МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

ГЛИНОЗЕМ

МЕТОДЫ ОПРЕДЕЛЕНИЯ ОКСИДА НАТРИЯ И ОКСИДА КАЛИЯ

Издание официальное

Предисловие

1 РАЗРАБОТАН Госстандартом России

ВНЕСЕН Техническим секретариатом Межгосударственного Совета по стандартизации, метрологии и сертификации

2 ПРИНЯТ Межгосударственным Советом по стандартизации, метрологии и сертификации 21 октября 1993 г.

За принятие проголосовали:

Наименование государства	Наименование национального органа стандартизации	
Кыргызская Республика	Кыргызстандарт	
Республика Молдова	Госдепартамент Молдовастандарт	
Российская Федерация	Госстандарт России	
Республика Таджикистан	Таджикгосстандарт	
Туркменистан	Туркменглавгосинспекция	

3 Постановлением Комитета Российской Федерации по стандартизации, метрологии и сертификации от 02.06.94 № 160 межгосударственный стандарт ГОСТ 25542.3—93 введен в действие непосредственно в качестве государственного стандарта Российской Федерации с 01.01.95

4 B3AMEH FOCT 25542.3-82

© Издательство стандартов, 1995

Настоящий стандарт не может быть полностью или частично воспроизведен, тиражирован и распространен на территории Российской Федерации в качестве официального издания без разрешения Госстандарта России

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

глинозем

Методы определения оксида натрия и оксида калия

ГОСТ 25542.3—93 (ИСО 1617—76)

Alumina. Methods for the determination of sodium oxide and potassium oxide

ОКСТУ 1711

Дата введения 01.01.95

Настоящий стандарт устанавливает эмиссионный пламенно-фотометрический и атомно-абсорбционный методы определения в глиноземе оксида натрия при массовой доле от 0,05 до 1,0% и оксида калия при массовой доле от 0,01 до 0,6%, а также пламенный эмиссионный спектрофотометрический метод определения натрия по международному стандарту ИСО 1617—76 (см. приложение).

Методы основаны на кислотном разложении пробы или спекании пробы с борной кислотой и измерении интенсивности излучения или атомной абсорбции натрия при длине волны 589,0 нм и калия при длине волны 766,5 нм.

1. ОБЩИЕ ТРЕБОВАНИЯ

Общие требования к методам анализа — по ГОСТ 25542.0.

2. АППАРАТУРА, РЕАКТИВЫ И РАСТВОРЫ

Спектрометр атомно-абсорбционный в эмиссионном или абсорбционном режиме работы или эмиссионный пламенный фотометр (с пламенем ацетилен—воздух, пропан—воздух или пропан—бутан—воздух) со всеми принадлежностями.

Ацетилен технический по ГОСТ 5457.

Бутан-пропан газообразный.

Вода, дважды дистиллированная в кварцевом аппарате, для приготовления растворов и проведения анализа.

Кислота соляная по ГОСТ 3118 и раствор 1 моль/дм 3 .

Кислота серная по ГОСТ 4204.

Смссь соляной и серной кислот в соотношении 10:1.

Кислота борная по ГОСТ 9656.

Натрий хлористый по ГОСТ 4233.

Калий хлористый по ГОСТ 4234.

Раствор-фон: 15 г борной кислоты расплавляют в платиновом тигле при температуре 900°C. После охлаждения тигель помещают в стакан, содержащий 250 см³ воды, плав выщелачивают. Затем тигель вынимают и обмывают водой в стакан. Раствор переносят в мерную колбу вместимостью 500 см³, доливают до метки водой и перемешивают.

Стандартные растворы натрия

Раствор А: 1,8860 г предварительно высушенного при температуре 500°C в течение 30 мин и охлажденного в эксикаторе хлористого натрия растворяют в воде в мерной колбе вместимостью 1000 см³. Раствор доливают до метки водой и перемешивают. Раствор хранят в полиэтиленовом сосуде.

1 см³ раствора А содержит 0,001 г оксида натрия.

Раствор Б: 50,0 cм³ раствора A переносят в мерную колбу вместимостью 250 см³, доливают до метки водой и перемешивают. Раствор хранят в полиэтиленовом сосуде. 1 см³ раствора Б содержит 0,0002 г оксида натрия.

Стандартные растворы калия

Раствор В: 1,5830 г предварительно высушенного при температуре 500°C в течение 30 мин и охлажденного в эксикаторе хлористого калия растворяют в воде в мерной колбе вместимостью 1000 см3. Раствор доливают до метки водой и перемешивают. Раствор хранят в полиэтиленовом сосуде.
1 см³ раствора В содержит 0,001 г оксида калия.
Раствор Г: 50,0 см³ раствора В переносят в мерную колбу

вместимостью 250 см³, доливают до метки водой и перемешивают. Раствор хранят в полиэтиленовом сосуде. 1 см^3 раствора Γ содержит 0,0002 г оксида калия.

3. ПРОВЕДЕНИЕ АНАЛИЗА

- 3.1. Аликвотную часть объемом 25 cm^3 раствора пробы, приготовленного по методу разложения пробы кислотами под ГОСТ Р 50332.1, помещают в мерную колбу давлением по вместимостью 100 см³, доливают до метки водой и перемешивают, или раствор пробы готовят следующим образом:
- 0,5 г пробы перемешивают с 1,5 г борной кислоты в платиновом тигле, тигель помещают в муфельную печь и медленно нагревают до температуры 600-700°С. После прекращения потрескивания и вспучивания содержимого тигля его прокаливают 30 мин при температуре 1000°С. После охлаждения тигель помещают в стакан,

заливают горячей водой, через 20 мин добавляют 25 см³ раствора соляной кислоты и выщелачивают плав при нагревании. Затем тигель вынимают из стакана и обмывают горячей водой в стакан. После охлаждения раствор переносят в мерную колбу вместимостью 100 см³, доливают до метки водой и перемешивают. Раствор фильтруют через фильтр "синяя лента" в сухой стакан, отбрасывая первые порции фильтрата.

Одновременно с анализом пробы в тех же условиях проводят контрольный опыт.

Измеряют эмиссию или атомную абсорбцию калия, а затем натрия в растворе пробы параллельно с растворами для построения градуировочного графика и контрольного опыта при длине волны 589,0 нм для натрия и 766,5 нм для калия. Измерения повторяют в обратном порядке и результаты усредняют.

Из значения атомной абсорбции или эмиссии раствора пробы вычитают значение атомной абсорбции или эмиссии раствора контрольного опыта.

Массу оксидов натрия и калия в растворе пробы находят по градуировочному графику. В зависимости от массовой доли оксида калия строят два градуировочных графика.

3.2. Для построения градуировочного графика оксида натрия при массовой доле оксида калия менее 0,1% в восемь мерных колб вместимостью 100 см³ каждая помещают при кислотном разложении по 4 см³ смеси кислот или при спекании пробы с борной кислотой по 50 см³ раствора-фона, затем в семь из них отбирают 1,0; 2,5; 5,0; 10,0; 15,0; 20,0 и 25,0 см³ стандартного раствора натрия Б, что соответствует 0,0002; 0,0005; 0,001; 0,002; 0,003; 0,004 и 0,005 г оксида натрия. Все колбы доливают до метки водой и перемешивают. Растворы хранят в кварцевой или полиэтиленовой посуде. Измеряют эмиссию или атомную абсорбцию натрия в растворах при длине волны 589,0 нм.

При массовой доле оксида калия свыше 0,1% для построения градуировочного графика оксида натрия готовят новый ряд растворов с добавкой стандартного раствора калия соответственно массовой доле оксида калия и измеряют вновь эмиссию или атомную абсорбцию натрия в растворах. Массу оксида натрия в растворе пробы находят по новому градуировочному графику.

Для построения градуировочного графика оксида калия в восемь мерных колб вместимостью 100 см^3 каждая помещают при кислотном разложении по 4 см^3 смеси кислот или при спекании пробы с борной кислотой по 50 см^3 раствора-фона, затем в семь из них отбирают 0.2; 0.5; 1.0; 2.5; 5.0; 10.0 и 15.0 см 3 стандартного раствора калия Γ , что соответствует 0.00004; 0.0001; 0.0002; 0.0005; 0.001; 0.002 и 0.003 г оксида калия. Все колбы

доливают до метки водой и перемешивают. Раствор хранят в кварцевой или полиэтиленовой посуде. Измеряют эмиссию или атомную абсорбцию калия в растворах при длине волны 766,5 нм.

Из значений эмиссий или атомных абсорбций растворов вычитают значение эмиссии или атомной абсорбции раствора, не содержащего стандартный раствор натрия или калия, и по полученным значениям и соответствующим им массам оксида натрия или оксида калия строят градуировочный график.

3.2.1. Учитывая различия в чувствительности эмиссионных пламенных фотометров, допускается изменять концентрации растворов для построения градуировочных графиков для того, чтобы фотометрирование осуществлялось в области концентраций оксидов натрия и калия, обеспечивающих более высокую чувствительность и точность определения на применяемой аппаратуре. Разбавление растворов в настоящем случае осуществлялось раствором-фоном.

4. ОБРАБОТКА РЕЗУЛЬТАТОВ

4.1. Массовую долю оксида натрия или оксида калия (X) в процентах вычисляют по формуле

$$X = \frac{m_1 \cdot K}{m} \cdot 100,$$

где m_1 — масса оксидов натрия или калия, найденная по градуировочному графику, г;

m — масса навески глинозема, г;

К — коэффициент, учитывающий разбавление (в соответствии с п. 3.2.1).

4.2. Допускаемые расхождения между результатами параллельных определений и результатов анализа не должны превышать значений, указанных в таблице.

Массовая доля оксида натрия или оксида калия, %	Допускаемое расхождение, % (абс.)	
	dex	d _{BC}
От 0,01 до 0,05 включ. Св. 0,05 » 0,15 » » 0,15 » 0,40 » » 0,40 » 0,60 » » 0,60 » 1,00 »	0,01 0,02 0,04	0,02 0,03 0,06
	0,06 0,10	0,09 0,15

ПРИЛОЖГИИІ. Орязательное

пламенный эмиссионный спектрофотометрический МЕТОД ОПРЕДЕЛЕНИЯ НАТРИЯ (MCO 1617-76)

1. НАЗНАЧЕНИЕ И ОБЛАСТЬ ПРИМЕНЕНИЯ

Настоящий стандарт устанавливают пламенный эмиссионный спектрофотомет рический мето і определения содержания натрия в глиноземе, используемом для производства алюминия

Метод применим для продуктов с содержанием натрия в виде оксида не менее 0,05%

2. ССЫЛКИ

ГОСТ 25389 Глинозем Методы подготовки проб ГОСТ 27798 Глинозем Отбор и подготовка проб

3. СУЩНОСТЬ МЕТОДА

Сплавление при контролируемой температуре навески глинозема со смесью карбоната лития и триоксида бора или со смесью карбоната лития и тетрабората лития

Растворение плава в соляной кислоте

Распыление раствора в пламени и определение содержания натрия измерением интенсивности светового излучения при длине во ны 589 им

4. РЕАКТИВЫ

Для анализа используют только реактивы квалификации ч д а , чистиллиро ванную воду или воду эквивалентной чистоты

- 4 1 Карбонат лития, безводный (Г12СО3)
- 42 Триокси і бора (В2О3), и ні
- 421 Борная кислота (НаВОз), или
- 4 2 2 Тетраборат лития (I₁₂B₄O₇)

II р и м е ч а н и е Ссли используют кристаллический пятивочный тетраборат лития (Li2B4O7 5H2O), сначала обезвоживают его постепенным нагреванисм в платиновои чашке

- 4.3 Алюминии чистотои 99,99% в виде стружки
- 4 4 Ртуть сверхчистая
- 4.5 Aцетон, ρ 0,788 г/см³
- 4 6 Соляная кислота, ρ 1,19 г/см³, примерно 38% ныи раствор 4 7 Азотная кислота, ρ 1,40 г/см³, примерно 68%-ныи раствор
- 48 Станцартный раствор натрия, со тержащий 2,00 г Na₂O в 1 дм³
- 3,774 г хлорида нагрия, предварительно высушенного в течение 12 ч при 1100°C и охлажденного в эксикаторе, взвеннивают с точностью до 0,001 г и растворяют в воде Помещают расгвор в мерную колбу вместимостью 1000 см3, доливают до метки водой и переменнивают. Переносят раствор в пластиковую бутыль

1 см³ стандартного раствора содержит 2,00 мг Na₂O.

4 9 Стандартный раствор натрия, содержащий 0,200 г Na₂O в 1 дм³

50,0 см³ стандартного раствора натрия, приготовленного согласно и 48, помещают в мерную колбу вместимостью 500 см³, доливают до метки водон и переменцивают.

1 см3 стандартного раствора содержит 0,200 мг Na₂O.

Раствор готовят непосредственно перед использованием и переносят в пластиковую бутыль

4 10 Стандартный раствор патрия, содержащий 0,080 г Na₂O в 1 дм³

40 см³ стандартного раствора натрия, приготовленного согласно п 48, помещают в мерную колбу вместимостью 1000 см³, доливают до метки водон и перемешивают

1 см³ стандартного раствора содержит 0,080 мг Na₂O

Раствор готовят непосредственно перед использованием и переносят его в пластиковую бутыль

5. АППАРАТУРА

Стандартное лабораторное оборудование и указанное в пп 51-56

- 5.1. Тигель платиновый с верхним диаметром 50 мм, нижним диаметром 35 мм, высотой 40 мм, с платиновой крышкой или
- 5 1 1 Титель из платиново-золотого сплава (Ап 5%) с теми же размерами,
- 5 1.2 Графитовый тигель подходящего размера с теми же размерами, что и платиновый тигель (п. 5 1)

И р и м е ч а п и е. Используя пробу глинозема с известным содержанием оксида натрия, проводят анализ с целью проверить, что чистога и плотность графика не являются причинои изменения содержания Na₂O Плотность графита, удовлетворяющая этим требованиям, составляет не менее 1,7

- 5 2 Электрическая сушильная печь с контролируемой температурои (500 ± 20)°C
 - 5 3 Электрическая печь с контролируемой температурои (1100± 50)°C
 - 5 4 Стакан из боросиликатного стекла вместимостью 400 см
 - 5 5 Стакан из боросиликатного стекла вместимостью 600 см³
- 5 6 Иламенный спектрофотометр, спабженный атомизирующей горелкой, пригодной для возбуждения эмиссии натрия при 589 им

6. МЕТОДИКА АНАЛИЗА

- 61. Павеска
- 1 г анализируемой пробы, высущенной при 300°С (см ГОСГ 25389), взвенивают с точностью до 0,001 г.
 - 62 Построение градуировочного графика
 - 621 Приготовление основных растворов
- 6211. Приготовление раствора хлорида алюминия, содержащего 10 г Al_2O_3 в 1 дм 3
- 1 г алюминия очищают в небольшом количестве раствора азотной кислоты, промывают водой и сущат ацетоном 5,294 г чистого сухого металла взвешивают с точностью до 0,001 г, помещают в стакан и добавляют приблизительно 100 см³ воды и 95 см³ раствора соляной кислогы. Для облегчения растворения добавляют 1 каплю ртути. Когда реакция закончится, помещают стакан на песчаную баню и продолжают осторожно нагревать до полного растворения алюминия. Охлаждают и переносят раствор в мерную колбу вместимостью 1000 см³ Ополаскивают стакан

и присоединяют промывные воды в ту же колбу, доливают до метки и переменнивают.

Перепосят в пластиковую бутыль.

6.2.1.2. Приготовление раствора соляной кислоты для плавня

В стакан из боросиликатного стекла вместимостью 400 см³ помещают:

14 г карбоната лития и 17,5 г триоксида бора или 3,1 г борной кислоты, или

7,5 г карбоната лития и 21 г тетрабората лития.

Добавляют приблизительно 50 см³ воды и небольшими порциями 30 см³ раствора соляной кислоты. После окончания выделения газа помещают стакан на песчаную баню и перемешивают время от времени стеклянной палочкой до полною растворения борной кислоты. Доливают приблизительно 200 см³ горячей воды, охлаждают и затем переносят в мерную колбу вместимостью 250 см³. Ополаскивают стакан, сливают промывные воды в ту же колбу, доливают до метки и перемешивают.

Помещают раствор в пластиковую бутыль.

6.2.2. Приготовление стандартного раствора сравнения (см. п. 8.1).

В серию из восьми мерных колб вместимостью 100 см³ помещают последовательно по 40 см³ раствора алюминия, приготовленного согласно п. 6.2.1, 10 см³ раствора плавня, приготовленного согласно п. 6.2.1, 10 см³ раствора плавня, приготовленного согласно п. 6.2.1.2, и затем объемы стандартного раствора натрия, приготовленного согласно п. 4.9, в соответствии с таблицей.

Стандартный раствор натрия, см ³	Соответствующая масса оксида натрия, мг	Масса оксида натрия, относящаяся к 100 г оксида алюминия, г
0*	0	0
5,0	1,00	0,25
10,0	2,00	0,50
12,5	2,50	0,625
15,0	3,00	0,75
17,5	3,50	0,875
20,0	4,00	1,00
25,0	5,00	1,25

^{*} Контрольный опыт для градуировочного графика.

Затем доливают до метки и переносят растворы в пластиковые сосуды.

Используют только свежеприготовленные растворы сравнения.

6.2.3. Спектрофотометрические измерения

Включают спектрофотометр на достаточное время для достижения стабильности. Регулируют чувствительность анпаратуры и ширину щели в соответствии с характеристиками используемой аппаратуры, обеспечивая при диапазоне частот не более 6 нм максимум эмиссии (георетическая длина волны 589 нм).

Распыляют серию стандартных растворов сравнения в пламя и измеряют интенсивность эмиссии.

Необходимо следить, чтобы количество впрыскиваемого в пламя раствора сравнения оставалось постоянным в течение всего времени построения градуировочного графика.

6.2.4. Построение градуировочного графика

Строят график, откладывая, например, на оси абсцисс массу оксида натрия в миллиграммах, содержащуюся в 100 см³ стандартного раствора сравнения, а на

оси ординат — соответствующее значение интенсивности эмиссии, уменьшенное на измеренное значение интенсивности эмиссии контрольного опыта для построения градуировочного графика, по логарифмической шкале.

6.3. Определение

6.3.1. Приготовление анализируемого раствора

В тигле взвешивают:

1,40 г карбоната лития;

1,75 г триоксида бора или 3,10 г борной кислоты;

или:

0,75 г карбоната лития;

2,10 г тетрабората лития.

Тщательно перемешивают, добавляют навеску и снова тщательно перемешивают платиновым шпателем. Закрывают тигель крышкой, помещат в печь с температурой $(500 \pm 20)^{\circ}$ С и оставляют при этой температуре до расплавления флюса.

Переносят тигель с содержимым в печь с температурой (1100 ± 50)°С и оставляют при этой температуре, не допуская повышения температуры более 1150°С до полного расплавления оксида алюминия (приблизительно 90 мин).

П р и м е ч а н и е. Навеску пробы предварительно размалывают для облегчения расплавления при более низких температурах. При измельчении используют корундовую ступку.

Извлекают тигель из печи и оставляют охлаждаться на воздухе. Нагревают его снова на пламени горелки Бунзена и затем быстро помещают основание тигля в холодную водяную баню, чтобы растрескалась стекловидная масса.

Огделяют кусочки расплавленной массы с помощью платиновой палочки. Если необходимо, слегка очищают стенки тигля шпателем и собирают их в стакан из боросиликатного стекла вместимостью 400 см³. Добавляют 7,5 см³ раствора соляной кислоты в стакан и 5 см³ в тигель. Осторожно нагревают тигель на песчаной бане, пока остаток совершенно не растворится. Переносят раствор в стакан, ополаскивают тигель несколько раз горячей водой, собирая промывные воды в стакан. Закрывают стакан часовым стеклом и помещают его на песчаную баню. Осторожно кипятят до полного растворения спека. Извлекают стакан из бани и охлаждают. Переносят раствор в мерную колбу вместимостью 250 см³, тщательно обмывают стакан, присоединяют промывные воды в ту же колбу, доливают до метки и перемешивают.

Переносят раствор в пластиковую бутыль.

6.3.2. Спектрофотометрические измерения

6.3.2.1. Предварительные измерения

Проводят предварительные измерения, как указано в п. 6.2.3, в то же время, что и спектрофотометрические измерения стандартных растворов сравнения.

6.3.2.2. Проверочные измерения

Проводят второе измерение анализируемого раствора, заключая его между двумя растворами сравнения, которые отличаются только на $0.05~\rm r~Na_2O$ (относительно $100~\rm r~Al_2O_3$).

Готовят стандартные растворы сравнения, используя объемы двух основных растворов, приготовленных по пп. 6.2.1.1 и 6.2.1.2, как указано в п. 6.2.2, с добавкой соответствующих объемов стандартного раствора натрия, приготовленного согласно п. 4.10. Эти количества не должны отличаться более чем на 2,5 см³.

6.4. Контрольный опыт

6.4.1. Приготовление раствора

В стакан помещают то же количество флюса, которое используют при приготовлении анализируемого раствора (см. п. 6.3.1). Добавляют приблизительно 50 см³ воды и 3 см³ раствора соляной кислоты. Помещают стакан на горячую плитку и перемешивают время от времени до полного растворения. Продолжают нагрев и перемешивание для удаления диоксида углерода. Охлаждают и переносят

раствор в мерную колбу вместимостью 250 см³, которая уже содержит 100 см³ раствора алюминия. Тиательно обмывают стакан, собирают промывные воды в туже колбу, доливают до мегки и переменивают.

Переносят раствор в пластиковую бутыль.

6.4.2. Спектрофотометрические измерения

Проводят измерения, как указано в п. 6.2.3, вместе с измерениями анализируемого раствора и стандартных растворов сравнения, как указано в пп. 6.3.2.1 и 6.3.2.2.

7. ВЫРАЖЕНИЕ РЕЗУЛЬТАТОВ

Концентрацию c_1 в граммах на кубический диаметр, непосредственно представленную спектрофотометром, вычисляют по формуле

$$c = \left[c_1 + (c_2 - c_1) \frac{E - E_1}{E_2 - E_1}\right] - \left[c_3 + (c_4 - c_3) \frac{E_0 - E_3}{E_4 - E_5}\right],$$

где c1 — концентрация более слабого раствора сравнения, используемого в определении, г/дм³;

 E_1 — значение соответствующего спектрофотометрического измерения;

 с2 — концентрация более сильного стандартного раствора сравнения, используемого для определения, г/дм³;

E2 — значение соответствующего спектрофотометрического измерения;

вначение спектрофотометрического измерения, соответствующее определению;

 сз — концентрация более слабого раствора сравнения, используемого для контрольного опыта, г/дм³;

 E_3 — соответствующее значение спектрофотометрического измерения;

 с4 — конценграция более сильного стандартного раствора сравнения, используемого в холостом опыте, г/дм³;

 E_4 — соответствующее значение спектрофотометрического измерения;

 Ео — значение спетрофотометрического измерения, соответствующее контрольному опыту.

Массовую долю натрия в виде оксида натрия в процентах массы рассчитывают по формуле 25C.

8. ПРИМЕЧАНИЕ К МЕТОДИКЕ АНАЛИЗА

- 8.1. Пеобходимо иметь в виду, что чувствительность приборов пламенной фотометрии может отличаться, при необходимости концентрации стандартных растворов сравнения, указанных в п. 6.6.2, и растворов, указанных в пп. 6.3.1 и 6.4.1, могут быть изменены так, чтобы измерения проводились в пределах наибольшей чувствительности используемого оборудования.
- 8.2. Пеобходимо избегать длительного контакта между растворами пп. 4.8, 4.9, 4.10, 6.2.1.1, 6.2.1.2, 6.2.2, 6.3.2 и 6.4.1 и используемой стеклянной посудой, чтобы исключить возможность загрязнения раствора натрием из стекла.

9. ПРОТОКОЛ АНАЛИЗА

Протокол анализа должен содержать следующие данные:

идентификацию исследуемого материала;

ссылку на применяемый метод;

результаты анализа и метод их выражения;

особенности, отмеченные в процессе анализа;

операции, не предусмотренные настоящим международным стандартом или считающиеся необязательными.

ИНФОРМАЦИОННЫЕ ДАННЫЕ

ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

Обозначение ИТД, на который дана ссылка	Помер раздела, пункта	
ГОСТ 3118—77	2	
ΓΟCT 4204—77	2	
FOCT 4233—77 FOCT 4234—77	2 2	
ΓΟCT 5457—75	2	
ГОСТ 9656—75	2	
ΓΟCT 25389—93	Приложение	
ГОСТ 25542.0—93	1	
FOCT 27798—93	Приложение	
ГОСТ Р 50332.1—92	3.1	

Редактор М.И. Максимова
Технический редактор О.П. Власова
Корректор А.С. Черноусова
Компьютерная верстка Е.П. Мартемьянова

Сдано в набор 23.05.95. Подписано в печать 28.06.95. Усл. печ. л. 0,75. Усл. кр.-отт. 0,75. Уч.-изд. л. 0,70. Тираж 423 экз. С2553. Зак. 1442.

Ордена "Знак Почета" Издательство стандартов 107076, Москва, Колодезный пер., 14. Набрано в Издательстве стандартов на ПЭВМ. Калужская типография стандартов, ул. Московская, 256.