ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

МАТЕРИАЛЫ И ИЗДЕЛИЯ ОГНЕУПОРНЫЕ

Методы определения двускиси титана

Refractory materials and products.

Methods for the determination of
titanium dioxide

ГОСТ 2642.6—86

(CT C9B 974—78, CT C9B 2890—81)

> Взамен ГОСТ 2642.6—81

ОКСТУ 1509

Постановлением Государственного комитета СССР по стандартам от 27 мая 1986 г. № 1311 срок действия установлен

с 01.07.87 до 01.07.92

Несоблюдение стандарта преследуется по закону

Настоящий стандарт распространяется на огнеупорное сырье, материалы, массы и изделия кремнеземистые, алюмосиликатные, глиноземистые, глиноземо-известковые, магнезиальные и магнезиально-известковые и устанавливает методы определения двуокиси титана: фотометрический метод с диантипирилметаном при массовой доле двуокиси титана от 0,02 до 0,20% и фотометрические методы с перекисью водорода при массовой доле двуокиси титана от 0,1 до 5%.

Стандарт полностью соответствует СТ СЭВ 974—78 и СТ СЭВ 2890—81.

1 ОБЩИЕ ТРЕБОВАНИЯ

- 1.1. Общие требования к методам анализа по ГОСТ 2642.0—86.
 - 2. ФОТОМЕТРИЧЕСКИЙ МЕТОД ОПРЕДЕЛЕНИЯ ДВУОКИСИ ТИТАНА [при массовой доле двуокиси титана от 0,20 до $5\,\%$]
 - 2.1. Сущность метода

Метод основан на образовании комплексного соединения титана с перекисью водорода, окращенного в желтый цвет, измере-

*

нии интенсивности его окраски в сернокислой среде в области светопропускания 400—450 нм при использовании синего светофильтра.

2.2. Аппаратура, реактивы и растворы

Спектрофотометр или колориметр фотоэлектрический лабораторный.

Печь муфельная с терморегулятором, обеспечивающая темпе-

ратуру нагрева 900—1000°C.

Тигли платиновые № 100—7 и 100—10 по ГОСТ 6563—75.

Натрий углекислый по ГОСТ 83-79.

Натрий тетраборнокислый 10-водный по ГОСТ 4199—76, обезвоживают при (400 ± 20) °C.

Калий углекислый по ГОСТ 4221—76.

Смесь для сплавления, состоящая из углекислого натрия, безводного тетраборнокислого натрия и углекислого калия в соотношении 1:1:1.

Смесь для сплавления: натрий углекислый и натрий тетраборнокислый безводный смешивают в соотношении 2:1.

Калий пиросернокислый по ГОСТ 7172—76.

Кислота серная по ГОСТ 4204-77 и разбавленная 1:20 и 1:9.

Кислота ортофосфорная по ГОСТ 6552—80.

Водорода перекись по ГОСТ 10929—76, разбавленная 1:9.

Титана (IV) окись, ч. д. а. или ос. ч.

Стандартный раствор двуокиси титана: навеску двуокиси титана массой 0,2 г, предварительно прокаленную при (1000 ± 50) °C до постоянной массы, сплавляют в кварцевом или платиновом тигле с 4 г пиросернокислого калия при температуре (850 ± 50) °C до получения прозрачного расплава. Остывший сплав растворяют в 150 см³ раствора серной кислоты (1:9) при нагревании на электроплитке с закрытой спиралью. Охлажденный прозрачный раствор переводят в мерную колбу вместимостью 1000 см³, доливают до метки раствором серной кислоты (1:20), перемешивают. Стандартный раствор с массовой концентрацией двуокиси титана 0,0002 г/см³.

2.3. Проведение анализа

2.3.1. Навеску материала массой 0.2 г (при массовой доле двуокиси титана до 3%) и 0.1 г (при массовой доле двуокиси титана свыше 3%) помещают в платиновый тигель, смешивают с 2-3 г смеси для сплавления, сплавляют в муфельной печи при (1000 ± 50) °C в течение 15-20 мин.

Сплав охлаждают, растворяют в растворе серной кислоты (1:20), переводят в мерную колбу вместимостью 100 см³, прибавляют 2—3 капли ортофосфорной кислоты, 3 см³ раствора перекиси водорода (1:9), доливают до метки тем же раствором серной кислоты, перемешивают.

Измеряют оптическую плотность растворов на фотоколорисветофильтром (область светопропускания метре с синим 400-450 нм) в кювете с толщиной слоя 20 мм. В качестве раствора сравнения используют раствор контрольного опыта, проведенный через все стадии анализа содержащий все применяемые реактивы в соответствующих количествах.

Массу двуокиси титана в граммах определяют по градуиро-

вочному графику.

Для определения массовой доли двуокиси титана можно использовать аликвотную часть исходного раствора (1 и 3) после выделения двуокиси кремния по ГОСТ 2642.3—86 или аликвотные части раствора (1 и 2), полученные по ГОСТ 2642.5—86.

2.3.2. Построение градуировочного графика

В мерные колбы вместимостью по 100 см3 отмеряют бюреткой аликвотные части стандартного раствора титана: 2,0; 4,0; 7,0; 10.0; 15.0; 20.0; 25.0 и 30.0 см3, что соответствует 0,0004; 0,0008; 0,0014; 0,0020; 0,0030; 0,0040; 0,0050 и 0,0060 г двуокиси титана.

В каждую колбу прибавляют по 2-3 капли ортофосфорной кислоты, по 3 см³ раствора перекиси водорода, доливают до метки раствором серной кислоты (1:20), перемешивают.

Далее определение проводят по п. 2.3.1. В качестве раствора

сравнения используют раствор контрольного опыта.

найденным средним арифметическим значениям оптической плотности из трех серий опытов и соответствующим им массам двуокиси титана в граммах строят градуировочный график.

2.4. Обработка результатов

2.4.1. Массовую долю двуокиси титана (Х) в процентах вычисляют по формуле

$$X = \frac{m \cdot 100}{m_1} ,$$

где т— масса двуокиси титана, найденная по градуировочному графику, г;

 m_1 — масса навески, г.

При анализе аликвотной части раствора массовую долю двуокиси титана (X_1) в процентах вычисляют по формуле

$$X_1 = \frac{m \cdot V \cdot 100}{V_1 \cdot m_1}$$
 ,

где V — объем исходного раствора, см³; V_1 — аликвотная часть исходного раствора, взятая для определения двуокиси титана, см3.

2.4.2 Абсолютные расхождения результатов параллельных определений не должны превышать допускаемых значений, денных в табл. 1.

Массовая доля двуокиси титана, %	Абсолютное допускаемое расхождение, %		
От 0,2 до 0,5 включ.	0,05		
Св. 0,5 » 1,0 »	0,07		
» 1,0 » 2,5 »	0,10		
» 2,5 » 5,0 »	0,20		

3. ФОТОМЕТРИЧЕСКИЙ МЕТОД ОПРЕДЕЛЕНИЯ ДВУОКИСИ ТИТАНА В МАГНЕЗИАЛЬНЫХ И МАГНЕЗИАЛЬНО-ИЗВЕСТКОВЫХ ОГНЕУПОРНЫХ МАТЕРИАЛАХ И ИЗДЕЛИЯХ

[при массовой доле двуокиси титана от 0,02 до 0,20%]

3.1. Сущность метода

В кислом растворе титан образует с диантипирилметаном окрашенный в желтый цвет комплексный катион $(TiR_3)^{4+}$, оптическую плотность которого измеряют при длине волны 385 нм или при использовании синего светофильтра.

3.2. Аппаратура, реактивы и растворы

Спектрофотометр или колориметр фотоэлектрический лабораторный.

Кислота соляная по ГОСТ 3118—77, разбавленная 1:1 и раствор молярной концентрации эквивалента 1 моль/дм³.

Кислота аскорбиновая, раствор 50 г/дм3.

Диантипирилметан, раствор 50 г/дм 3 в растворе соляной кислоты 1 моль/дм 3 .

Натрий углекислый по ГОСТ 83-79.

Натрий тетраборнокислый 10-водный по ГОСТ 4199—76, обезвоживают при (400 ± 20) °C.

Смесь для сплавления, состоящая из углекислого натрия и тетраборнокислого натрия безводного в соотношении 2:1.

Титана (IV) окись, ч.д.а. или ос.ч.

Стандартный раствор двуокиси титана: 0,100 г двуокиси титана, прокаленной при (1000 ± 50) °C до постоянной массы, сплавляют в платиновом тигле с 3—4 г смеси для сплавления. Сплав охлаждают и растворяют в 100 см³ раствора соляной кислоты (1:1). Раствор переводят в мерную колбу вместимостью 1000 см³, доводят до метки водой и перемешивают. Стандартный раствор с массовой концентрацией двуокиси титана 0,0001 г/см³ (раствор A).

Градуировочный стандартный раствор двуокиси титана: отбирают пипеткой 50 см³ стандартного раствора двуокиси титана А в мерную колбу вместимостью 500 см³, прибавляют 100 см³ раствора соляной кислоты (1:1), доводят водой до метки и перемеши-

вают. Градуировочный стандартный раствор с массовой концентрацией двуокиси титана 0,00001 г/см³ (раствор Б).

3.3. Проведение анализа

3.3.1. Навеску материала массой 0,5 или 1 г сплавляют с 3—5 г смеси для сплавления. Сплав растворяют в 50 см³ соляной кислоты (1:1), переводят в мерную колбу вместимостью 100 см³,

доводят до метки водой и перемешивают.

Из полученного раствора отбирают пипеткой аликвотную часть 10—20 см³ раствора, содержащего 0,00001—0,00007 г двуокиси титана, в мерную колбу вместимостью 100 см³, добавляют 5 см³ раствора аскорбиновой кислоты, через 5 мин добавляют 10 см³ раствора соляной кислоты (1:1) и 5 см³ раствора диантипирилметана. Через 30 мин раствор в колбе доводят до метки водой и перемешивают.

Измеряют оптическую плотность полученного раствора при длине волны 385 нм. Раствором сравнения служит раствор контрольного опыта, содержащий все применяемые реактивы. Массу двуокиси титана в граммах находят по градуировочному графику.

3.3.2. Для построения градуировочного графика в 10 из 11 мерных колб вместимостью по 100 см³ отбирают 0,3; 0,5; 0,8; 1,0; 2,0; 3,0; 4,0; 5,0; 6,0 и 7,0 см³ градуировочного стандартного раствора двуокиси титана Б. В каждую колбу приливают по 5 см³ раствора аскорбиновой кислоты для восстановления трехвалентного железа, затем по 10 см³ соляной кислоты (1:1) и 5 см³ раствора диантилирилметана. Через 30 мин растворы в колбах доводят водой дометки, перемещивают и измеряют величины оптической плотности. По измеренным значениям оптических плотностей и соответствующим им массам двуокиси титана в граммах строят градуировочный график.

Для построения градуировочного графика допускается использовать стандартные образцы.

3.4. Обработка результатов

3.4.1. Массовую долю двуокиси титана (X_1) в процентах вычисляют по формуле

$$X_1 = \frac{m \cdot V}{m_1 \cdot V_1} \cdot 100,$$

где m — масса двуокиси титана, найденная по градуировочному графику, r;

V — общий объем исходного раствора, см³;

 m_1 — масса навески, г;

 V_1 — объем аликвотной части раствора, см³.

3.4.2. Абсолютные расхождения результатов параллельных определений не должны превышать допускаемых значений, приведенных в табл. 2.

Массовая доля двуокиси титана, %	Абсолютное допускаемое расхождение, %
От 0,02 до 0,05 включ.	0,004
Св. 0,05 » 0,20 »	0,008

4. ФОТОМЕТРИЧЕСКИЙ МЕТОД ОПРЕДЕЛЕНИЯ ДВУОКИСИ ТИТАНА В АЛЮМОСИЛИКАТНЫХ И КРЕМНЕЗЕМИСТЫХ ОГНЕУПОРНЫХ МАТЕРИАЛАХ И ИЗДЕЛИЯХ

[при массовой доле двуокиси титана от 0,1 до 3%]

4.1. Метод распространяется на огнеупорные глины, каолины, шамотные, графито-шамотные и полукислые изделия, а также алюмосиликатные и глиноземистые материалы и изделия с массовой долей окиси алюминия до 95% и кремнеземистые с массовой долей двуокиси кремния 80% и более.

4.2. Сущность метода

Фотометрический метод определения двуокиси титана основан на сплавлении пробы со смесью тетраборнокислого натрия и углекислого натрия и измерении оптической плотности комплекса титана с перекисью водорода в сернокислой среде при длине волны 410 нм.

4.3. Аппаратура, реактивы и растворы

Печь муфельная с нагревом 1000—1100 °С.

Спектрофотометр или колориметр фотоэлектрический лабора-

торный.

Натрий тетраборнокислый 10-водный по ГОСТ 4199—76, обезвоживают, предварительно нагревая в платиновой чашке на электрической плитке, а потом в электрической печи при постепенном повышении температуры до (850±50) °С. Полученный плавленый тетраборнокислый натрий охлаждают. Растирают в порошок и сохраняют в банке для сыпучего материала или в эксикаторе.

Натрий углекислый по ГОСТ 83—79.

Кислота серная по ГОСТ 4204—77, разбавленная 1:1, 1:10, 1:20.

Кислота ортофосфорная по ГОСТ 6552-80.

Водорода перекись по ГОСТ 10929—76, разбавленная 1:9.

Смесь для сплавления: натрий углекислый и натрий тетраборнокислый безводный смешивают в соотношении 1:1.

Титана (IV) окись ч.д.а. или ос.ч.

Стандартный раствор двуокиси титана: 0,2000 г двуокиси титана, предварительно прокаленной при (1000±50) °С до постоянной массы, сплавляют в платиновом тигле с 4 г смеси для сплавления. Сплав охлаждают и растворяют в 150 см³ серной кислоты

(1:1). Раствор переводят в мерную колбу вместимостью 1000 см³, доводят до метки раствором серной кислоты 1:20 и перемешивают. Стандартный раствор с массовой концентрацией двуокиси титана 0,0002 г/см³.

4.4. Проведение анализа

4.4.1. Навеску пробы массой 0,2 г помещают в платиновый тигель, смещивают с 3 г смеси для сплавления и сплавляют при

(1100±50) °С до получения прозрачного расплава.

Сплав охлаждают, разлагают 50 см³ раствора серной кислоты (1:10), переводят в мерную колбу вместимостью 100 см³, прибавляют 2—3 капли ортофосфорной кислоты, 3 см³ раствора перекиси водорода (1:9), доводят до метки раствором серной кислоты (1:20) и перемешивают.

Оптическую плотность полученного раствора измеряют при длине волны 410 нм или при применении синего светофильтра в кювете с толщиной слоя 20 мм. Раствором сравнения служит раствор контрольного опыта, содержащий все применяемые реактивы в соответствующих количествах.

Для определения массовой доли двуокиси титана можно использовать также раствор, полученный после выделения двуокиси

кремния по ГОСТ 2642.3—86.

4.4.2. Для построения градуировочного графика в девять из десяти мерных колб вместимостью по 100 см³ отмеряют бюреткой 1,0; 3,0; 5,0; 8,0; 10,0; 15,0; 20,0; 25,0 и 30,0 см³ стандартного раствора двуокиси титана. В каждую колбу прибавляют по 2—3 капли ортофосфорной кислоты и по 3 см³ раствора перекиси водорода (1:9), доводят до метки раствором серной кислоты (1:20) и перемешивают. Оптическую плотность растворов измеряют при длине волны 410 нм или при применении синего светофильтра в кювете с толщиной слоя 20 мм.

По найденным значениям оптической плотности и соответствующим им массам двуокиси титана в граммах строят градуировочный график.

Для построения градуировочного графика допускается использовать стандартные образцы.

4.5. Обработка результатов

4.5.1. $\dot{\rm M}$ ассовую долю двуокиси титана (X_2) в процентах вычисляют по формуле

$$X_2 = \frac{m_1 \cdot 100}{m} ,$$

где m_1 — масса двуокиси титана, найденная по градуировочному графику, г;

т — масса навески, г.

4.5.2. Абсолютные расхождения результатов параллельных определений не должны превышать допускаемых значений, приведенных в табл. 3.

Массовая доля двуокиси титана, %	Абсолютное допускаемое расхождение,	
От 0,1 до 1,0 включ.	0,05	
Св. 1,0 » 3,0 »	0,10	

5. ФОТОМЕТРИЧЕСКИЙ МЕТОД ОПРЕДЕЛЕНИЯ ДВУОКИСИ ТИТАНА В АЛЮМОСИЛИКАТНЫХ И КРЕМНЕЗЕМИСТЫХ ОГНЕУПОРНЫХ МАТЕРИАЛАХ И ИЗДЕЛИЯХ

[при массовой доле двуокиси титана от 0,02 до 0,20%]

5.1. Определение двуокиси титана с использованием в качестве комплексообразователя диантипирилметана в огнеупорных глинах, каолинах, шамотных, графито-шамотных и полукислых изделиях, а также алюмосиликатных и глиноземистых огнеупорных материалах и изделиях с массовой долей окиси алюминия до 95% и кремнеземистых с массовой долей двуокиси кремния 80% и более проводят по разд. 3 с применением навесок массой 0,5 г.

Изменение № 1 ГОСТ 2642.6—86 Материалы и изделия огнеупорные. Методы определения двуокиси титана

Утверждено и введено в действие Постановлением Комитета стандартизации и метрологии СССР от 07.02.92 № 118

Дата введения 01.07.92

Наименование стандарта изложить в новой редакции: «Огнеупоры и отнеупорное сырье. Методы определения двуокиси титана

Refractories and refractory raw materials. Methods for the determination

of titanum oxide».

На обложке и первой странице под обозначением стандарта исключить обозначения: (СТ СЭВ 974—78, СТ СЭВ 2890—81).

Вводная часть. Первый абзац. Заменить слово и значение: «магнезиальные» на «высокомагнезиальные»; 0,20 на 0,2;

второй абзац исключить.

Раздел 2. Наименование. Заменить значение: 0,20 на 0,2.

Пункт 2.3.1. Пятый абзац исключить.

Пункт 2.4.2 изложить в новой редакции: «2.4.2. Нормы точности и нормативы контроля точности определений массовой доли двуокиси титана приведены в таблице.

(Продолжение см. с. 128)

Массовая доля двуокиси титана, %	Нормы точности и нормативы контроля точности, %			
	Δ	d _k	d 2	δ
От 0,02 до 0,05 включ. Св. 0,05 » 0,1 » » 0,1 » 0,2 » » 0,2 » 0,5 » » 0,5 » 1 » » 1 » 2 » » 2 » 5 »	0,013 0,024 0,04 0,06 0,08 0,11 0,18	0,017 0,030 0,05 0,07 0,10 0,14 6,22	0,014 0,025 0,04 0,06 0,08 0,12 0,18	0,009 0,016 0,012 0,04 0,05 0,07 0,12

Раздел 3. Наименование. Заменить слово «магнезиальных» на «высоко-магнезиальных».

Пункты 3.4.2, 4.5.2 изложить в новой редакции: «3.4.2 (4.5.2). Нормы точности и нормативы контроля точности определений массовой доли двуокиси титана приведены в таблице».

(ИУС № 5 1992 г.)