

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

СИГНАЛЫ ПЕРЕДАЧИ ДАННЫХ, ПОСТУПАЮЩИЕ В КАНАЛЫ СВЯЗИ.

ЭНЕРГЕТИЧЕСКИЕ ПАРАМЕТРЫ

FOCT 26557-85

Издание официальное

УДК 621.391:006.354 Группа П85

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

СИГНАЛЫ ПЕРЕДАЧИ ДАННЫХ, ПОСТУПАЮЩИЕ В КАНАЛЫ СВЯЗИ

Энергетические параметры

Data transmission signals entering in the communication channels.

Energetic parameters

ГОСТ 26557—85

ОКП 665600

Постановлением Государственного комитета СССР по стандартам от 17 июня 1985 г. № 1679 срок действия установлен

с 01.07.86 до 01.07.91

Несоблюдение стандарта преследуется по закону

1. Настоящий стандарт распространяется на сигналы передачи данных, поступающие в коммутируемые (ТФ) и некоммутируемые (ТЧ) проводные каналы связи тональной частоты систем с частотным разделением каналов (ЧРК) при скоростях работы до 9600 бит/с включительно и в первичные широкополосные каналы (ПШК) систем с ЧРК при скоростях работы 48000 и 64000 бит/с.

Стандарт устанавливает основные энергетические параметры сигналов.

Стандарт соответствует рекомендациям МККТТ V 2, V 21, V 22bis, V 27 bis, V 29, V 36.

Пояснения терминов, применяемых в стандарте, приведены в справочном приложении.

- 2. Энергетические параметры сигналов передачи данных, поступающие в коммутируемые двухпроводные и некоммутируемые каналы тональной частоты
- 2.1. Уровень средней мощности сигналов на выходе передатчика устройства преобразования сигналов устанавливают в зависимости от затухания абонентской (соединительной) линии таким образом, чтобы в точке нулевого относительного уровня средняя мощность сигнала не превышала значений, приведенных в табл. 1.

Издание официальное

Перепечатка воспрещена

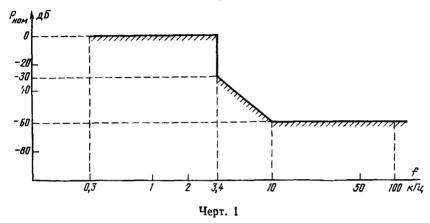
Таблица 1

Тип канала	Скорость работы, бит/с	Максимальная среднеминутная мощность	Максимальная среднечасовая мощность	
ТΦ	_	50 мкВт0 (—13 дБм0)	32 мхВт0 (—15 дБм0)	
ТЧ	До 2400 включи- тельно	32 мкВт0 (—15 дБм0)		
	Свыше 2400	50 мкВт0* (—13 дБм0)	32 мкВт0 (—15 дБм0)	

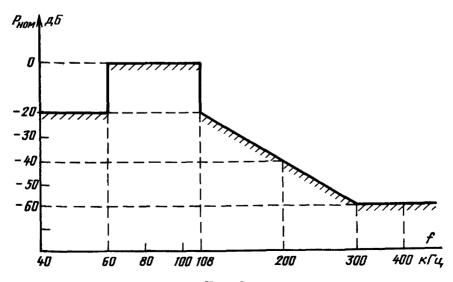
^{*} В период наибольшей нагрузки при коэффициенте использования канала 0,6.

65 мкВт0 — при скорости передачи данных 2400 бит/с; 200 мкВт0 » » » 4800 бит/с.

Таблица 2


Скорость передачи данных, бит/с	Тип канала связи	Несущая частота, Гц	Вид модуляции	Занимаемая полоса частот, Гц
300	тч, тф			910—1250 (канал 1) 1580—1920 (канал 2)
1200	ТЧ			9002500
	ТФ	Πο ΓΟ	OCT 20855—83	650—1750 (канал 1) 1850—2950 (ка- нал 2)
2400	тч			600-3000
4800	ТЧ	1800	Дифференциаль- ная восьмифазовая	600—3000
9600	ТЧ	3000	Амплитудно-фазовая с частично по- давленной верхней боковой полосой частот	400—3300
		1700, 1800	Амплитудно-фазо- вая с двумя боко- выми полосами частот	400—3200
До 75	тч, тф		Частотная	370—4 7 0

 Π римечание. Скорости передачи до 75 бит/с используют в обратном канале.


^{2.2.} Значение максимальной эквивалентной мощности сигнала должно быть:

^{2.3.} Полосы частот ($f_{\text{верхн.}} - f_{\text{вижн.}}$), в которых формируется линейный сигнал данных, указаны в табл. 2.

2.4. Спектральная плотность мощности вне полосы канала, определенная относительно номинального уровня мощности сигнала, должна находиться в пределах значений, определенных ломаной линией, приведенной на черт. 1.

- 3. Энергетические параметры сигналов передачи данных, поступающих в первичные широкополосные каналы
- 3.1. Значение максимальной среднечасовой мощности сигнала не должно быть более 384 мкВт0 (—4,3 дБм0).

Черт. 2

Значение максимальной среднеминутной мощности сигнала не должно быть более 550 мкВт0 (—2,6 дБм0).

Значение максимальной эквивалентной мощности сигнала не должно быть более 2200 мкВт0.

- 3.2. Спектральная плотность мощности внутри полосы канала должна соответствовать требованиям ГОСТ 24174—80.
- 3.3. Спектральная плотность мощности вне полосы канала, определенная относительно номинального уровня мощности сигнала, должна находиться в пределах значений, определенных ломаной линией, указанных на черт. 2.

ПРИЛОЖЕНИЕ Справочное

ПОЯСНЕНИЯ ТЕРМИНОВ, ПРИМЕНЯЕМЫХ В НАСТОЯЩЕМ СТАНДАРТЕ

Термин		Пояснение	
Максимальная ср мощность	еднечасовая	Мощность, которая может быть пре- вышена с вероятностью не более задан- ного малого значения $\varepsilon = 10^{-2}$	
Максимальная с ная мощность	реднеминут-	Мощность, которая может быть превышена с вероятностью не более заданного малого значения ε=10 ⁻³	
Максимальная эк мощность	вивалентная	Эффективная мощность синусоидального сигнала, амплитудное значение напряжения (мощности) которого равно максимальному мгновенному напряжению мощности) исследуемого сигнала	
Мгновенная мощность		Мощность сигнала в отдельные моменты	
Максимальная мгновенная мощ- ность		времени Мощность, которая может быть превышена с вероятностью не более заданного малого значения в (для индивидуальных сигналов $\varepsilon=10^{-8}$)	

Редактор М. В. Глушкова Технический редактор М. И. Максимова Корректор В. Ф. Малютина

Сдано в наб 03.07.85 Подп. в печ. 26.08.85 0,5 усл. п. л. 0,5 усл. кр.-отт. 0,27 уч.-изд. л. Тир. 16 000 Цена 3 коп.