

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

АГРЕГАТЫ ПАРОТУРБИННЫЕ СТАЦИОНАРНЫЕ

НОРМЫ ВИБРАЦИИ ВАЛОПРОВОДОВ И ОБЩИЕ ТРЕБОВАНИЯ К ПРОВЕДЕНИЮ ИЗМЕРЕНИЙ

FOCT 27165-86

Издание официальное

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССБ

АГРЕГАТЫ ПАРОТУРБИННЫЕ СТАЦИОНАРНЫЕ

Нормы вибрации валопроводов и общие требования к проведению измерений

Stationary steam-turbine aggregates. Vibration norms of coupled rotor systems and general requirements for carrying out measurements

ΓΟCT 27165—86

OKIT 42 7724

Срок действия <u>с 01.01.88</u> до 01.01.93

Несоблюдение стандарта преследуется по закону

Настоящий стандарт распространяется на стационарные энергетические паротурбинные агрегаты (далее — турбоагрегаты), состоящие из паровой турбины, синхронного генератора и возбудителя мощностью 500 МВт и более рабочей частотой вращения 50 и 25 с⁻¹, укомплектованные аппаратурой для контроля вибрации роторов.

Стандарт устанавливает допустимый уровень вибрации валопроводов турбоагрегатов, находящихся в эксплуатации и принимаемых в эксплуатацию после монтажа, а также общие требования к проведению измерений.

1. НОРМЫ ВИБРАЦИИ

1.1. В качестве пормируемых параметров допускается использовать:

максимальное пиковое значение размаха относительных виброперемещений шеек валопровода, выбранное из результатов измерений в двух взаимно перпендикулярных направлениях Y и X в контролируемых сечениях S_{py} и S_{px} ;

максимальное значение модуля относительных виброперемещений шеек валопровода турбоагрегата в контролируемых сечениях

$$S_{\text{max}} = \max \sqrt{S_y^2(t) + S_x^2(t)}$$
,

где $S_y(t)$ и $S_x(t)$ — мгновенные значения относительных виброперемещений шейки ротора в двух взаимно перпендикулярных направлениях.

Издание официальное

Перепечатка воспрещена

С Издательство стандартов, 1987

- 1.2. Максимальное пиковое значение размаха относительных виброперемещений шеек валопровода в сечениях, расположенных у торцов вкладышей каждого опорного и опорно-упорного подшипника со стороны цилиндров турбины или статоров генератора и возбудителя при рабочей частоте вращения и любых режимах эксплуатации, не должно превышать *:
- 150 мкм для турбоагрегатов номинальной частотой вращения 50 c^{-1} ;
- $200 \ \mathrm{MKM} \mathrm{для} \ \mathrm{турбоагрегатов}$ номинальной частотой вращения $25 \ \mathrm{c}^{-1}$.
- 1.3. Максимальное значение модуля относительных виброперемещений шеек валопровода в указанных в п. 1.2 местах и условиях эксплуатации не должно превышать*:

75 мкм — для турбоагрегатов номинальной частотой вращения $50\ c^{-1}$:

 $100\,$ мкм — для турбоагрегатов номинальной частотой вращения $25\,{\rm c}^{-1}.$

1.4. Оценку вибрационного состояния турбоагрегата осуществляют на основании одновременного выполнения требований пп. 1.2 или 1.3 настоящего стандарта и ГОСТ 25364—82 (нормирующего вибрацию опор подшипников).

2. ОБЩИЕ ТРЕБОВАНИЯ К ИЗМЕРИТЕЛЬНОЙ АППАРАТУРЕ

- 2.1. Вибрацию валопровода следует измерять при помощи многокапальной стационарной аппаратуры для непрерывного одновременного контроля максимального пикового значения размаха относительных виброперемещений или максимального значения модуля виброперемещений всех шеек валопровода относительно вкладышей подшипников в контролируемых сечениях.
- 2.2. Показания аппаратуры следует регистрировать многоточечными самописцами, а также индикацией по вызову значений на указателе. Измерительная аппаратура должна обеспечивать предупредительную и аварийную сигнализацию и защиту на отключение турбоагрегата при превышении допустимого уровня вибрации валопровода или его внезапном изменении, а также иметь аналоговые выходы.

 Π р и м е ч а н и е. Под внезапным изменением значения уровня вибрации понимают его изменение не менее чем на 30—40 мкм за время не более 5 с и длительностью не менее 10 с.

2.3. Аппаратура должна обеспечивать измерение максимального значения относительных виброперемещений валопровода в диапазоне частот 10—500 Гц.

^{*} Методика определения допустимых значений вибрации валопроводов изложена в справочном приложении.

- 2.4. Пределы измерений максимальных значений модуля относительных виброперемещений валопровода: 25—250 мкм и 50—500 мкм.
- 2.5. Аппаратура должна измерять статическое смещение валопровода в диапазоне ± 0.5 мм при установочном зазоре 2.0-0.5 мм.
- 2.6. Датчики должны нормально работать при температуре окружающей среды до 150°С, влажности до 98%, воздействии магнитного поля частотой 50 Гц до 400 А/м и быть защищенными от воздействия турбинного масла и жидкости ОМТИ.
 - 2.7. Диаметр датчика не должен превышать 10 мм.
- 2.8. Датчик должен работать без снижения точности измерений при минимальном расстоянии между его корпусом и близлежащей боковой поверхностью вкладыша подшипника или выступом вала 7 мм.
- 2.9. Основная погрешность измерения вибронеремещений шеек валопроводов не должна превышать $\pm 10 \%$.
- 2.10. Основная погрешность измерения зазоров (статических перемещений) не должна превышать $\pm 5 \%$.
- 2.11. Каждый канал виброаппаратуры совместно с датчиком и соединительным кабелем должен быть оснащен устройством сквозного контроля работоспособности и сигнализации повреждения канала без съема с объекта измерения. При повреждении аппаратуры систему защиты не следует включать.

3. ОБЩИЕ ТРЕБОВАНИЯ К ПРОВЕДЕНИЮ ИЗМЕРЕНИЙ

- 3.1. Объектом измерения являются вибрации всех шеек валопровода относительно опор подшипников.
- 3.2. Бесконтактные датчики устанавливают на торцах вкладышей всех подшипников валопровода со стороны цилиндров турбин или статоров генераторов и возбудителей.
- 3.3. В каждом контролируемом сечении валопровода устанавливают два датчика, ориентируемые в двух взаимно перпендикулярных направлениях в вертикальном и в горизонтально поперечном направлениях по отношению к оси валопроводов турбоагрегатов.

Примечание. При установке датчиков допускается отклонение от взачимно перпендикулярного расположения в пределах $\pm 5~\%$.

- 3.4. Максимальное значение модуля относительного виброперемещения шейки ротора S_{\max} получают преобразованием аппаратурой сигналов двух датчиков, пропорциональных $S_u(t)$ и $S_x(t)$.
- 3.5. В процессе эксплуатации турбоагрегатов результаты измерений виброперемещений шеек роторов регистрируют при помощи приборов и заносят в эксплуатационную ведомость машиниста. При этом должны быть зафиксированы рабочие параметры турбоагрегатов.

МЕТОДИКА ОПРЕДЕЛЕНИЯ ДОПУСТИМЫХ ЗНАЧЕНИЙ ВИБРАЦИИ ВАЛОПРОВОДОВ ТУРБОАГРЕГАТОВ

1. Контрольное значение для расчетов — максимальное среднее квадратическое значение составляющей 1-й гармоники виброскорости подпининиковых опор на рабочей частоте вращения, устанавливаемое ГОСТ 25466—82 и равное 1,8 мм·с⁻¹; при этом для обеспечения эксплуатации паротурбинных агрегатов со средним квадратическим значением виброскорости опор подшипников не выше 2,8 мм·с⁻¹ допускаемые амплитуды 1-й гармоники виброперемещений опор после балансировки должны быть не более:

 $A_1 = 8$ мкм — для турбоагрегатов рабочей частотой вращения 50 с⁻¹; $A_2 =$

=16 мкм — для турбоагрегатов рабочей частотой вращения 25 с-1.

2. В качестве исходной величины для определения нормативных значений относительной вибрации валопровода турбоагрегата принимается модуль остаточной динамической реакции опор Q, определяемый по эмпирической зависимости

$$Q=0,05 K_1G_0$$

где G_0 — масса валопровода, приходящаяся на опору, т; $K_1 = 1.5$ — коэффициент, учитывающий увеличение модуля остаточной динамической реакции опор в условиях электростанции, по сравнению с результатом заводской балансировки из-за дефектов соединения роторов в валопровод и влияния режимных факторов.

3. В таблице указаны массы роторов турбоагрегатов мощностью 500 и 1000 МВт рабочими частотами вращения 50 с⁻¹ и 25 с⁻¹, а также некоторые ди-

намические характеристики опор и масляного слоя.

Максимальные значения модуля относительных виброперемещений валопровода в сечениях, расположенных у торцов вкладышей со стороны цилиндров турбины или статоров генератора и возбудителя, могут быть определены из соотношения

$$S_{\text{max}} = K_2 \cdot K_3 \cdot K_4 \cdot K_5 \cdot \frac{Q}{C_{yy}},$$

где K_2 — коэффициент, учитывающий увеличение амплитуды виброперемещений для горизонтального направления ($K_2 \approx 1 \dots 3$);

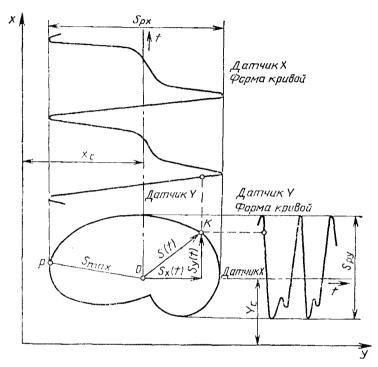
 K_3 — коэффициент, учитывающий увеличение модуля раднуса-вектора по сравнению с максимальным компонентом для направления вдоль большой оси орбиты прецессирующего вала $(K_3 \approx 1 \dots 1, 4)$;

 K_4 — коэффициент, учитывающий наличие высших гармоник в сисктре колебаний валопровода ($K_4 \approx 1,1\ldots 1,3$);

 K_5 — коэффициент, учитывающий увеличение модуля виброперемещений при переходе от центра вкладыша к его торцу ($K_5 \approx 1,0...1,2$);

 C_{yy} — коэффициент жесткости масляной пленки подшипника в вертикальном направлении.

Принимая для расчета средние значения коэффициентов $K_i(n_h K_{i \in p} = 3,2)$, no-


лучим значения S_{\max} , приведенные в таблице.

4. Фактические опытные значения динамической податливости опор δ представлены в таблице. Несмотря на значительный разброс виброхарактеристик различных опор, можно констатировать, что для турбоагрегатов ТЭС выполняется условие $\delta_{\rm max} < 0.5$ мкм/кH, а для «тихоходных» турбоагрегатов АЭС —

 δ_{max} < 0,3 мкм/кН, при которых обеспечивается удовлетворительное вибрационное состояние турбоагрегатов.

Обозначения основных параметров виброперемещения валопровода в контролируемом сечении приведены на чертеже.

Траектория виброперемещения контролируемого сечения ротора

O — центр траектории; X_c , Y_c — статические смещения осн ротора; K — произвольное положение центра сечения ротора; P — положение центра сечения ротора при максимальном виброперемещении; S_{\max} — максимальное значение виброперемещения; $S_x(t)$, $S_y(t)$ — текущие значения виброперемещения пентра сечения ротора по направлению осей X и Y: S_{px} , S_{py} — максимальное пиковое значение размаха виброперемещений

Амилитуды основной гармоники виброперемещений опор, найденные из выражения $A = Q \delta$, приведены в таблице.

Как видно из таблицы, при выполнении условий:

 $S_{max} < 50$ мкм — для турбоагрегатов рабочей частотой вращения $50~c^{-1}$ и $S_{max} < 100$ мкм — для турбоагрегатов рабочей частотой вращения $25~c^{-1}$ амплитуды основной гармоники виброперемещений опор не превышают соответственно 8 и 16~ мкм, установленных ГОСТ 25466—82.

5. Значения S_{max} (см. таблицу), определенные по предложенной методике, можно отнести к следующим трем группам: $S_{\text{max}} = 20 - 30$ мкм — роторы массой до 50 т; $S_{\text{max}} = 35 - 50$ мкм — роторы массой до 100 т; $S_{\text{max}} = 70 - 100$ мкм — роторы массой более 100 т.

Динамические параметры статоров турбоагрегатов

Тип турбоагрегата	Тип ротора	Масса ротора, т	Тип подшипника	Q , кН	С _{уу} , кН/мкм	S _{max} , _{MKM}	δ , мкм/кН	А, мкм
K-500-240-2 K-500-240-2 K-800-240-3 K-800-240-3 K-800-240-3 K-1000-60/3000	РСД РНД РСД РНД РГ РНД	22 44 34,2 37 90 83	Сегментный Эллиптический с выборкой вверху То же »	7,7 15,4 12,0 13,0 31,5 29,0	1,3 1,7 1,5 1,7 2,1 2,1	19,2 29,0 25,2 24,3 48,0 44,1	0,08 0,17 0,38 0,48 0,26 0,25*	0,6 2,6 4,6 6,2 8,2 7,3
K-500-60/1500 K-500-60/1500 K-500-60/1500 K-1000-60/1500 K-1000-60/1500 K-1000-60/1500	РВД РНД РГ РВД РНД РГ	70 167 151 47 167 220	Эллиптический с выборкой ввер- ху То же »	24,5 58,5 52,9 16,5 58,5 77,0	2,2 2,4 2,3 2,0 2,4 2,5	35,5 78,1 73,6 26,5 78,0 98,5	0,13 0,13 0,19 0,10 0,27 0,18	3,2 7,6 10,0 1,6 15,8 13,9

^{*} По ТУ на проектирование фундамента.

Примечание. РВД, РСД, РНД, РГ — соответственно роторы высокого, среднего, низкого давления турбины и ротор генератора;

Q — модуль остаточной динамической реакции опор; C_{yy} — динамическая жесткость масляного слоя подшипника в вертикальном направлении; S_{\max} — максимальный модуль относительных колебаний вала; δ — динамическая податливость опоры в вертикальном направлении; A — амплитуда вибрации опоры.

Поскольку последняя группа роторов относится к «тихоходным» турбоагрегатам АЭС, а «легкие» роторы первой группы подвержены существенному влиянию более массивных роторов валопровода, и отсутствует достаточный опыт эксплуатации турбоагрегатов мощностью 1000 МВт частотой вращения 50 с⁻¹, предложены следующие нормативные максимальные значения модуля относительного виброперемещения валопровода:

 $S_{\max} = 75$ мкм — для турбоагрегатов номинальной частотой вращения 50 c^{-1} ; $S_{\max} = 100$ мкм — для турбоагрегатов номинальной частотой вращения 25 c^{-1} .

Исходя из этого, в соответствии с рекомендациями стандарта ИСО 7919/1, нормативные пиковые значения размаха относительного виброперемещения валопровода в вертикальном S_{px} и горизонтальном S_{py} направлениях могут быть определены из выражения

$$S_{p \text{ max}} = 2 S_{\text{max}}$$
,

откуда $S_{p \, m \, a \, x}$:

150 мкм — для турбоагрегатов номинальной частотой вращения 50 c^{-1} ; 200 мкм — для турбоагрегатов номинальной частотой вращения 25 c^{-1} .

Редактор О. К. Абашкова Технический редактор Г. А. Теребинкина Корректор В. М. Смирнова

Сдано в наб. 12.01.87 Подп. в печ. 10.03.87 0,75 усл. п. л. 0,75 усл. кр.-отт. 0,45 уч.-изд. л. Тир. 10 000 Цена 3 коп.

Ордена «Знак Почета» Издательство стандартов, 123840, Москва, ГСП, Новопресненский пер., 3 Тип. «Московский печатник». Москва, Лялин пер., 6. Зак. 203

	Единица				
Величина	Наименование	Обозначение			
		международное	русское		
0 C H O B H P	Е ЕДИНИ	цы си			
Длина	метр	m	м		
Macca	килограмм	kg	ĸr		
Время	секунда	s	c		
Сипа электрического тока	ампер	A	A		
Термодинамическая температура	кельвин	K	K		
Количество вещества	моль	mol	моль		
Сила света	кандела	cd	кд		
дополните	Льные еј	Циницы си			
Плоский угол	радиан	rad	рад		
Телесный угол	стерадиан	sr	ср		

ПРОИЗВОДНЫЕ ЕДИНИЦЫ СИ, ИМЕЮЩИЕ СПЕЦИАЛЬНЫЕ НАИМЕНОВАНИЯ

	Единица			Burnayanya yanga	
Величина	Наименова- ние	Обозначение		Выражение через основные и до-	
SCHAMA		междуна- родное	русское	полнительные единицы СИ	
Частота	герц	Hz	Гц	c-1	
Сила	ньютон	N	Н	M·KГ·C ⁻²	
Давление	паскаль	Pa	Пa	M-1 · Kr·C-2	
Энергия	джоуль	J	Дж	M ² ·KΓ·C ⁻²	
Мощность	ватт	W	Вт	M2 · KL · C_3	
Количество электричества	кулон	С	Кл	c·A	
Электрическое напряжение	вольт	V	В	M2.KF.C-3.A.	
Электрическая емкость	фарад	F	Ф	м ⁻² кг ⁻¹ ·с ⁴ ·A ²	
Электрическое сопротивление	ОМ	Ω	Om	M2 · KF · C →3 · A →	
Электрическая проводимость	сименс	S	CM	M-2Kr-1. c3. A2	
Поток магнитной индукции	вебер	Wb	B 6	M2 · Kr · C-2·A-1	
Магнитная индукция	тесла	Т	Тл	кг·с-2 · А-1	
Индуктивность	генри	Н	Гн	м ² ·кг·с ⁻² ·А	
Световой поток	люмен	Im	лм	кд - ср	
Освещенность	люкс	1x	лк	м ⁻² ⋅ кд ⋅ ср	
Активность радионуклида	беккерель	Bq	Бк	c-1	
Поглощенная доза ионизирую-	грэй	Gy	Гр	$M^2 \cdot C^{-2}$	
щего излучения		-		, ,	
Эквивалентная доза излучения	зиверт	Sv	Зв	M ² ⋅ C ⁻²	