор;
 - σ цепь утечки.

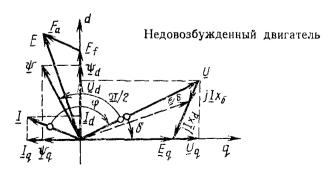

Комбинация двух различных индексов, относящихся к обмотке, означает наличие взаимной индуктивности между ними, а два одинаковых индекса означают наличие самоиндуктивности.

Переходные и сверхпереходные значения обозначаются одним или двумя знаками вверху с правой стороны от символа (x', x'').

Исходные векторные диаграммы синхронных машин. За базовые приняты параметры генератора для случаев рассмотрения неявнополюсного генератора или двигателя с $x_d = x_d$

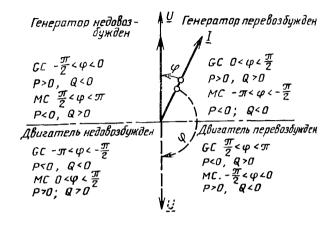


Черт. 3



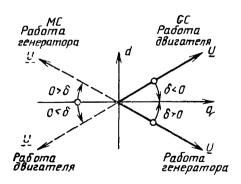
Черт, 4

Исходные векторные диаграммы синхронных машин. За базовые приняты нараметры генератора для случаев рассмотрения неявнополюсного генератора или двигателя с $x_d = x_g$


Черт. 5

Черт. 6

C. 8 FOCT 27430-87 (M9K 34-10)


Векторы напряжения и тока в системах с базовыми параметрами генератора или двигателя

GC — система с базовыми параметрами генератора (———) МС — система с базовыми параметрами двигателя (———)

Черт 7

Исходная диаграмма для измерений угла нагрузки

GC — система с базовыми параметрами генератора (——) МС — система с базовыми параметрами двигателя (———)

ПРИЛОЖЕНИЕ 1 Обязательное

ВЕКТОРНЫЕ ДИАГРАММЫ СИНХРОННЫХ МАШИН

Использование относительных единиц предпочтительнее иллюстрировать на

примере генератора или источника

Принципиальная схема цепи якоря заданной полярности э д с, напряжения, тока и мощности, а также векторная диаграмма перевозбужденного явно полюсного синхронного генератора показаны на черт 1 Поперечная ось реко мендуется в качестве исходной оси векторной циаграммы Однако, когда машина является частью системы, может быть использована любая другая удобная исходная ось (например, напряжение на зажимах, ток и т д)

Рассматривается симметричный установившиися режим. Тем не менее, показаны соответствующие векторы переходной и сверхпереходной эдс Постоянные оси трех фаз A, B и C обозначены пунктиром, чтобы показать соот ношение между постоянными осями и вращающи ися векторами, и облегчить определение мгновенных фазовых значений эдс, тока и т д Использование параметров двигательного режима (или нагрузки) в качестве базовых целе сообразно только для случаев изучения двигателя Соответствующая векторная диаграмма недовозбужденного синхронного двигателя показана на черт 2 Здесь, как и в предыдущем случае, в качестве исходной рекомендуется по перечная ось

При построении векторной диаграммы двигателя также может быть использована любая другая удобная для применения исходная ось На черт 2 показаны пунктиром постоянные оси трех фаз A, B и C

Дана также принципиальная схема якоря заданной полярности Упрощенные векторные диаграммы иллюстрируют работу в установившемся режиме не явнополюсного синхронного генератора (см черт 3 и 4) и синхронного двитателя (см черт 5 и 6) В качестве базовых взяты параметры генераторного режима

Во всех этих случаях предполагается, что сопротивление якоря незначительно и $x_d = x_q$

Примечание Индуктированные эдс, используемые в векторных диаграммах и схемах на черт 1—6, можно заменить, если это необходимо (например для двигателей) соответствующими напряжениями, которые равны эдс и положительны по отношению к ним (r е $u=+e_1$, $\overline{U}=+\overline{E}$) в с ичае рассмотрения генератора и отрицательны по отношению к ним ($u=-e_1$, $\overline{U}=-\overline{F}$) в случае рассмотрения двигателя

Дополните выые пояснения касающиеся некоторых условных обозначений этого стандарта, даны в приложении 2

Дополнительные пояснения, касающиеся некоторых обозначений, принятых в стандарте

В настоящем стандарте используются понятия э д с и напряжения Понятие э д с взято за основу, поскольку за предпочтительные приняты относительные единицы, для которых базовыми являются параметры генераторного режима источника

Как в случае рассмотрения генератора, так и двигателя направление э.д.с., принято положительным, когда ток, создаваемый этой э д с в замкнутой на сопротивление цепи является положительным

Это допущение с учетом изложенного в пп 113), 6) приводит к основному выражению индуктированной э д с, определенному в п 117), а именно

$$e=-\frac{d \downarrow}{dt}$$
.

Необходимо подчеркнуть, что это выражение относится к индуктированным \rightarrow д c, а не к соответствующим напряжениям и что это имеет силу как для случаев рассмотрения генератора, так и для двигателя

Эти два случая отличаются друг от друга только заданным направлением в обозначением знаков напряжения, активной и реактивной мощности, не учитывая некоторые особенности измерений углов ф и б (см ниже) В случае рассмотрения генератора напряжение якоря считается положительным, если в заминутои на сопротивление цепи оно стремится вызывать положительный ток, т елочно так же, как и для э д с, следовательно, напряжение и э д с взаимно равны при рабоге без нагрузки В случае рассмотрения двигателя напряжение якоря считается положительным, если при приложении к обмотке якоря оно стремится вызвать положительный ток в этой обмотке

Ясно, что это напряжение противоположно напряжению в предыдущем случае, и, следовательно, положительной э д с, поскольку направление и полярность последней одни и те же для обоих случаев

Приведенные выше положения действительны не только для напряжения на зажимах, но и для всех внутренних напряжений, включая u_1

Следовательно
$$u_t = +e = -\frac{d\psi}{dt}$$
 — для генератора $u_t = -e = +\frac{d\varphi}{dt}$ — для двигателя

Концы стрелок, указывающих заданные направления напряжения и э д с в ехемах цепи на черт 1 и 2, соответствуют точке с более высоким потенциалом для напряжения и с более низким потенциалом для э д с Следовательно, в случае рассмотрения генератора при однои и той же полярности как для напряжения, так и для э д с, соответствующие стрелки u_i и е будут взаимно противоположны (см черт 1)

Но в случае рассмотрения дьигателя, имеющего взаимно противоположные полярности для напряжения и э д с, соответствующие стрелки направлены в одну сторону Вследствие указанного выше одновременного изменения заданных направлений напряжений лкоря, с одной стороны, и активных и реактивных мощностей, с другои сторонь при переходе от рассмотрения генератора к рассмотрению двигателя и наоборот начальное направление тока якоря остается неизменным, причем формулы, определяющие мощности как функции напряжений и токов якоря, остаются одинаковыми для обоих случаев (см. формулы в пп. 2.2).

Некоторые пояснения, касающиеся угла фазы $\mathfrak q$ и активной и реактивной мощностен P и Q для случаев рассмотрения генератора и двигателя, даны на черт $\mathfrak q$

Стрелка угла ϕ всегда должна указывать направление от I к U по самом короткому пути. Если это направление по часовой стретье, то тогда угол ϕ

является отрицательным

Для случаев рассмотрения генератора и двигателя активную и реактивную мощности вычисляют по формулам $P = UI \cos \mathfrak{q}$, $Q = UI \sin \mathfrak{q}$

Измерения угла нагрузки о для случаев рассмотрения генератора и двига-

теля указаны на черт. 8

Стрелка угла δ должна указывать направление вдоль самого короткого пути от вектора U к положительному направлению поперечной оси в генераторном режиме и от отрицательного направления поперечной оси к вектору U в двигательном режиме

ИНФОРМАЦИОННЫЕ ДАННЫЕ

- 1. ВНЕСЕН Министерством электротехнической промышленности СССР
- 2. Постановлением Государственного комитета СССР по стандартам от 28.09.87 № 3738 введен в действие государственный стандарт СССР ГОСТ 27430—87, в качестве которого непосредственно применен международный стандарт МЭК 34—10, с 01.07.88

Редактор *В П Огурцов*Технический редактор *Г А Теребинкина*Корректор *А С Черноусова*

Сдано в наб 21 10 87 Подп в печ 21 01 88 1,0 усл ж, л 1,0 усл кр отт 0,61 үч изд л Тир 16 000

Ордена «Злак Почета» Изга ель тво стандартов 123840 Москьа I (П Новопресьонский пер 3 Тип «Московский печатник» Москва Лялин пер в Зак 1643