межгосударственный СТАНДАРТ

БРОНЗЫ ЖАРОПРОЧНЫЕ

Метод определения никеля

ГОСТ 23859.6-79

Bronze fire-resistance. Method for the determination of nickel

OKCTY 1709

Постановлением Государственного комитета СССР по стандартам от 16 октября 1979 г. № 3937 срок введения

c 01.01.81

Ограничение срока действия сиято по протоколу № 5-94 Межгосударственного Совета по стандартизации, метрологии и сертификации (ИУС 11-12-94)

Настоящий стандарт устанавливает фотометрический метод определения никеля (при массовой доле никеля от 0,005 до 0,9 %) и титриметрический метод определения никеля (при массовой доле никеля от 0,4 до 0,9 %) в жаропрочных медных сплавах.

(Измененная редакция, Изм. № 2).

1. ОБЩИЕ ТРЕБОВАНИЯ

1.1. Обшие требования к методам анализа — по ГОСТ 25086—87 с дополнением по ГОСТ 23859.1—79, разд. 1.

(Измененная редакция, Изм. № 2).

Фотометрический метод определения никеля

Метод основан на образовании никелем окрашенного соединения с диметилглиоксимом в щелочной среде в присутствии окислителя и измерении оптической плотности окрашенного раствора.

2. АППАРАТУРА, РЕАКТИВЫ И РАСТВОРЫ

Фотоэлектроколориметр или спектрофотометр.

Кислота азотная по ГОСТ 4461—77, разбавленная 1:1. Кислота серная по ГОСТ 4204—77, разбавленная 1:1.

Кислота винная по ГОСТ 5817—77, раствор 200 г/дм³.

Кислота фтористоводородная по ГОСТ 10484—78.

Калий гидроокись по Γ OCT 9285—78, раствор 200 и 50 г/дм³.

Аммоний надсернокислый по ГОСТ 20478 - 75, раствор 30 г/дм^3 , свежеприготовленный.

Диацетилдиоксим (диметилглиоксим) по ГОСТ 5828—77 раствор 10 г/дм³ в растворе гидроокиси калия $50 \, г/дм^3$.

Никель марки Н0.

Стандартные растворы никеля.

Раствор А. 1 г металлического никеля растворяют в 20 см³ азотной кислоты и окислы азота удаляют кипячением. Раствор переводят в мерную колбу вместимостью 1 дм³, доливают до метки водой и перемешивают. 1 см³ раствора А содержит 0,001 г никеля.

Раствор Б. 10 см³ раствора помещают в мерную колбу вместимостью 100 см³, доливают до метки водой и перемешивают. 1 см³ раствора Б содержит 0,0001 г никеля.

Разд. 2. (Измененная редакция, Изм. № 1, 2).

Издание официальное

Перепечатка воспрещена

Издание с Изменениями № 1, 2, утвержденными в июне 1985 г., марте 1990 г. (HYC 9-85, 7-90).

3. ПРОВЕДЕНИЕ АНАЛИЗА

3.1. Для бронз, содержащих хром

Навеску бронзы массой 1 г помещают в платиновую чашку, прибавляют 10 см³ азотной кислоты, 2 см³ фтористоводородной кислоты и растворяют при нагревании. Затем прибавляют 5 см³ серной кислоты и раствор упаривают до начала выделения белого дыма серной кислоты. Остаток охлаждают, ополаскивают стенки чашки водой и снова упаривают до начала выделения белого дыма серной кислоты. После охлаждения остаток растворяют в воде при нагревании. Раствор охлаждают, переносят в стакан вместимостью 300 см³, разбавляют водой до объема 150 см³ и выделяют медь электролизом по ГОСТ 23859.1—79.

Электролит упаривают до объема 60—70 см³, переводят в мерную колбу вместимостью 100 см³, доливают водой до метки и перемешивают.

Аликвотную часть раствора (см. таблицу) помещают в мерную колбу вместимостью 100 см³, прибавляют при постоянном перемешивании 10 см³ раствора винной кислоты, 20 см³ раствора гидроокиси калия (200 г/дм³), 10 см³ раствора демитилглиоксима, 10 см³ раствора надсернокислого аммония, доливают до метки водой и перемешивают.

Массовая доля никеля,%	Объем аликвотной части,отобранной для анализа,см ³	Масса навески, соответствующая аликвотной части раствора, г
От 0,005 до 0,2 включ.	20	0,2
Св. 0,2 » 0,9 »	5	0,05

Оптическую плотность измеряют через 15 мин на спектрофотометре при 445 нм или на фотоэлектроколориметре с синим светофильтром в кювете с толщиной поглощающего слоя 1 см по отношению к такому же раствору, но без добавления диметилглиоксима.

(Измененная редакция, Изм. № 1, 2).

3.2. Для бронз, не содержащих хрома

Навеску бронзы массой 1 г помещают в стакан вместимостью 300 см³, накрывают часовым стеклом, добавляют 15 см³ азотной кислоты и осторожно растворяют при нагревании. После растворения ополаскивают стекло и стенки стакана водой и удаляют окислы азота кипячением. Затем раствор разбавляют водой до объема 150 см³, добавляют 4 см³ серной кислоты и выделяют медь электролизом по ГОСТ 23859.1—79.

Электролит упаривают до объема $60-70 \text{ см}^3$ и далее поступают, как указано в п. 3.1.

3.3. Построение градуировочного графика

Вмерные колбы вместимостью по 100 см³ приливают последовательно 0; 1,0; 2,0; 3,0; 4,0 и 5,0 см³ стандартного раствора Б никеля, разбавляют водой до объема 20 см³, прибавляют по 10 см³ раствора винной кислоты и далее поступают, как указано в п. 3.1.

3.2, 3.3. (Измененная редакция, Изм. № 1).

4. ОБРАБОТКА РЕЗУЛЬТАТОВ

4.1. Массовую долю никеля (Х) в процентах вычисляют по формуле

$$X = \frac{m \cdot 100}{m_1} ,$$

где m — масса никеля, найденная по градуировочному графику, г;

 m_1 — масса навески, соответствующая аликвотной части раствора, г.

4.2. Расхождения результатов трех параллельных определений не должны превышать значений допускаемых расхождений d (d — показатель сходимости), вычисленных по формуле

$$d = 0.002 + 0.05X$$

где X— массовая доля никеля в сплаве, %.

(Измененная редакция, Изм. № 2).

4.3. Расхождения результатов анализа, полученных в двух различных лабораториях, или двух результатов анализа, полученных в одной лаборатории, но при различных условиях (D — показатель воспроизводимости) не должны превышать значений, вычисленных по формуле

$$D = 0.003 + 0.07X,$$

где X— массовая доля никеля в сплаве, %.

- 4.4. Контроль точности результатов анализа проводят по Государственным стандартным образцам жаропрочных (хромистых) бронз или методом добавок или сопоставлением результатов, полученных атомно-абсорбционным методом в соответствии с ГОСТ 25086—87.
 - 4.3, 4.4. (Введены дополнительно, Изм. № 2).

Титриметрический метод определения никеля

Метод основан на осаждении никеля в аммиачном растворе диметилглиоксимом в виде малорастворимого внутрикомплексного соединения в присутствии лимонной или винной кислоты и определении никеля комплексонометрическим титрованием с эриохром черным Т или с мурексидом в качестве индикаторов.

5. РЕАКТИВЫ И РАСТВОРЫ

Кислота азотная по ГОСТ 4461—77 и разбавленная 1:1.

Кислота соляная по ГОСТ 3118—77 и разбавленная 1:1.

Кислота серная по ГОСТ 4204—77, разбавленная 1:1.

Смесь кислот для растворения: смешивают одну часть концентрированной азотной кислоты и три части концентрированной соляной кислоты.

Кислота винная по ГОСТ 5817-77, раствор 100 г/дм^3 .

Кислота лимонная по ГОСТ 3652-69, раствор 100 г/дм^3 .

Аммиак водный по ГОСТ 3760—79.

Спирт этиловый ректификованный по ГОСТ 18300—87.

Диметилглиоксим по ГОСТ 5828—77, спиртовой раствор 10 г/дм³.

Аммоний хлористый по ГОСТ 3773—72.

Аммоний сернокислый по ГОСТ 3769—78.

Перекись водорода по ГОСТ 10929—76.

Соль динатриевая этилендиамин — N, N, N', N'-тетрауксусной кислоты, 2-водная (трилон Б) по ГОСТ 10652-73; 0.02 моль/дм³ раствор: 7.44 г трилона Б растворяют в 500 см³ воды, раствор помещают в мерную колбу 1 дм³ и доливают до метки водой.

Натрия гидроокись по ГОСТ 4328—77, раствор 200 г/дм 3 .

Метиловый красный индикатор, спиртовой раствор 1 г/дм³.

Эриохром черный Т, насыщенный водный раствор.

Буферный раствор с рН 10: к 570 см^3 раствора аммиака добавляют 70 г хлористого аммония и разбавляют до 1 см^3 водой.

Магний сернокислый по ГОСТ 4523-77, 0,02 моль/дм³ раствор: 4,93 г сернокислого магния растворяют в 500 см³ воды, раствор помещают в мерную колбу вместимостью 1 дм³ и доливают до метки водой.

Мурексид, смесь с хлористым натрием 1:100.

Никель марки НО по ГОСТ 849—97.

Стандартный раствор никеля: 1 г никеля растворяют в стакане вместимостью 250 см^3 в 20 см^3 соляной кислоты (1:1) и 10 см^3 перекиси водорода, добавленной небольшими порциями. После растворения раствор кипятят 1 мин для разложения избытка перекиси водорода, охлаждают, переносят в мерную колбу вместимостью 1 дм^3 , доливают до метки водой и перемешивают.

1 см³ раствора содержит 0,001 г никеля.

5.1. Установка массовой концентрации раствора трилона Б по никелю

В стакан или колбу вместимостью 500 см³ помещают 10 см³ стандартного раствора никеля, разбавляют водой до объема 160—70 см³ и далее поступают, как указано в п. 6.1 или 6.2.

5.2. Массовую концентрацию раствора трилона Б (*T*), выраженную в граммах никеля на 1 см³ раствора для титрования по п. 6.1 вычисляют по формуле

$$T = \frac{m}{V - V_1 \cdot K},$$

где m — масса никеля в аликвотной части, взятой на титрование, г;

V— объем раствора трилона Б, массовая концентрация которого устанавливается, см³.

 V_1 — объем раствора сернокислого магния, израсходованного на титрование трилона Б, см³;

 \hat{K} — поправочный коэффициент к массовой концентрации раствора трилона Б.

5.3. Установка поправочного коэффициента к массовой концентрации раствора трилона Б (К)

В стакан или колбу вместимостью 500 см³ отмеряют из бюретки 10 см³ раствора трилона Б, добавляют 100—120 см³ воды, 2—3 капли метилового красного, 1 каплю раствора гидроокиси натрия, 4 см³ буферного раствора, 4—5 капель эриохром черного T, воды до 200 см³ и титруют раствором сернокислого магния до перехода сине-зеленой окраски в розово-сиреневую.

Поправочный коэффициент (К) вычисляют по формуле

$$K = \frac{V_2}{V_3} ,$$

где V_2 — объем раствора трилона Б, взятый на титрование, см³; V_3 — объем раствора сернокислого магния, израсходованный на титрование, см³.

5.4. Массовую концентрацию раствора трилона Б (T), выраженную в граммах никеля на 1 см³, для титрования по п. 6.2 вычисляют по формуле

$$T=\frac{m}{V},$$

где m — масса никеля в аликвотной части, взятой на титрование, г;

V— объем раствора трилона **Б**, израсходованный на титрование, см³.

Примечание. Допускается устанавливать массовую концентрацию трилона Б по никелю и по Государственным стандартным образцам жаропрочных (хромистых) бронз.

Разд. 5. (Измененная редакция, Изм. № 2).

6. ПРОВЕДЕНИЕ АНАЛИЗА

Навеску бронзы массой 2 г помещают в стакан вместимостью 300 см3, добавляют 40 см3 смеси кислот и растворяют при нагревании. По растворении навески добавляют 30 см³ серной кислоты (1:1) и раствор упаривают до начала выделения белого дыма серной кислоты. Остаток охлаждают, осторожно добавляют 5 см³ азотной кислоты (1:1), разбавляют водой до 150 см³ и проводят электролиз по ГОСТ 23859.1—79. По окончании электролиза электроды обмывают небольшим количеством воды над электролитом. Нагревают стакан с раствором (~ до 30 °C), добавляют 5 см³ раствора винной (лимонной) кислоты и нейтрализуют раствором аммиака до слабощелочной среды (рН 10) по универсальной индикаторной бумаге и 2—3 капли в избыток. Затем добавляют 5—6 см³ раствора диметилглиоксима, выдерживают на теплой бане 10 мин, добавляют для лучшего сворачивания 1 г сернокислого аммония. Раствор с осадком охлаждают, осадок отфильтровывают на фильтр средней плотности, промывают 8 раз горячей водой с добавлением 5 см³ аммиака на 1 дм³ воды и под конец 2 раза горячей водой, перемешивая осадок струей воды из промывалки.

6.1. Титрование с индикатором эриохром черным Т

Осадок с фильтра смывают водой в стакан, в котором проводилось осаждение, растворяют в 10 см³ горячей соляной кислоты (1:1), фильтр промывают 2—3 раза горячей водой и фильтр отбрасывают. Раствор с осадком нагревают до полного растворения. Охлаждают раствор до комнатной температуры, добавляют воды до $160-170 \text{ см}^3$, 15 см^3 раствора трилона Б, 2-3 капли метилового красного и нейтрализуют раствором гидроокиси натрия, добавляя последний из бюретки в конце нейтрализации по каплям до перехода розовой окраски в желтую. Добавляют 4 см³ буферного раствора, 5 капель раствора эриохром черного T, разбавляют водой до 200 см³ и титруют раствором сернокислого магния до перехода окраски сине-зеленой в розово-сиреневую.

6.2. Титрование с индикатором мурексид

Осадок растворяют на фильтре в 20—25 см³ горячей азотной кислоты (1:1) в стакан, в котором проводилось осаждение. Фильтр промывают 5—6 раз горячей водой и отбрасывают. Раствор кипятят 8-10 мин до растворения диметилглиоксимата никеля, охлаждают, разбавляют водой до 160-170 см³, добавляют раствор аммиака до запаха (слабо-щелочная среда), 0,01 г мурексида и титруют раствором трилона Б до перехода желтой окраски раствора в красно-фиолетовую.

Разд. 6. (Измененная редакция, Изм. № 2).

7. ОБРАБОТКА РЕЗУЛЬТАТОВ

7.1. Массовую долю никеля (X_1) в процентах при титровании по п. 6.1 вычисляют по формуле

$$X_1 = \frac{(V_4 - V_5 \cdot K) \cdot T \cdot 100}{m}$$
,

где V_4 — объем раствора трилона Б, взятый на титрование, см³; V_5 — объем раствора сернокислого магния, израсходованный на титрование, см³; K — поправочный коэффициент раствора трилона Б по никелю, г/см³;

T — массовая концентрация раствора трилона Б по никелю, г/см³;

т — масса навески сплава, г.

7.2. Массовую долю никеля (X_2) в процентах при титровании по п. 6.2 вычисляют по формуле

$$X_2 = \frac{V_6 \cdot T \cdot 100}{m} ,$$

где V_6 — объем раствора трилона Б, израсходованный на титрование, см³; T — массовая концентрация раствора трилона Б по никелю, г/см³;

m — масса навески сплава. г.

- 7.3. Расхождения результатов трех параллельных определений не должны превышать значений допускаемых расхождений d (d — показатель сходимости) 0,04 %.
- 7.4. Расхождения результатов анализа, полученных в двух различных лабораториях, или двух результатов анализа, полученных в одной лаборатории, но при различных условиях (D — показатель воспроизводимости) не должны превышать 0,06 %.
- 7.5. Контроль точности результатов анализа проводят по Государственным стандартным образцам жаропрочных (хромистых) бронз или сравнением результатов, полученных фотометрическим или атомно-абсорбционным методами в соответствии с ГОСТ 25086—87.
 - Разд. 7. (Введен дополнительно, Изм. № 2).