диоды полупроводниковые

МЕТОД ИЗМЕРЕНИЯ ПРОБИВНОГО НАПРЯЖЕНИЯ

Издание официальное

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

диоды полупроводниковые

Метод измерения пробивного напряжения

ГОСТ 18986.24—83

Semiconductor diodes.

Measurement method of breakdown voltage

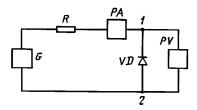
ОКП 62 1000

Постановлением Государственного комитета СССР по стандартам от 24.06.83 № 2681 дата введения установлена

01.07.84

Ограничение срока действия снято по протоколу № 3—93 Межгосударственного Совета по стандартизации, метрологии и сертификации (ИУС 5-6—93)

Настоящий стандарт распространяется на полупроводниковые диоды и устанавливает метод измерения пробивного напряжения.


Общие требования к измерению и требования безопасности — по ГОСТ 18986.0—74.

1. УСЛОВИЯ И РЕЖИМ ИЗМЕРЕНИЙ

- 1.1. Пробивное напряжение определяют измерением обратного напряжения, при котором обратный ток через диод достигает заданного значения в области пробоя перехода.
- 1.2. Значение обратного тока должно соответствовать установленному в стандартах или технических условиях на диоды конкретных типов, при этом значение обратного тока должно быть не менее 10 мкА.

2. АППАРАТУРА

2.1. Измерения следует проводить на установке, структурная схема которой приведена на чертеже.

G— генератор постоянного или пульсирующего напряжения; R— резистор; PA— измеритель тока; VD— испытуемый диод; PV— измеритель напряжения

- 2.2. Значение сопротивления резистора выбирают таким, чтобы при коротком замыкании между выводами 1-2 показания измерителя тока не превышали двукратного значения обратного тока при котором измеряют пробивное напряжение.
- 2.3. Значение внутреннего сопротивления измерителя напряжения должно превышать не менее чем в 100 раз сопротивление диода в заданном режиме измерения. Погрешность измерителя напряжения должна быть в пределах \pm 3 %.

Издание официальное

Перепечатка воспрещена

Переиздание. Август 2002 г.

© Издательство стандартов, 1984

© ИПК Издательство стандартов, 2001

3. ПОДГОТОВКА И ПРОВЕДЕНИЕ ИЗМЕРЕНИЙ

- 3.1 Испытуемый диод подключают к измерительной установке.
- 3.2. Регулировкой генератора напряжения G по измерителю тока PA увеличивают обратный ток до заданного значения и по измерителю напряжения PV определяют значение $U_{\text{проб}}$.

4. ПОКАЗАТЕЛИ ТОЧНОСТИ ИЗМЕРЕНИЙ

- 4.1. Погрешность измерения должна быть в пределах \pm 5 % с доверительной вероятностью P = 0.997.
 - 4.2. Расчет погрешности приведен в приложении.

ПРИЛОЖЕНИЕ Справочное

РАСЧЕТ ПОГРЕШНОСТИ ИЗМЕРЕНИЯ

Погрешность измерения пробивного напряжения $\delta U_{\mathrm{npo6}_{v}}$ рассчитывают по формуле

$$\delta U_{\text{npo6}_{\Sigma}} = \pm K_{\Sigma} \quad \sqrt{\frac{\delta^2 U}{K_1^2} + \frac{a_1^2 \, \delta I}{K_2^2}},$$

где $\delta^2 U$ — погрешность измерения напряжения, равная 3 %;

 δI — погрешность установления тока, равная 2 %;

а — коэффициент, учитывающий влияние неточности установления тока и равный 1;

 K_1 , K_2 — предельные коэффициенты, зависящие от закона распределения составляющих погрешности. Принимаем равномерный закон распределения составляющих погрешности $K_1 = K_2 = 1,73$;

 K_{Σ} — коэффициент, зависящий от закона распределения погрешности измерения пробивного напряжения и установленной вероятности. Если $a_{\max}=1$, δ_1 и δ_2 сильно не различаются. Суммарная погрешность может быть распределенной по трапециевидному закону и $K_{\Sigma}=2,2$.

После подстановки значений в формулу получаем

$$\delta U_{\text{npo6}_{\Sigma}} = \pm 2.2 \quad \sqrt{\frac{3^2}{1.73^2} + \frac{1 \cdot 2^2}{1.73^2}} = \pm 4.6 \%.$$

Редактор В.Н. Копысов
Технический редактор Н.С. Гришанова
Корректор Р.А. Ментова
Компьютерная верстка Л.А. Круговой

Изд. лиц. № 02354 от 14.07.2000.

Сдано в набор 13.09.2002. Подписано в печать 11.10.2002. Уч.-изд. л. 0,25. Тираж 88 экз. С 7750. Зак. 296. Усл. печ. л. 0,47.