РЕДКОЗЕМЕЛЬНЫЕ МЕТАЛЛЫ И ИХ ОКИСИ

Метод определения ниобия

ΓΟCT 23862.27—79

Rare-earth metals and their oxides. Method of determination of niobium

МКС 77.120.99 ОКСТУ 1709

Постановлением Государственного комитета СССР по стандартам от 19 октября 1979 г. № 3989 дата введения установлена

01.01.81

Ограничение срока действия снято по протоколу № 7—95 Межгосударственного совета по стандартизации, метрологии и сертификации (ИУС 11—95)

Настоящий стандарт устанавливает фотометрический метод определения ниобия (от $1 \cdot 10^{-3}$ % до $1 \cdot 10^{-2}$ %) в редкоземельных металлах и их окисях, кроме церия и его двуокиси.

Метод основан на реакции ниобия с пиридилазорезорцином (ПАР) в тартратносолянокислой среде после предварительного гидролитического выделения ниобия таннином в присутствии желатины.

Содержание ниобия находят по градуировочному графику.

1. ОБЩИЕ ТРЕБОВАНИЯ

1.1. Общие требования к методу анализа — по ГОСТ 23862.0—79.

2. АППАРАТУРА, РЕАКТИВЫ И РАСТВОРЫ

Фотоэлектроколориметр ФЭК-60 или аналогичный прибор.

Печь муфельная с терморегулятором, обеспечивающим температуру до 800 °C.

Плитка электрическая.

Стаканы вместимостью 250 см³.

Тигли кварцевые.

Бюретка вместимостью 5 см³.

Натрий сернокислый пиро по НТД, раствор с концентрацией 60 г/дм³.

Аммоний виннокислый средний по НТД, растворы с концентрацией 100 и 20 г/дм³.

Аммиак водный по ГОСТ 3760—79, разбавленный 1:9.

Кислота соляная по ГОСТ 3118—77, разбавленная 1:1.

Кислота борная по ГОСТ 9656—75.

Таннин (светлый), растворы с концентрацией 100 и 5 г/дм³ в 1 %-ной соляной кислоте.

Желатина, раствор с концентрацией 10 г/дм³.

4-(2-пиридилазо)-резорцин (ПАР) водный раствор с концентрацией 1,5 г/дм³. 0,15 г препарата тщательно растирают стеклянной палочкой в стакане с 2 см³ воды, разбавляют водой до 50 см³, раствор переводят в мерную колбу вместимостью 100 см³ и доводят водой до метки, пригоден к употреблению в течение 1 мес.

Ниобия пятиокись чистотой не менее 99,5 %.

Стандартный раствор ниобия (запасной), содержащий 1 мг/см³ ниобия: 0,143 г пятиокиси ниобия сплавляют с 4 г пиросульфата натрия. Плав растворяют при нагревании в 40 см³ раствора

Издание официальное

Перепечатка воспрещена

Издание с Изменением № 1, утвержденным в апреле 1985 г. (ИУС 7-85).

виннокислого аммония (100 г/дм^3) с добавлением 10 см^3 аммиака (1:9). Раствор переводят в мерную колбу вместимостью 100 см^3 , доводят объем до метки водой и перемешивают.

Раствор ниобия (рабочий), содержащий 10 мкг/см³ ниобия, готовят в день употребления разбавлением запасного раствора раствором виннокислого аммония (20 г/дм³) в 100 раз.

Разд. 2. (Измененная редакция, Изм. № 1).

3. ПРОВЕДЕНИЕ АНАЛИЗА

3.1. Навеску анализируемого металла массой 0.5-2 г (в зависимости от содержания ниобия) помещают в стакан вместимостью $250~{\rm cm}^3$, приливают $2-3~{\rm cm}^3$ воды, $20~{\rm cm}^3$ соляной кислоты, разбавленной 1:1, и растворяют сначала на холоду, а по окончании бурной реакции умеренно нагревают до полного растворения металла. Навеску анализируемой окиси P3M, соответствующую $0.5-2~{\rm r}$ металла, помещают в стакан и растворяют при нагревании в $20~{\rm cm}^3$ соляной кислоты, разбавленной 1:1.

Полученный раствор разбавляют до 100 см³ водой, добавляют 0,1 г борной кислоты, нагревают до 50 °C и при помешивании приливают 10 см³ раствора таннина (100 г/дм³); стакан накрывают часовым стеклом и кипятят раствор с течение 20 мин, поддерживая объем 110 см³ добавлением воды. После охлаждения приливают 10 см³ раствора желатины и раствор с осадком оставляют стоять не менее чем на 4—5 ч. Осадок фильтруют через фильтр (белая лента) и промывают холодным раствором таннина (5 г/дм³). Фильтр с осадком помещают в кварцевый тигель, высушивают, озоляют, прокаливают в муфельной печи при 800 °C, полученный осадок сплавляют с 2 г пиросернокислого натрия до получения однородного плава.

По охлаждении, плав выщелачивают 20 см³ горячего раствора виннокислого аммония (100 г/дм³) с добавлением 10 см³ аммиака, разбавленного 1 : 9. Охлажденный раствор переводят в мерную колбу вместимостью 100 см³, доводят объем до метки водой и перемешивают.

Отбирают аликвотную часть раствора 15 см 3 , помещают в мерную колбу вместимостью 25 см 3 ; добавляют 4 см 3 соляной кислоты, разбавленной 1 : 1, 2 см 3 раствора ПАР, доводят до метки водой и перемешивают. Через 1 ч измеряют оптическую плотность растворов на фотоэлектроколориметре при λ_{max} g 540 нм в кювете с толщиной поглощающего свет слоя 50 мм, по отношению к нулевому раствору. Массу ниобия находят по градуировочному графику.

3.2. Построение градуировочного графика

В мерные колбы вместимостью 25 см³ вводят из микробюретки 0,20; 0,30; 0,50; 1,0; 2,0; 3,0; 4,0 см³ рабочего раствора ниобия (содержащего 10 мкг/см³ ниобия), добавляют до 15 см³ раствора виннокислого аммония (20 г/дм³), 4 см³ разбавленной соляной кислоты, 2 см³ раствора ПАР, доводят до метки раствором пиросернокислого натрия и перемешивают. В одну из колб приливают все реактивы за исключением ниобия (нулевой раствор). Измерения проводят через 1 ч, как указано в п.3.1.

3.1—3.2. (Измененная редакция, Изм. № 1).

4. ОБРАБОТКА РЕЗУЛЬТАТОВ

4.1. Массовую долю ниобия (X) в процентах вычисляют по формуле

$$X = \frac{m_1}{1,5m} \cdot 10^{-3},$$

где m_1 — масса ниобия, найденная по градуировочному графику, мкг;

m — масса навески анализируемой пробы, г.

4.2. Расхождения результатов двух параллельных определений или результатов двух анализов не должны превышать значений допускаемых расхождений, указанных в таблице.

Массовая доля ниобия, %	Допускаемое расхождение, %
$1 \cdot 10^{-3}$ $1 \cdot 10^{-2}$	5 · 10 ⁻⁴ 5 · 10 ⁻³