ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

КЕНОТРОНЫ ВЫСОКОВОЛЬТНЫЕ

Метод измерения тока анода в импульсе

High-Voltage Kenotron.
The Anode Current Measurement Method.
Within The Voltage Pulse

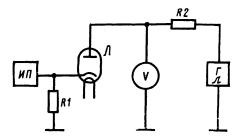
ГОСТ 21011.2—76

Постановлением Государственного комитета стандартов Совета Министров СССР от 19 апреля 1976 г. № 855 срок действия установлен

с 01.07.1977 г. до 01.07.1982 г.

Несоблюдение стандарта преследуется по закону

Настоящий стандарт распространяется на импульсные высоковольтные кенотроны и устанавливает метод измерения тока анода в импульсе.


Стандарт соответствует публикации МЭК 151—13 в части, касающейся метода измерения импульсного напряжения, мер предосторожности и характеристики импульса.

1. ОБЩИЕ ТРЕБОВАНИЯ

1.1. Общие требования к проведению измерения — по ГОСТ 21011.0—75.

2. АППАРАТУРА

2.1. Структурная электрическая схема измерительной установки для измерения тока анода в импульсе должна соответствовать указанной на чертеже.

 \mathcal{J} — испытываемая лампа; $\mathcal{H}\mathcal{I}$ — импульсный вольтметр или осциллограф; R1 — безындуктивный измерительный резистор; R2 — безындуктивный ограничительный резистор; V — импульсный вольтметр; Γ — генератор импульсов.

2.2. Измерительный резистор *R1* должен удовлетворять следующим требованиям:

значение сопротивления измерительного резистора должно быть таким, чтобы падение напряжения на нем не превышало 5% значения напряжения анода;

допускаемое отклонение от номинального значения сопротивления должно быть не более $\pm 1\%$;

изменение сопротивления за счет нагрева от рассеиваемой на нем мощности должно быть не более $\pm 0.5\%$ номинального значения;

индуктивность измерительного резистора должна быть минимальной, не приводящей к появлению выброса на вершине импульса тока анода более 5% его амплитудного значения.

2.3. Если значение сопротивления подводящих проводов и контактов превышают 1% от значения сопротивления измерительного резистора R1, то их сопротивления необходимо учитывать.

2.4. Значение сопротивления ограничительного резистора R2 выбирают с таким расчетом, чтобы суммарное значение внутреннего сопротивления кенотронов и сопротивления ограничительного резистора было больше или равно выходному сопротивлению генератора импульсов.

2.5. Генератор импульсов должен вырабатывать прямоугольные импульсы напряжения длительностью 5 ± 0.5 мкс при скважности 1000 ± 100 , если иное не указано в стандартах или другой технической документации, утвержденной в установленном порядке на кенотроны конкретных типов.

2.6. Форма импульса тока анода должна соответствовать прямоугольному импульсу, приведенному в приложении 4 ГОСТ 16465—70 и соответствовать следующим требованиям:

длительности фронта и среза импульса, измеренные от 0,1 и 0,9 амплитуды импульса, не должны превышать 20% длительности, измеренной от 0,5 амплитуды;

неравномерность вершины импульса тока анода не должна пре-

вышать 20% его амплитудного значения;

выброс импульса тока анода в паузе не должен превышать 5% его амплитудного значения.

2.7. Суммарная относительная погрешность измерения находится в интервале $\delta_{\Sigma} \approx 0.085$ с установленной вероятностью P = 0.99.

Расчет суммарной относительной погрешности приведен в обязательном приложении.

3. ПОДГОТОВКА К ИЗМЕРЕНИЮ

3.1. Подготовка к измерению — по ГОСТ 21011.0—75.

4. ПРОВЕДЕНИЕ МЗМЕРЕНИЯ

4.1. Ток анода в импульсе определяют по падению напряжения на измерительном резисторе *R1*, включенном в цепь катода, при подаче на анод кенотрона импульсов напряжения прямоугольной формы.

5. ОБРАБОТКА РЕЗУЛЬТАТОВ

5.1. Ток анода в импульсе $I_{\rm am}$ определяют по формуле

$$I_{au} = \frac{U_{u}}{R_{1}},$$

где $U_{\rm M}$ — напряжение в импульсе, измеренное на измерительном резисторе;

 R_1 — сопротивление измерительного резистора.

6. ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

6.1. Требования безопасности — по ГОСТ 21011.0-75.

ПРИЛОЖЕНИЕ Обязательное

РАСЧЕТ СУММАРНОЙ ОТНОСИТЕЛЬНОЙ ПОГРЕШНОСТИ ИЗМЕРЕНИЯ ТОКА АНОДА В ИМПУЛЬСЕ

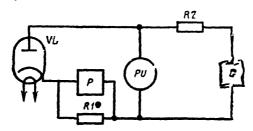
1. Составляющие относительной погрешности измерения распределены по нормальному закону.

2. Суммарную относительную погрешность измерения определяют по формуле

$$\boldsymbol{\delta}_{\Sigma} = \sqrt{\boldsymbol{\delta}_{1}^{2} + \boldsymbol{\delta}_{2}^{2} + \boldsymbol{\delta}_{3}^{2}}$$
 ,

где δ_1 — составляющая относительной погрешности импульсного вольтметра или осциллографа ИП, равная 0,06;

 δ_2 — составляющая относительной погрешности измерительного резистора RI,


равная 0,01; \hat{o}_3 — составляющая относительной погрешности импульсного вольтметра V, равная 0.06.

Изменение № 1 ГОСТ 210.11.2—76 Кенотроны высоковольтные, Метод измерения тока анода в импульсе

Постановлением Государственного комитета СССР по стандартам от 30.03.82 № 1326 срок введения установлен

c 01.08.82

Пункт 2.1. Чертеж заменить новым:

G — генератор импульсов; PV — импульсный вольтметр или осциллограф; PV — измеритель импульсного напряжения; R1 — безындукционный измерительный резистор; R2 — безындукционный ограничительный резистор; VL — испытуемый кенотрон.

Пункт 2.6. Заменить слова: «импульс тока анода» на «импульс напряження»,

Пункт 2.7 исключить.

Пункт 4.1 дополнить абзацем:

«Время измерения должно соответствовать указанному в стандартах иля техняческих условиях на кенотроны конкретных типов».

Стандарт дополнить разделом — 5а:

«ба. Показатели точности измерений

 Погрешность измерения тока анода в импульсе не должна выходить за пределы ±15% с вероятностью 0.95.

Расчет погрешности измерения тока анода в импульсе приведен в спразочном приложении».

Приложение обязательное исключить.

Стандарт дополнить справочным приложением:

∢ПРИЛОЖЕНИЕ Справочное

Расчет погрешности измерения тока анода в импульсе

1. Предел погрешности измерения тока анода в импульсе б выражают в % и рассчитывают по формуле

$$\delta_{2} = \pm K_{2} \sqrt{\frac{\left(\frac{\delta_{U_{a}}}{K_{2}}\right)^{2} + \left(\frac{\delta_{U_{g}}}{K_{a}}\right)^{2} + \eta^{2} \left[\left(\frac{\delta_{V_{a}}}{K_{a}}\right)^{2} + \left(\frac{\delta_{V_{g}}}{K_{a}}\right)^{2}\right] + \left(\frac{\delta_{R1}}{K_{a}}\right)^{2} + \left(\frac{\delta_{R1}}{K_{a}}\right)^{2} + \left(\frac{\delta_{R1}}{K_{a}}\right)^{2}} + \left(\frac{\delta_{R1}}{K_{a}}\right)^{2}, \tag{1}$$

где δ_{U_0} — предел основной погрешности импульсного вольтметра или осциллографа;

 $\delta_{U_{\pi}}$ —предел дополнительной погрешности импульсного вольтметов или осциллографа;

 δ_{V_0} — предел основной погрешности измерителя импульсного напряжения;

 δ_{V_A} — предел дополнительной погрешности измерителя импульсного напряжения;

 п — коэффициент, отражающий влияние неточности выбранного значения напряжения анода на ток анода в импульсе;
 п — предел погрешности номинального значения сопротивле-

 δ_{R_1} — предел погрешности номинального значения сопротивления измерительного резистора RI;

 $\delta_{|R_1'|}$ — предел погрешности значения сопротивления за $|c^{\rm qet}|$ на-

грева от рассеиваемой на нем мощности;

 K_1 , K_2 , K_3 , K_4 , K_5 , K_6 — предельные коэффициенты, отражающие зависимость установленных вероятностей от законов распределения составляющих погрешности;

К₂ — коэффициент, отражающий зависимость установленной вероятности от закона распределения погрешности измерения.

2. Если закон распределения какой-либо составляющей погрешности неизвестен, то принимают его равновероитным, для которого предельный коэффициент этой составляющей будет равен 1,73.

3. Если закон распределения погрешности измерения принимают за нормальный, то для установленной вероятности 0,95 коэффициент K_{Σ} будет ра-

вен 1,96.

4. Коэффициент влияния η находят, используя типовые характеристики зависимости тока анода в импульсе от напряжения анода — $I_{aU} = f(\mathbf{U}_{aU})$ по формуле

$$\eta = \frac{\partial I_{sU}}{\partial U_{sU}} \cdot \frac{U_{sU}}{I_{sU}}$$

$$(2)$$

$$(HYC. No. 6.1982 r.)$$

Редактор *Е. З. Усоскина* Технический редактор *О. Н. Никитина* Корректор *М. С. Кабашева*

Сдано в наб 27 04 76 Подп. в печ 04 06 76 0,5 п. л Тир 8000 Цена 3 коп.