

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

ЦИКЛОГЕКСАНОН ТЕХНИЧЕСКИЙ

ТЕХНИЧЕСКИЕ УСЛОВИЯ

FOCT 24615-81 (CT C3B 1681-79)

Издание официальное

РАЗРАБОТАН Министерством химической промышленности ИСПОЛНИТЕЛИ

О. А. Добровольский, В. Н. Громогласова, О. В. Лєвина, Т. Н. Глаголева

ВНЕСЕН Министерством химической промышленности

Член Коллении В. Ф. Ростунов

УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по стандартам от 24 февраля 1981 г. № 966

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССЕ

ЦИКЛОГЕКСАНОН ТЕХНИЧЕСКИЙ

Технические условия

Technical cyclohexanon, Specifications ГОСТ 24615—81 (СТ СЭВ 1681—79)

OKII 24 1321

Псстановлением Государственного комитета СССР по стандартам от 24 февраля 1981 г. № 966 срок действия установлен

с 01.03. 1981 г. до 01.01.1988 г.

Несоблюдение стандарта преследуется по закону

Настоящий стандарт распространяется на технический циклогексанон, получаемый из бензола, анилина и фенола.

Циклогексанон применяется для органического синтеза и в качестве растворителя.

Формулы:

эмпирическая С6Н10О

структурная

Молекулярная масса (по международным атомным массам 1971 г.) — 98,144.

1. ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ

1.1. Циклогексанон должен быть изготовлен в соответствии с требованиями настоящего стандарта по технологическому регламенту, утвержденному в установленном порядке.

Издание официальное

Перепечатка воспрещена

1.2. По физико-химическим показателям циклогексанон должен соответствовать нормам, указанным в табл. 1.

Таблица 1

	Норма				
Наименование показателя	Высший сорт ОКП 24 1821 0120	1-й сорт ОКП 24 1821 013			
1. Массовая доля циклогексанона, %, не менее	99,8	99,7			
2. Массовая доля примесей, %, не более	0,1	0,2			
3. Массовая доля воды, %, не бо- пее	9,1	0,1			

Примечание. Для органического синтеза предназначен циклогексанон только высшего сорта.

2. ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

2.1. Циклогексанон легко воспламеняющаяся маслянистая жидкость с характерным запахом.

Плотность $\rho_4^{20} = 0.948$ г/см³; температура плавления минус 40.2° С; температура кипения 155,6°С, температура вспышки 40° С.

Пары циклогексанона с воздухом образуют взрывоопасные смеси. Предел взрываемости в смеси с воздухом при 20°С и давлении 101,325 кПа от 1,3 до 9% (по объему).

Циклогексаной с водой образует азеотропную смесь.

Средствами пожаротушения при загорании являются тонкораспыленная вода и химическая пена.

- 2.2. Циклогексанон токсичное вещество. Предельно допустимая концентрация циклогексанона в воздухе рабочей зоны производственных помещений (ПДК) 10 мг/м³ относится к 3-му классу опасности по ГОСТ 12.1.007—76. При концентрациях, превышающих предельно допустимую концентрацию, циклогексанон оказывает вредное действие на нервную систему. Вызывает головные боли, раздражение глаз, носа и горла.
- 2.3. При работе с циклогексаноном применяют индивидуальные средства защиты от попадания паров в организм и жидкого продукта на кожу: используют фильтрующий противогаз марки А или БКФ, резиновые перчатки и защитные очки.
- 2.4. Все помещения, в которых проводятся работы с циклогексаноном, должны быть оборудованы приточно-вытяжной вентиляцией, обеспечивающей содержание вредных веществ в концентрации не выше предельно допустимой, а оборудование герметизировано.

В помещениях должны быть аптечка с медикаментами для оказания первой помощи пострадавшим и необходимое противопожарное оборудование и инвентарь.

2.5. Для защиты от статического электричества должны предусматриваться и соблюдаться правила защиты от статического электричества в производствах химической промышленности.

3. ПРАВИЛА ПРИЕМКИ

3.1. Циклогексанон принимают партиями. Партией считают любое количество продукта, но не более 70 т, однородного по показателям качества, оформленного одним документом о качестве.

Документ должен содержать:

- а) условное наименование предприятия-изготовителя и его товарный знак;
- б) наименование продукта (с указанием сырья, из которого получен продукт) и его сорт;
 - в) номер партии;
 - г) дату изготовления продукта;
 - д) массу брутто (для бочек) и нетто;
- е) результаты проведенных анализов и подтверждение о соответствии качества продукта требованиям настоящего стандарта;
- ж) подтверждение о нанесении на упаковку знаков опасности по ГОСТ 19433—74 и ГОСТ 14192—77;
 - з) обозначение настоящего стандарта.

При поставке циклогексанона в железнодорожных цистернах каждую цистерну принимают за партию.

- 3.2. Для проверки качества циклогексанона на соответствие требованиям настоящего стандарта отбирают 10% единиц продукции, но не менее чем три единицы, если число единиц продукции в партии не превышает 30; при отгрузке циклогексанона в цистернах пробы отбирают от каждой цистерны.
- 3.3 При получении неудовлетворительных результатов анализа хотя бы по одному из показателей анализ повторяют на удвоенной выборке той же партии продукции. Результаты повторного анализа распространяются на всю партию.

4. МЕТОДЫ АНАЛИЗА

4.1. Пробы циклогексанона отбирают по ГОСТ 5445—79

Среднюю пробу циклогексанона объемом не менее 500 см³ помещают в чистую сухую склянку с притертой пробкой.

На склянку наклеивают этикетку с указанием наименования продукта, сорта, номера партии, даты отбора пробы, обозначения настоящего стандарта, надписей: «ОГНЕОПАСНО!», «ЯДОВИТО!».

4.2. Хроматографическое определение **массо-** вой доли циклогексанона и примесей

4.2.1. Реактивы и приборы

Азот технический по ГОСТ 9293-74.

Водород технический по ГОСТ 3022—80.

Воздух для питания пневматических приборов и средств автоматизации по ГОСТ 11882—73.

Фаза жидкая— жидкость кремнийорганическая (ПФМС-4) по ГОСТ 15866—70

Фаза твердая:

хромосоро́ W, марки AW-ДМСS, зернами размером 0,18—025 мм;

хроматон N, марки AW-ДМСS, зернами размером 0,2—0,25 мм; хроматон N, марки AN или AW-ДМСS, зернами размером 0,25—0,32 мм, пропитанный 15% карбовакса 1500;

целит 545, марки АВС, зернами размером 0,21-0,25 мм.

Микрошприц вместимостью 10 мкл.

Эфир этиловый, х. ч.

Хроматограф с детектором ионизации в пламени.

Колонки хроматографические длиной 4 м, днаметром 4 мм и длиной 2 м, диаметром 3 мм.

Колонки стеклянные U-образные из стекла «Пирекс», длиной 45—50 см, диаметром 10 мм.

Печь трубчатая, обеспечивающая нагрев до 450°С.

4.2.2. Определение циклогексанона, получаемого из циклогексана и анилина

4.2.2.1. Подготовка к анализу

15 г кремнийорганической жидкости, взвешенной с погрешностью не более 0,1 г, растворяют в 50—70 см³ этилового эфира.

Полученным раствором пропитывают 35 г хроматона или хро-

мосорба или целита.

Эфир испаряют на водяной бане при 60—80°С, непрерывно перемешивая наполнитель, пока он не станет сыпучим. Затем его помещают в стеклянные U-образные колонки. Колонки помещают в трубчатую печь и прокаливают наполнитель под постоянным током азота при следующих условиях: 250°С — 1 ч; 350°С — 2 ч; 410°С — 1,5 ч (до появления жидкости на выходе из колонки). Скорость азота при этом не должна превышать 2 дм³/ч.

Полученный наполнитель засыпают в хроматографическую колонку через воронку, уплотняя его с помощью вибратора и водоструйного или форвакуумного насоса. Заполненную хроматографическую колонку устанавливают в термостат хроматографа, не подсоединяя к детектору и в течение 6—8 ч колонку продувают азотом, пропуская его со скоростью 40—60 см³/мин при 170°С. Затем охлаждают термостат до комнатной температуры и соединяют выход колонки с детектором.

4.2.2.2. Проведение анализа

Режим работы хроматографа

Длина коло	нки, м							4
Внутренний	диаметр	кол	энки,	M	4			4
Температура								450
Температура	испарит	еля,	°C					180
Расход азот	га, дм ³ /ч							3
Объем ввод	имой про	обы, с	:M3					0,001
Продолжите	льность	анали	таа,	мин				30

Включение прибора, вывод его на рабочий режим и установление расхода водорода и воздуха, проводят по инструкции, прилагаемой к прибору.

Идентификацию компонентов проводят по относительному времени удерживания, измеренному по отношению к времени удерживания циклогексанона. Порядок выхода компонентов и относительное время удерживания каждого приведены в табл. 2 и на черт. 1.

Таблица 2

Наименование компонента	Относительное время удерживания		
Циклогексан	0,23		
н-Амиловый спирт	0,38		
Циклопентанол	0.49		
Неиндентифицированная			
примесь	0,55		
Циклопентанон	0,6		
Гептанон-2	0,69		
Циклогексанол	0,8		
Циклогексанон	1,0		

4.2.3. Определение циклогексанона, получаемого из фенола

4.2.3.1. Подготовка к анализу

Хроматографическую колонку заполняют готовым сорбентомхроматоном N-AW (или хроматоном N-AW-ДМСS), пропитанным 15% карбовакса 1500. Заполненную колонку устанавливают в прибор и продувают газом-носителем, не подсоединяя ее к детектору. при 140-160°С в течение 6-7 ч.

4.2.3.2. Проведение анализа

Режим работы хроматографа

Длина колонки, м					2
Внутренний диаметр колони	ки, м	M			3
Температура колонки, °С .					7.0
Температура испарителя, °С					150
Расход азота, дм ³ /ч					2
Объем вводимой пробы, см ³					0.001

Включение прибора, вывод его на рабочий режим и установление расхода водорода и воздуха проводят по инструкции, прилагаемой к прибору.

Порядок выхода компонентов и относительное время удержи-

вания каждого приведены в табл. З и на черт. 2.

Таблица 3

Наименование компонента	Относительное время удерживания
Циклогексан Циклогексен	0,03 0,04
Неидентифицированная примесь	0,10
Неидентифицированная примесь	0,17
Неидентифицированная примесь Циклогексанон Циклогексанол	0,43 1,00 1,54

4.2.4. Обработка результатов

Массовую долю компонентов определяют методом внутренней нормализации. Площади пиков вычисляют умножением высоты каждого пика на его ширину, измеренную на половине высоты пи-

Массовую долю определяемой примеси (X_i) в процентах вычисляют по формуле

$$X_l = \frac{S_l \cdot 100}{\Sigma S}$$
,

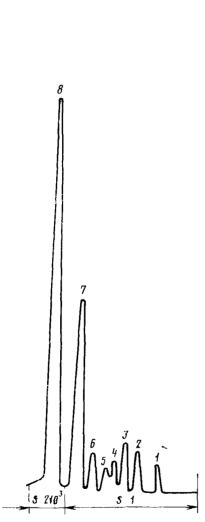
где S_1 — площадь пика определяемой примеси, мм²; ΣS — сумма площадей всех пиков, мм².

Массовую долю циклогексанона (Х) в процентах вычисляют по формуле

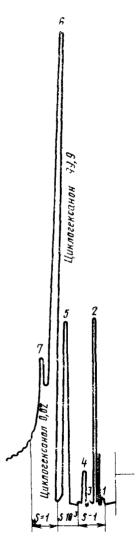
$$X=100-\Sigma X_{I}-W$$

где ΣX_i — сумма примесей в циклогексаноне, определенная хроматографическим методом, %;

₩ — массовая доля воды, определенная по п. 4.3, %.


За результат анализа каждой примеси принимают среднее арифметическое двух параллельных определений, допускаемые расхождения между которыми не должны превышать 5% относительно вычисляемой величины.

4.3. Массовую долю воды определяют по ГОСТ 14870-77 методом Фишера, при этом реактив Фишера готовят следующим обра-30M:


I раствор: к 30 см³ обезвоженного метанола добавляют 84,7 г йола:

II раствор: 920 см³ пиридина насыщают 64 г газообразного сернистого газа или приливают 45 см³ жидкого сернистого ангидрида.

Приготовленные растворы I и II сливают вместе.

1—циклогексан; 2—к-амиловый спирт; 3—циклопентанол; 4—неидентифицированная примесь; 5—циклопентанон; 6—гептанон-2, 7—циклогексанол; 8—циклогексаной

1—циклогексан; 2—циклогексен; 3—ноидентифицированная примесь; 4—деидентифицированная примесь, 5—невдентифицированная примесь; 5—циклогексанон; 7—циклогексаноя

Черт. 1

Черт. 2

5. УПАКОВКА, МАРКИРОВКА, ТРАНСПОРТИРОВАНИЕ И ХРАНЕНИЕ

- 5.1. Циклогексанон заливают в сухие герметические стальные железнодорожные цистерны, автоцистерны, стальные бочки по ГОСТ 17366—80, стеклянные бутыли по ГОСТ 14182—80.
- 5.2. Стеклянные бутыли с циклогексаноном должны быть помещены в деревянные ящики или в деревянные обрешетки по ГОСТ 18573—78 и уплотнены древесной стружкой или полиэтиленовыми амортизаторами.

Деревянные ящики и древесная стружка должны быть пропитаны негорючим веществом (насыщенным раствором хлористого

кальция (магния) или сульфата аммония).

5.3. Транспортная маркировка должна соответствовать ГОСТ 14192—77.

На каждую упаковочную единицу должна быть нанесена маркировка с указанием:

- а) наименования предприятия-изготовителя и его товарного знака:
- б) наименования продукта (с указанием сырья, из которого получен продукт) и его сорта;
 - в) номера партии;
 - г) массы брутто и нетто;
 - д) даты изготовления;
 - е) обозначения настоящего стандарта;
- ж) знака опасности по ГОСТ 19433—74, соответствующего классу опасности 3 (подкласс 3.3), а также манипуляционных знаков по ГОСТ 14192—77, имеющих значение: «Осторожно, хрупкое!» (для бутылей) и «Боится нагрева».

К наливному люку железнодорожной цистерны, автоцистерны и к горловине бутыли прикрепляют бирку с теми же обозначениями.

- 5.4. На каждую цистерну и боковую поверхность бочки несмываемой краской при помощи трафарета наносят надпись «ОГНЕО-ПАСНО!».
- 5.5. Циклогексанон в цистернах транспортируют в соответствии с правилами перевозок жидких грузов наливом в вагонах-цистернах и бункерных полувагонах.
- 5.6. Бочки с циклогексаноном транспортируют железнодорожным транспортом в крытых вагонах или автотранспортом под брезентом.

По согласованию с потребителем бочки с продуктом для транспортирования железнодорожным транспортом укладывают в пакеты на железном поддоне размером 800×1200 по ГОСТ 9078—74. 5.7. Циклюгексанон, предназначенный для применения в производстве капролактама, транспортируют в емкостях под азотной подушкой.

5.8. Циклогексанон хранят в емкостях, в которые поддувают азот с избыточным давлением 3920 Па (400 мм вод. ст.), на складах, предназначенных для хранения легковоспламеняющихся жид-

костей.

6. ГАРАНТИИ ИЗГОТОВИТЕЛЯ

6.1. Изготовитель должен гарантировать соответствие циклогексанона требованиям настоящего стандарта при соблюдении условий транспортирования и хранения, установленных стандартом.

6.2. Гарантийный срок хранения циклогексанона — 6 мес со дня изготовления или 30 сут со дня изготовления продукта, предназ-

наченного для производства капролактама.

По истечении гарантийного срока хранения продукт перед использованием должен быть проверен на соответствие требованиям настоящего стандарта. Изменение № 1 ГОСТ 24615—81 Циклогексанон технический Технические условия

Утверждено и введено в действие Постановлением Государственного комитета СССР по стандартам от 25 05 87 № 1689

Дата введения 01.09 87

Под наименованием стандарта заменить код ОКП 24 1821 на ОКП 24 1821 0100

Вводную часть дополнить абзацами (после второго) «Показатели технического уровня, установленные настоящим стандартом, предусмотрены для высшей категории качества

Стандарт содержит все требования СТ СЭВ 1681-79

В стандарте не предусмотрены требования к продукту 2-го сорта (см. приложение о соответствии требований настоящего стандарта требованиям стандарта СЭВ)»

Пункт 12 Таблица 1. Головка Исключить слова «Высший сорт ОКП

24 1821 0120»

графу «1-й сорт ОКП 24 1821 0130» и нормы исключить, примечание исключить

Пункт 3 1 Четвертый абзац Исключить слова «и его сорт», заменить ссылку ГОСТ 19433—74 на ГОСТ 19433—81

Пункт 4 1 Исключить слово «сорта»

Пункт 421 Третий абзац Исключить ссылку «по ГОСТ 11882—73».

двенадцатый абзац Заменить слова «детектором ионизации в пламени» на «пламенно-ионизационным детектором»

(Продолжение см с 252)

(Продолжение изменения к ГОСТ 24615—81)

Пункт 4.2.2.1, Первый абзац. Заменить слова: «взвешенной с погрешностью не более 0,1 г» на «взвешивают (результат взвешивания записывают с точностью до первого десятичного знака)». Пункт 5.3. Четвертый абзац. Исключить слова: «и его сорта»;

заменить ссылку: ГОСТ 19433-74 на ГОСТ 19433-81.

Пункт 5.6. Заменить ссылку: ГОСТ 9078—74 на ГОСТ 9078—84. Пункт 6.1. Заменить слова: «должен гарантировать» на «гарантирует»; исключить слова: «установленных стандартом».

Пункт 6.2. Второй абзац исключить. Стандарт дополнить приложением:

> ПРИЛОЖЕНИЕ Обязательное

Соответствие требований ГОСТ 24615—81 СТ СЭВ 1681—79

Пункт	FOCT 24615—81	Пункт	СТ СЭВ 1681-79
Разд. 1	Отсутствуют нормы для	Разд. I	Установлены нормы для
Табл, 1	II сорта продукта	Табл.	2-го сорта продукта

(ИУС № 8 1987 г.)

Изменение № 2 ГОСТ 24615—81 Циклогексанон технический. Технические условия

Утверждено и введено в действие Постановлением Государственного комитета СССР по управлению качеством продукции и стандартам от 30.05.90 № 1354

Дата введения 01.12.90

Вводная часть Третий абзац исключить

Пункт 3 1 Заменить ссылку ГОСТ 19433-81 на ГОСТ 19433-88

Раздел 4 дополнить пунктом — 4 la (после п 4 l) «4 la Допускается применение реактивов по качеству, а также средств измерений, аппаратуры и посуды по классу точности не ниже указанных в настоящем стандарте

Допускается применение других методов анализа, обеспечивающих установ-

ленные нормы допускаемых расхождений

При разногласиях в оценке качества определение проводят методами, приведенными в настоящем стандарте»

Пункт 43 дополнить абзацем «Допускается определять массовую долю воды газохроматографическим методом в соответствии с л 44»

Раздел 4 дополнить пунктом — 4 4

«4.4 Определение массовой доли воды газохроматографическим методом в диапазоне массовых долей 0.05—0.2 %

Анализ основан на отделении воды от остальных компонентов на хроматографической колонке, заполненной полисорбом-1 либо полихромом-1, пропитанным полиэтиленгликолем (ПЭГ-1000) Вода фиксируется детектором по теплопроводности Массовую долю воды измеряют с помощью градуировочной зависимости высоты пика воды от ее массовой доли в градуировочных смесях

441 Аппаратура, реактивы и растворы

Хроматограф аналитический газовый, лабораторный серии «Цвет-110» или другого типа, предел обнаружения объемной доли пропана детектором по теплопроводности не превышает $1\cdot10^{-3}$ при использовании гелия в качестве газоносителя, диапазон температур термостата колонок — от 50 до 400 °C, погрешность поддержания заданной температуры — не более ± 0.2 °C

Колонки хроматографические насадочные, стальные, внутренним диаметром

3 мм, длиной 1 и 3 м

Микрошприц по ГОСТ 22967—82 вместимостью $1\cdot 10^{-2}$ см³, цена наименьшего деления не превышает $2\cdot 10^{-4}$ см³ (типа МШ-10), допускаемое отклонение $+1\cdot 10^{-4}$ см³

Весы лабораторные общего назначения по ГОСТ 24104—88 2-го класса точности с наибольшим пределом взвешивания 200 г

Меры массы общего назначения по ГОСТ 7328-82

Линейка 300 по ГОСТ 427-75, цена наименьшего деления 1 мм

Секундомер механический 1-го класса по ГОСТ 5072-79

Шкаф сушильный электрический типа 2B-151 или другого типа с диапазоном регулирования температуры от 40 до 200 °C

Колба Кн 1—50—14/23 ГОСТ 25336—82

Гелий газообразный, ос ч

Пслихром 1, размер зерен 0,25-0,50 мм

Полиэтиленгликоль молекулярного веса 1000 для хроматографии, производство ФРГ (ПЭГ)

Полисорб-1, размер зерен 0,10-0,20 мм

Циклогексанон по ГОСТ 24615—81

Хлороформ по ГОСТ 20015-88 хч

Ацетон по ГОСТ 2603-79, ч д а

Эфир этиловый

Кислота соляная по ГОСТ 3118-77, раствор с массовой долей 36 %

Стеклоткань по ГОСТ 10727-73

442 Подготовка к анализу

Условия выполнения измерений

Температура окружающего воздуха . . . от 10 до 35 °C.

Напряжение переменного тока, питающего хроматограф . . . 220^{+22}_{-33} В.

Относительная влажность окружающего воздуха . . . от 30 до 80 %.

Атмосферное давление . . . от 84,0 до 106,7 кПа (от 630 до 800 мм рт. ст.). Частота переменного тока, питающего хроматограф . . . (50 \pm 1) Гц.

4.4.2.1. Подготовка наполнителя и заполнение колонок

 $\Pi \Im \Gamma_{1000}$, взятый в количестве 10 % от общей массы наполнителя, взвешивают с полихромом-1, результаты взвешивания записывают в граммах с точностью до второго десятичного знака.

 $\Pi \dot{\ni} \Gamma_{1000}$ растворяют в хлороформе, объем которого должен превышать объем

взятого полихрома-1 в 1,2 раза.

В полученный раствор вносят полихром-1. Затем испаряют хлороформ в вытяжном шкафу при комнатной температуре до полного исчезновения запаха хлороформа. Наполнитель досушивают в сушильном шкафу при 60°С в течение 2 ч.

Хроматографическую колонку последовательно промывают раствором соляной кислоты с объемной долей 36 %, дистиллированной водой, затем ацетоном и эфиром, сушат в токе сухого инертного газа при комнатной температуре.

При заполнении колонок полисорбом 1 его вносят небольшими порциями, уплотняя с помощью вакуумирования и равномерного постукивания. Концы за-

полненной колонки уплотняют стеклотканью или стекловолокном.

Перед заполнением колонок насадкой с полихромом-1 насадку и хроматографическую колонку предварительно охлаждают, например, в бытовом холодильнике при 4—6 °C в течение 1—2 ч. Затем заполняют колонку, как описано выше.

Заполненную колонку устанавливают в термостат хроматографа и, не присоединяя к детектору, продувают газом-носителем в течение 8—10 ч, постепенно поднимая температуру от комнатной до 180 °C (колонка с полисорбом-1) либо до 130 °C (колонка с $\Pi \Im \Gamma_{1000}$ на полихроме-1). Затем выдерживают колонку при этой температуре еще 10-15 ч. Расход газа-носителя при кондиционировании — 3 дм 3 /ч.

Монтаж, наладку и вывод хроматографа на рабочий режим проводят в соответствии с инструкцией, прилагаемой к прибору.

4.4.2.2. Режим работы хроматографа при градуировке и проведении испытаний

Объемный расход газа-носителя, см3/мин	50
Температура термостата, °С:	
для колонок с полисорбом-1	130
для колонок с ПЭГ1000 на полихроме-1	120
Температура термостата детектора, °С	140
Температура испарителя, °С	150
Объем пробы при градуировке и анализе, см ³	3-10-3
Ток детектора, мА	200
Скорость диаграммной ленты, мм/ч	600
Длина колонки с полисорбом-1, м	1,0
Длина колонки с ПЭГ 1000 на полихроме-1, м	
Продолжительность анализа, мин	3,0 25

Параметры режима хроматографа разрешается корректировать, если при этом не ухудшаются точностные характеристики методики.

4.4.2 3. Градуировка хроматографа

Градуировку хроматографа осуществляют по градуировочным растворам воды в циклогексаноне. Градуировочные растворы готовят весовым методом. В коническую колбу вместимостью 50 см³ вносят последовательно пиклогексанон и воду.

Результаты всех взвешиваний записывают в граммах с точностью до четвертого десятичного знака. Предварительно определяют методом Фишера (по

(Продолжение см. с. 237)

п. 4.3) массовую долю воды в циклогексаноне, который используют для приготовления градуировочных растворов. Готовят не менее пяти градуировочных растворов, перекрывающих весь диапазон массовой доли воды в циклогексаноне.

Допускается применение для этой цели хроматографического метода доба-

вок в соответствии с п. 4.4.5.

Каждый градуировочный раствор сухим шприцем вводят не менее трех раз в хроматограф, работающий в стабильном режиме. Измеряют линейкой высоту пика воды и рассчитывают среднюю высоту пика воды для каждого градуировочного раствора (\overline{h}_{ℓ}) .

Затем вычисляют градуировочную характеристику хроматографа ($K_{H_{\bullet}O}$)

по формуле

$$K_{\text{H}_2\text{O}} = \frac{\sum X_i \cdot \overline{h}_i}{\sum (\overline{h}_i)^2}$$
,

где X_{I} — массовая доля воды в i-том градунровочном растворе.

Допускается построение градуировочного графика в координатах: высота пика воды $\overline{(h_i)}$ — по оси абсцисс и массовая доля воды (X_i) — по оси ординат.

Проверяют градуировочную характеристику прибора один раз в неделю и обязательно при любых изменениях режима работы хроматографа или после его ремонта.

4.4.3. Проведение анализа

Режим работы хроматографа при анализе должен быть таким же, как при

градуировке, и строго постоянным.

В испаритель хроматографа, работающего в стабильном режиме, вводят сухим шприцем исследуемую пробу циклогексанона. Пробу хроматографируют дважды в измеряют высоту пика воды линейкой.

Вычисляют массовую долю воды (X_{np}) в пробе по формуле

$$X_{np} = K_{H_2O} \cdot \overline{h}_{np}$$
,

где $\overline{h}_{\text{пр}}$ — средняя высота пика воды.

Если градуировочная характеристика хроматографа была представлена в виде градуировочного графика, массовую долю воды в анализируемой пробе определяют по градуировочному графику.

(Продолжение см. с. 238)

Допускаемая относительная суммарная погрешность результатов измерений 8 и 6 % (для массовых долей воды 0,04 и 0,14 % соответственно) при доверительной вероятности 0,95.

Допускается измерение массовой доли воды в циклогексаноне методом добавок, если при этом не ухудшаются точностные характеристики методики.

Взвешивают навеску анализируемой пробы циклогексанона (около 20 г). Добавляют навеску воды массой около 0,01 г. Результаты взвешиваний записывают в граммах с точностью до четвертого десятичного знака.

Сухим шприцем два-три раза вводят в хроматограф пробу анализируемого циклогексанона. Затем два-три раза вводят такой же объем приготовленной пробы с добавкой воды.

Измеряют линейкой высоты пиков и рассчитывают среднюю высоту пика

воды для каждой пробы.

4.4.4. Обработка результатов

Массовую долю воды $(X_{\rm np})$ в исследуемой пробе циклогексанона вычисляют по формуле

$$X_{\rm np} = \frac{\overline{h}_1 \cdot m_{\rm H_2O} \cdot 100}{(\overline{h}_2 - \overline{h}_1) \cdot m_{\rm np}} ,$$

где \overline{h}_1 и $\overline{h_2}$ — высота пика воды на хроматограмме анализируемой пробы циклогексанона и на хроматограмме пробы с добавкой воды, соответственно, мм;

 $m_{\rm H_2O}$ — масса навески воды, добавленной к пробе циклогексанона, г;

*m*_{пр} — масса навески пробы циклогексанона, г.

В связи с отсутствием стандартных образцов состава, контрольных методик и других средств и методов проверки правильности методики контроль точности осуществляется по допускаемому расхождению между результатами параллельных наблюдений, абсолютное расхождение между которыми не превышает 0,006 и 0,01 % для массовых долей воды 0.04 и 0,17 % соответственно.

При разногласиях в оценке качества определение проводят, как указано в п. 43».

Пункт 5.3. Подпункт ж изложить в новой редакции: «ж) знака опасности по ГОСТ 19433—88 (класс 3, подкласс 3.3, черт. 3, категория 3.3.1, классификационный шифр 3.3.1.3), шифра ООН 1915, а также манипуляционных знаков по ГОСТ 14192—77 «Осторожно, хрупкое!» (для бутылей) и «Боится нагрева».

(ИУС № 8 1990 г.)

Редактор А. С. Пшеничная Технический редактор В. Н. Прусакова Корректор Г. М. Фролова

Сдано в наб. 13.04.81 Подп. к печ. 16.06.81 0,75 п. л. 0,61 уч.-изд. л. Тир. 16000 Цена 3 коп.