ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

ТАЛЬК И ТАЛЬКОМАГНЕЗИТ

ΓΟCT 19728.8...74*

Метод определения окиси магния

Talc and talcmagnesite.

Method for determination of magnesium oxide

Взамен ГОСТ 879—52 в части разд. III, п. 15в

OKCTY 5709

Постановлением Государственного комитета стандартов Совета Министров СССР от 25 апреля 1974 г. № 987 срок введения установлен

<u>c 01.01.76</u>

Проверен в 1985 г. Постановлением Госстандарта от 24.07.85 № 2341 срок действия продлен

до 01.01.91

Несоблюдение стандарта преследуется по закону

Настоящий стандарт распространяется на микротальк, молотые тальк и талькомагнезит и устанавливает объемный комплексонометрический метод определения общего магния и магния в солянокислом растворе после определения нерастворимого остатка в соляной кислоте по ГОСТ 19728.1—74 в пересчете на окись.

Метод основан на титровании суммы кальция и магния раствором трилона Б с индикатором кислотным хром темно-синим при рН 10 и отдельно кальция с индикатором тимолфталексоном при рН 12—13.

1. ОБЩИЕ ТРЕБОВАНИЯ

1.1. Общие требования к методу определения окиси магния — по ГОСТ 19728.0—74.

2. РЕАКТИВЫ И РАСТВОРЫ

2.1. Для проведения анализа применяют: кислоту соляную по ГОСТ 3118—77, разбавленную 1:4; аммиак водный по ГОСТ 3760—79;

аммиачный буферный раствор с рН 9,5—10, приготовленный следующим образом: 67,5 г хлористого аммония растворяют в воде, приливают 570 см³ аммиака и доводят водой до 1000 см³;

Издание официальное

Перепечатка воспрещена

 ^{*} Переиздание (февраль 1987 г.) с Изменением № 1, утвержденным в июле 1985 г. (ИУС 11—85).

индикатор кислотный хрэм темно-синий, 1%-ный водный рас-TBOD;

уротропин, 30%-ный водный раствор;

магний сернокислый по ГОСТ 4523—77, 0,1 н. раствор, готовят из фиксанала;

стандартный раствор сернокислого магния; готовят следующим образом: 1000 см³ 0,1 н. раствора сернокислого магния в мерной колбе вместимостью 2000 см³ доливают водой до метки и перемешивают. 1 см3 стандартного раствора соответствует 0,001008 г окиси магния:

соль динатриевая этилендиамин-N, N, N', N'-тетрауксусной кислоты, 2-водная (трилон Б) по ГОСТ 10652—73, 0,05 н. раствор, приготовленный следующим образом: 9,3 г трилона Б растворяют в воде, раствор фильтруют, переливают в мерную колбу вмести-мостью 1000 см³ и доливают до метки водой. Для установления титра раствора трилона Б в коническую колбу вместимостью 250 см³ отбирают 10 см³ стандартного раствора сернокислого магния, приливают 50 см³ воды, 10 см³ буферного раствора, несколько капель индикатора кислотного хром темно-синего и титруют раствором трилона \overline{D} до изменения розовой окраски в голубую. Титр раствора трилона \overline{D} (T) в граммах окиси магния на мил-

лилитр раствора вычисляют по формуле

$$T = \frac{V \cdot 0,001008}{V_1}$$
,

где 0,001008 — количество окиси магния, соответствующее 1 см3 стандартного раствора сернокислого магния, г;

V — объем стандартного раствора сернокислого магния, взятый для титрования, см³;

 V_1 — объем трилона Б, израсходованный на титрование, см3.

3. ПРОВЕДЕНИЕ АНАЛИЗА

3.1. Для определения общей массовой доли окиси магния от раствора после определения двуокиси кремния по ГОСТ 19728.3—74 или для определения массовой доли окиси магния в солянокислом растворе после определения нерастворимого в соляной кислоте остатка по ГОСТ 19728.1—74 отбирают аликвотную часть 50 см³ в стакан вместимостью 300 см³.

Раствор нейтрализуют раствором аммиака до покраснения бумажки конго, затем приливают несколько капель разбавленной соляной кислоты до посинения бумажки конго, далее 15 см³ раствора уротропина и раствор выдерживают в течение 10 мин при 80—90°С, избегая кипения. Раствор фильтруют в коническую колбу вместимостью 250 см³, осадок на фильтре промывают и отбрасывают. К фильтрату приливают 10 см³ аммиачного буферного раствора, 8—10 капель индикатора кислотного хром темно-синего и титруют раствором трилона Б до изменения окраски раствора из розовой в устойчивую голубую.

4. ОБРАБОТКА РЕЗУЛЬТАТОВ

4.1. Массовую долю окиси магния (X) в процентах вычисляют по формуле

$$X = \frac{(V-V_1) \cdot T \cdot V_2 \cdot 100}{V_3 \cdot m} ,$$

где V — объем 0,05 н. раствора трилона Б, израсходованного на титрование суммы кальция и магния, см³;

 V_1 — объем 0,05 н. раствора трилона Б, израсходованный на титрование кальция по ГОСТ 19728.7—74, см³;

Т — титр раствора трилона Б, вычисленный по окиси магния, г/см³:

 V_2 — объем исходного раствора, см³;

 V_3 — объем аликвотной части раствора, см³;

т — масса исходной навески пробы, г.

4.2. Допускаемое расхождение между результатами двух параллельных определений при массовой доле окиси магния до 15% не должно превышать 0,3%.

Если расхождение между результатами двух параллельных определений превышает приведенную величину, определение по-

вторяют.

За окончательный результат анализа принимают среднее арифметическое результатов двух последних параллельных опрелелений.

Изменение № 2 ГОСТ 19728.8—74 Тальк и талькомагнезит. Метод определения окиси магния

Утверждено и введено в действие Постановлением Государственного комитета СССР по стандартам от 22.02.88 № 315

Дата введения 01.07.88

Наименование стандарта. Заменить слово: «окисн» на «оксид».

По всему тексту стандарта заменить слово: «окиси» на «оксид».

Вводная часть. Второй абзац. Заменить слово: «тимолфталексоном» на «флуорексоном».

Пункт 2.1 изложить в новой редакции:

«2.1. Для проведения анализа применяют

кислоту соляную по ГОСТ 3118-77 разбавленную 1:4;

аммиак водный по ГОСТ 3760-79.

аммиачный буферный раствор с рН 9,5—10, приготовленный следующим образом: 67,5 г хлористого аммония растворяют в воде, приливают 570 см³ аммиака и доводят водой до 1000 см³;

индикатор кислотный хром темно-синий, приготовленный растворением 0,5 г индикатора в 20 см³ хлоридно-аммиачного буферного раствора, с разбавлением до 100 см³ этиловым спиртом;

спирт этиловый ректификованный по ГОСТ 18300-87;

уротропин, раствор концентрации 100 г/дм3;

триэтаноламин гидрохлорид, раствор концентрации 25 г в 100 см3;

магний сернокислый по ГОСТ 4623—77, 0,05 моль/дм³ готовят разбавлением

стандарт-титра;

соль динатриевая этилендиамин N, N, N', N'-тетрауксусной кислоты 2-водная (трилон Б) по ГОСТ 10652—73 0,05 моль/дм³ раствор, приготовленный следующим образом: 9,3 г трилона Б растворяют в воде, раствор фильтруют, переливают в мерную колбу вместимостью 1000 см³ и доливают до метки водой. Для установления титра раствора трилона Б в коническую колбу вместимостью 250 см³ отбирают 10 см³ стандартного раствора сернокислого магния, приливают 50 см³ воды, 10 см³ буферного раствора, несколько капель индикатора кислотного хром темно-синего и титруют раствором трилона Б до изменения розовой окраски в голубую.

Массовую концентрацию трилона Б (С) в граммах оксида магния на мил-

лилитр раствора вычисляют по формуле

(Продолжение см. в. 88)

(Продолжение изменения к ГОСТ 19728.8—74)

$$C = \frac{V \cdot 0,001008}{V_1}$$
,

где 0.001008 — количество оксида магния, соответствующее 1 см³ стандартного раствора сернокислого магния, г:

V — объем стандартного раствора сернокислого магния, взятый для

титрования, см³; V_1 — объем трилона Б, израсходованный на титрование, см³.

Допускается применение трилона Б, приготовленного из стандарт-титра».

Пункт 3.1. Заменить слова: «по ГОСТ 19728.3—74» на «по ГОСТ 19728.3—74» или ГОСТ 19728.4—88»;

дополнить абзацем: «Допускается определение оксида магния из раствора, полученного по ГОСТ 19728.3-74 без отделения гидрооксидов. Отбирают аликвотную часть 50 см³ в коническую колбу вместимостью 250 см³, прибавляють 5 см3 раствора триэтаноламина, 25 см3 буферного раствора, 8—10 капель надмкатера кислотного хром темно-синего и титруют раствором трилона Б до перехода окраски раствора в голубую».

Раздел 4 изложить в новой редакции:

«4. Обработка результатов

4.1. Массовую долю оксида магния (X) в процентах вычисляют по фермуле-

$$X = \frac{V \cdot C \cdot V_1}{V_2 \cdot m} \cdot 100 - 0,719 \cdot X_1,$$

где V — объем 0,05 моль/дм⁶ раствора трилона Б, израсходованный на титревание суммы оксидов кальция и магния с учетом контрольного опыта, сма;

С — массовая колцентрация 0,05 моль/дм3 раствора трилона Б, выраженная в г/см3 оскида магния;

 V_1 — объем исходного раствора, см³;

V₂ — объем аликвотной части раствора, см³;

m — масса навески, Γ ;

0,719 — коэффициент пересчета оксида кальция на оксид магния;

X₁ — массовая доля оксида кальция, %.
4.2. Допускаемое расхождение между результатами двух параллельных овределений не должно превышать 0,3 % при массовой доле оксида магния 🛚 до-15,0 % и 0,5 % при массовой доле оксида магния свыше 15,0 %».

(MYC № 5 1988 r.)