ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

МЕЛ

Метод определения массовой доли хлорид-ионов в водной вытяжке

Chalk Method for determination of chloride ions content in water extract

ГОСТ 21138.3—85

Взамен ГОСТ 21138.3—75

OKCTY 0709

Постановлением Государственного комитета СССР по стандартам от 28 ноября 1985 г. № 3746 срок действия установлен

<u>с 01.01.87</u> до 01.01.92

Несоблюдение стандарта преспедуется по закону

Настоящий стандарт распространяется на природный мел и устанавливает объемный метод определения массовой доли хлорид-ионов в водной вытяжке.

Метод основан на титровании в водной вытяжке хлорид-ионов раствором азотнокислой ртути (II) в присутствии индикатора дифенилкарбазона.

1. ОБЩИЕ ТРЕБОВАНИЯ

1.1. Общие требования к методу — по ГОСТ 21138.0—85.

2. АППАРАТУРА, РЕАКТИВЫ И РАСТВОРЫ

2.1. Для проведения анализа применяют:

весы лабораторные по ГОСТ 24104-80;

колбы мерные вместимостью 100, 250 и 1000 см³ по ГОСТ 1770—74;

микробюретку вместимостью 10 см3 по ГОСТ 20292—74;

пипетку вместимостью 100 см3 по ГОСТ 20292—74;

кислоту азотную по ГОСТ 4461—77, х. ч., концентрированную и разбавленную 1:4;

натрий хлористый по ГОСТ 4233-77, х. ч.;

серебро азотнокислое по ГОСТ 1277—75, раствор с массовой долей 10/0;

дифенилкарбазон, спиртовой раствор с массовой долей $1^{0}/_{0}$, или смешанный индикатор спиртовой раствор с массовой долей 2% дифенилкарбазида и дифенилкарбазона в отношении 9:1;

ртуть (II) азотнокислую одноволную по ГОСТ 4520—78. раствор концентрации C = 0.025 моль/дм³, приготовленный следующим образом: 8.32 г соли помещают в мерную колбу вместимостью 1000 см³, приливают 0,6—0,7 см³ азотной кислоты, 50 см³ воды и растворяют при перемешивании. Раствор доливают водой до метки и оставляют на одни сутки. Если раствор непрозрачен, его фильтруют. Далее устанавливают поправочный коэффициент к титру раствора концентрации C=0.025 моль/дм³. Для 0,2930 г хлористого натрия, высущенного в сущильном шкафу при 120-125°C до постоянной массы, растворяют в воде в мерной колбе вместимостью 100 см3, доливают до метки водой и перемешивают. Отмеривают микробюреткой 10 см³ раствора хлористого натрия в коническую колбу вместимостью 250 см3, затем добавляют 50 см³ воды, 1 см³ разбавленной 1:4 азотной кислоты, 4— 5 капель индикатора дифенилкарбазона или смешанного индикатора и титруют раствором азотнокислой ртути (II) концентрации C = 0.025 моль/дм³ до появления розовато-фиолетового окрашивания.

Поправочный коэффициент (n) к титру раствора азотнокислой ртути (II) концентрации $C\!=\!0,\!025\,$ моль/дм 3 вычисляют по формуле

$$n = \frac{m \cdot 10}{100 \cdot V \cdot 0,002923}$$

где m — масса хлористого натрия, r;

10 — объем аликвотной части раствора, см3;

100 — объем раствора, см³;

V — объем раствора азотнокислой ртути (II) концентрации C =0,025 моль/дм³, израсходованный на титрование, см³;

0,002923 — теоретическая масса хлористого натрия, соответствующая 1 см³ раствора азотнокислой ртути (II) концентрации C = 0,025 моль/дм³, г.

3. ПРОВЕДЕНИЕ АНАЛИЗА

3.1. Перед количественным определением содержания хлоридионов проводят качественную реакцию на присутствие их в водной вытяжке.

Для этого от основного раствора, полученного при определении массовой доли водорастворимых веществ в меле по ГОСТ 21138.1—85, отбирают в пробирку 3—4 см³, приливают 3—4 капли конпентрированной азотной кислоты и несколько капель раствора

азотнокислого серебра. Если нет помутнения раствора, хлоридионы отсутствуют.

При наличии помутнения производят количественное определение хлорид-ионов.

Для этого от основного раствора отбирают пипеткой 100 см³ в коническую колбу вместимостью 250 см³. К раствору приливают 1 см³ разбавленной 1:4 азотной килоты, 4—5 капель индикагора дифенилкарбазона или смешанного индикатора и титруют раствором азотнокислой ртути (II) из микробюретки до окрашивания раствора в бледно-розовый цвет с фиолетовым оттенком.

Одновременно проводят контрольный опыт. Для этого отбира ют пипеткой 100 см³ дистиллированной воды в коническую колбу вместимостью 250 см³. К раствору приливают 1 см³ разбавленной 1:4 азотной кислоты, 4—5 капель индикатора дифенилкарбазона или смешанного индикатора и титруют раствором азотнокислой ртути (II) из микробюретки до окрашивания раствора в бледнорозовый цвет с фиолетовым оттенком.

При слабо заметной окраске приливают еще 2—3 капли индикатора и, если окраска усиливается, титрование считают законченным.

4. ОБРАБОТКА РЕЗУЛЬТАТОВ

41. Массовую долю хлорид-ионов в водной вытяжке (X) в процентах вычисляют по формуле

$$X = \frac{(V - V_1) \ 0.001773 \cdot n \ V_2 \cdot 100}{V_2 \cdot m},$$

- где V объем раствора азотнокислой ртути (II) концентрации C = 0,025 моль/дм³, израсходованный на титрование, см³;
 - V_1 объем раствора азотнокислой ртути (II) концентрации C = 0,025 моль/дм³, израсходованный на титрование контрольного опыта, см³,
- 0,001773 масса хлора, соответствующая 1 см³ раствора азотнокислой ртути (II) концентрации C = 0,025 моль/дм³, г;
 - n поправочный коэффициент к титру раствора азотнокислой ртути (II) концентрации C = 0.025 моль/дм³определяемый по п. 2.1;
 - V_2 -- объем всєй водной вытяжки, см 3 ;
 - V_3 объем аликвотной части водной вытяжки, см 3 ;
 - m масса навески пробы мела, г.

4.2. Допускаемое расхождение между результатами двух параллельных определений при доверительной вероятности P=0.95 не должно превышать 0.002% — при массовой доле хлорид-ионов в водной вытяжке до 0.01% и 0.003% — при массовой доле хлорид-ионов в водной вытяжке от 0.01% до 0.04%.