

ПОДШИПНИКИ КАЧЕНИЯ

часть 1

ГОСУДАРСТВЕННЫЕ СТАНДАРТЫ СОЮЗА ССР

подшипники качения

ЧАСТЬ 1

Издание официальное

Москва ИЗДАТЕЛЬСТВО СТАНДАРТОВ 1989

ОТ ИЗДАТЕЛЬСТВА

Сборник "Подшипники качения" ч. 1 содержит стандарты, утвержденные до 1 июня 1989 г.

В стандарты внесены все изменения, принятые до указанного срока.

Текущая информация о вновь утвержденных и пересмотренных стандартах, а также о принятых к ним изменениях публикуется в выпускаемом ежемесячно информационном указателе "Государственные стандарты СССР".

$$\Pi = \frac{31304}{085(02) - 89} - 89$$

подшипники качения

Расчет динамической грузоподъемности, эквивалентной динамической нагрузки и долговечности ГОСТ 18855-82 (СТ СЭВ 2793-80)

Rolling bearings. Calculation of dynamic load ratings and life ratings

Взамен ГОСТ 18855-73

ОКП 64 0000

Постановлением Государственного комитета СССР по стандартам от 25 июня 1982 г. № 2520 срок введения установлен

c 01.01.83

Несоблюдение стандарта преследуется по закону

1. Настоящий стандарт распространяется на подшипники качения, размеры которых соответствуют ГОСТ 3478—79, а технические требования — ГОСТ 520—89, и устанавливает формулы и значения коэффициентов для расчета базовой динамической грузоподъемности, эквивалентной динамической нагрузки и долговечности.

Настоящий стандарт не распространяется на подшипники следующих конструктивных разновидностей:

- 1) шариковые с разъемными кольцами (с многоточечным контактом), шариковые чашечные и шариковые с канавкой для заполнения шариками;
- 2) роликовые двухрядные сферические, с игольчатыми роликами, с длинными и витыми роликами;
- 3) без колец в тех случаях, когда поверхность качения на валу или в корпусе не обладает свойствами, присущими дорожкам качения колец подшипников.

Пояснения терминов, используемых в настоящем стандарте, приведены в приложении 1.

Стандарт полностью соответствует СТ СЭВ 2793-80.

- В стандарте учтены требования международного стандарта ИСО 281/1-76.
 - 2. В стандарте приняты следующие обозначения:
 - $C_{\rm r}$ базовая динамическая радиальная грузоподъемность, $N(\kappa rc)$;
 - C_a базовая динамическая осевая грузоподъемность, $N(\kappa rc)$;
 - C_{0r} базовая статическая радиальная грузоподъемность, N(кгс);
 - $D_{\mathbf{w}}$ диаметр шарика, мм;
 - $D_{
 m we}$ диаметр ролика для расчета грузоподъемности, мм;

- $D_{\rm pw} {\rm диаметр}$ окружности центров шариков или роликов, мм;
- L_{we}^{pw} длина ролика для расчета грузоподъемности, мм;
 - г радиальная нагрузка на подшипник или радиальная составляющая нагрузки, действующей на подшипник, N(кгс);
 - $F_{\rm a}$ осевая нагрузка на подшипник или осевая составляющая нагрузки, действующей на подшипник, N (кгс);
 - $P_{\rm r}$ эквивалентная динамическая радиальная нагрузка, N(кгс);
 - P_{a} эквивалентная динамическая осевая нагрузка, N (кгс);
 - \ddot{X} коэффициент радиальной нагрузки;
 - Y коэффициент осевой нагрузки;
 - число тел качения в однорядном подшипнике, число тел качения в одном ряду многорядного подшипника при равном их количестве в каждом ряду;
 - i число рядов тел качения в подщипнике;
 - α номинальный угол контакта подшипника, . . . °;
- L_{10} базовая долговечность, миллионы оборотов;
 - e предельное значение отношения $F_{\rm a}/F_{\rm r}$, обусловливающее выбор коэффициентов X и Y;
 - $f_{\rm c}$ коэффициент, зависящий от геометрии деталей подшипни- ка, точности их изготовления и материала;
 - V коэффициент вращения;
- C_{0a} базовая статическая осевая грузоподъемность, $N(\kappa rc)$;
- 3. Базовую динамическую радиальную грузоподъемность радиальных и радиально-упорных подшипников, базовую динамическую осевую грузоподъемность упорных и упорно-радиальных подшипников, эквивалентную динамическую радиальную и осевую нагрузки следует определять по расчетным формулам, приведенным в табл. 1 и 2.

Расчетные формулы действительны для подшипников, работающих при постоянных по величине и направлению (или приводимых к ним) нагрузках, при частоте вращения ниже предельной, отказ которых возникает из-за усталостного разрушения.

Динамическую грузоподъемность подшипников с радиусами желобов, отличающихся от указанных в примечании 2 к табл. 4 и 5, определяют расчетом контактных напряжений.

- 4. Базовую долговечность шариковых и роликовых подшипников рассчитывают по формулам, приведенным в табл. 3.
- 5. Значения коэффициента $f_{\rm c}$ должны быть не менее указанных в табл. 4—7.
- 6. Значения коэффициентов X и Y должны соответствовать указанным в табл, $8{-}11$.
- 7. При расчете базовой динамической радиальной грузоподъемности для двух одинаковых шариковых радиальных однорядных подшипников, установленных рядом на одном валу и образующих один подшипниковый узел, пару подшипников рассматривают как один радиальный двухрядный подшипник.

Конструктивная разновидность подшипника	Динамическая грузоподъемность
Шариковые:	$C_{ m r} = f_{ m c} (i\coslpha)^{ m 0,7} z^{2/3} D_{ m w}^{ m 1,8}$ при $D_{ m W} \leqslant 25,4$ мм
радиальный и радиально-упорный	$C_{ m r} = 3,647 f_{ m c} (i \cos lpha)^{ m 0,7} z^{ m 2/3} D_{ m w}^{ m 1,4} { m Tpu} D_{ m W} > 25,4 { m MM}$
упорный однорядный	$C_{ m a} = f_{ m c} z^2 h D_{ m w}^{1.8}$ при $D_{ m w} \leqslant 25,4$ мм и $lpha = 90^\circ$
одинарный и двойной	$C_{ m a}=3,647 f_{ m c} z^{2/3} D_{ m w}^{-1,4}$ при $D_{ m w}>25,4$ мм и $lpha=90^{\circ}$
упорно-радиальный однорядный	$C_{\rm a} = f_{\rm c} (\cos lpha)^{0.7} { m tg} \alpha z^{2/3} D_{ m W}^{1.8} { m при} D_{ m W} \leqslant 25,4 { m MM} { m id} lpha eq 90^\circ$
одинарный и двойной	$C_{ m a}=3,647 f_{ m c}(\coslpha)^{ m 0,7}{ m tg}\;\;lpha{ m z}^{2/3}D_{ m w}^{1,4}\;$ при $D_{ m w}>25,4\;$ мм и $lpha\neq90^\circ$
упорный и упорно-радиальный многорядный	$C_{a} = (z_{1} + z_{2} + \ldots + z_{n}) \left[\left(\frac{z_{1}}{C_{a1}} \right)^{10/3} + \ldots + \left(\frac{z_{n}}{C_{an}} \right)^{10/3} \right]^{-3/10}$
Роликовые: радиальный и радиально-упорный	$C_{\rm r} = f_{\rm c} (iL_{\rm we} \cos \alpha)^{7/9} z^{3/4} D_{\rm we}^{29/27}$
упорный однорядный одинарный и двойной	$C_{\rm a} = f_{\rm c} L_{\rm we}^{7/9} z^{3/4} D_{\rm we}^{29/27}$ при $\alpha = 90^{\circ}$

Конструктивная разовидность подшипника	Динамическая грузоподъемность					
упорно-радиальный однорядный одинарный и двойной	$C_{\rm a}={ m f_c}(L_{ m we}\coslpha)^{7/9}z^{3/4}D_{ m we}{}^{29/27}{ m tg}lpha{ m при}lpha eq 90^\circ$					
упорный и упорно-радиальный многорядный	$C_{a} = (z_{1}L_{\text{we}_{1}} + z_{2}L_{\text{we}_{2}} + \dots + z_{n}L_{\text{we}_{n}}).$ $\left[\left(\frac{z_{1}L_{\text{we}_{1}}}{C_{a_{1}}} \right)^{9/2} + \left(\frac{z_{2}L_{\text{we}_{2}}}{C_{a_{2}}} \right)^{9/2} + \dots + \left(\frac{z_{n}L_{\text{we}_{n}}}{C_{a_{n}}} \right)^{9/2} \right]^{-2/9}$					

- 1. В формулах для расчета $C_{\rm a}$ для шариковых и роликовых упорных и упорно-радиальных подшипников z число тел качения, воспринимающих осевую нагрузку в одном направлении. Если несколько роликов устанавливают по одну сторону оси подшипника так, что их оси совпадают, то эти ролики рассматривают как один ролик длиной $L_{\rm we}$, равной сумме длин этих роликов.
- 2. Для шариковых и роликовых упорных и упорно-радиальных многорядных подшипников значения C_{a_1} , C_{a_2} , ..., C_{a_n} для рядов с числом тел качения $z_1, z_2 \ldots z_n$ (имеющих длины $L_{\text{we}_1}, L_{\text{we}_2}, \ldots, L_{\text{we}_n}$ роликовых подшипников) определяют по соответствующим формулам для однорядных подшипников.

радиальный

Таблица 2

Конструктивная разновидность подшипника	Динамическая эквивалентная нагрузка
Шариковый радиальный и радиально- упорный, роликовый радиально-упорный	$P_{\mathbf{r}} = XVF_{\mathbf{r}} + YF_{\mathbf{a}}$
Роликовый радиальный	$P_{\rm r} = F_{\rm r} \; ($ при $\alpha = 0^{\circ})$
Шариковый и роликовый упорный	$P_{\mathbf{a}} = F_{\mathbf{a}} $ (при $\alpha = 90^{\circ}$)
Шариковый и роликовый упорно-	$P_{\mathbf{a}} = XF_{\mathbf{r}} + YF_{\mathbf{a}}$

Расчет эквивалентной динамической нагрузки

 Π р и м с ч а н и е. V=1 при вращении внутреннего кольца по отношению к направлению нагрузки; $V=1,\ 2$ при неподвижном по отношению к направлению нагрузки внутреннем кольце.

Таблица 3 Расчет базовой долговечности

Конструктивная разновидность подшипника	Базовая долговечность
Шариковый: радиальный и радиально-упорный	$L_{10} = \left(\frac{C_{\rm r}}{P_{\rm r}}\right)^3$
упорный и упорно-радиальный	$L_{10} = \left(\frac{C_{\rm a}}{P_{\rm a}}\right)^3$
Роликовый: радиальный и радиально-упорный	$L_{10} = \left(\frac{C_{\rm r}}{P_{\rm r}}\right)^{10/3}$
упорный и упорно-радиальный	$L_{10} = \left(\frac{C_{\rm a}}{P_{\rm a}}\right)^{10/3}$

П р и м е ч а н и е. Формулы применимы для случаев, когда $P_{\bf r}$ ($P_{\bf a}$) не превышает 0,5 $C_{\bf r}$ (0,5 $C_{\bf a}$).

	$f_{f c}$								
$\frac{D_{\rm w}\cos\alpha}{D_{\rm pw}}$	шариковых радиальных однорядных и радиально-упор- ных однорядных и и однорядных и однорядных и двухрядных подшипников	шариковых радиальных двухрядных подшипников	шариковых сферических подшипников	шариковых однорядных подшипников со съемным наружным кольцом					
	кгс/мм 1,8 (H/мм 1,8) при $D_{ m W} \leqslant$ 25,4 мм, кгс/мм 1,4 (H/мм 1,4) при $D_{ m W} >$ 25,4 мм								
0,05	4,76 (46,7)	4,51 (44,2)	1,76 (17,3)	1,65 (16,2)					
0,06	5,00 (49,1)	4,74 (46,5)	1,90 (18,6)	1,77 (17,4)					
0,07	5,21 (51,1)	4,94 (48,4)	2,03 (19,9)	1,89 (18,5) 1,99 (19,5)					
0,08 0,09	5,39 (52,8) 5,54 (54,3)	5,11 (50,0) 5,24 (51,4)	2,15 (21,1) 2,27 (22,3)	2,10 (20,6)					
0,10	5,66 (55,5)	5,37 (52,6)	2,38 (23,4)	2,19 (21,5)					
0,12	5,86 (57,5)	5,55 (54,5)	2,61 (25,6)	2,39 (23,4)					
0,14	6,00 (58,8)	5,68 (55,7)	2,82 (27,7)	2,58 (25,3)					
0,16	6,08 (59,6)	5,76 (56,5)	3,03 (29,7)	2,76 (27,1)					
0,18	6,11 (59,9)	5,79 (56,8)	3,23 (31,7)	2,94 (28,8)					
0,20	6,11 (59,9)	5,79 (56,8)	3,42 (33,5)	3,11 (30,5)					
0,22	6,08 (59,6)	5,76 (56,5)	3,59 (35,2)	3,27 (32,1)					
0,24	6,01 (59,0)	5,70 (55,9)	3,75 (36,8)	3,43 (33,7)					
0,26	5,93 (58,2)	5,62 (55,1)	3,90 (38,2)	3,58 (35,2)					
0,28	5,83 (57,1)	5,52 (54,1)	4,02 (39,4)	3,72 (36,6)					
0,30 0,32	5,71 (56,0) 5,58 (54,6)	5,41 (53,0) 5,30 (51,8)	4,11 (40,3) 4,18 (40,9)	3,86 (37,8) 3,97 (38,9)					
0,34	5,43 (53,2)	5,15 (50,4)	4,18 (40,9)	4,06 (39,8)					
0,36	5,27 (51,7)	5,00 (48,9)	4,21 (41,3)	4,12 (40,4)					
0,38	5,10 (50,0)	4,84 (47,4)	4,18 (41,0)	4,15 (40,8)					
0,40	4,92 (48,4)	4,67 (45,8)	4,12 (40,4)	4,17 (40,9)					

^{1.} Коэффициент $f_{\rm c}$ для промежуточных значений $D_{\rm pw} \cos \alpha$ определяют линейной интерполяцией.

^{2.} Коэффициент $f_{\rm c}$ действителен для радиальных и радиально-упорных подшипников, у которых радиус профиля желоба в поперечном сечении не превышает 0,52 $D_{\rm w}$ на внутреннем кольце и 0,53 $D_{\rm w}$ — на наружном.

Таблица 5 Коэффициент $f_{\rm C}$ для шариковых упорных и упорно-радиальных подшипников

	f _c при α = 90°		$f_{ m c}$ при					
$\frac{D_{\mathrm{w}}}{D_{\mathrm{pw}}}$	кгс/мм ^{1,8}	D 2020	$\alpha = 45^{\circ}$	α= 60°	α= 75°			
	$(H/\text{MM}^{1,8})$ при $D_{\text{W}} \leq 25,4$ мм, кгс/мм ^{1,4} $(H/\text{MM}^{1,4})$ при $D_{\text{W}} > 25,4$ мм	$\frac{D_{\rm w}{\rm cos}\alpha}{D_{\rm pw}}$	кгс/мм 1,8 (Н/мм 1,8) при $D_{ m W}$ \le 25,4 мм, кгс/мм 1,4 (Н/мм 1,4) при $D_{ m W}$ $>$ 25,4 мм					
0.01	3,74 (36,7)	0,01	4,29 (42,1)	3,99 (39,2)	3,81 (37,3)			
0,02	4,61 (45,2)	0,02	5,27 (51,7)	4,90 (48,1)	4,68 (45,9)			
0,03	5,21 (51,1)	0,03	5,94 (58,2)	5,53 (54,2)	5,27 (51,7)			
0,04	5,68 (55,7)	0,04	6,45 (63,3)	6,00 (58,9)	5,72 (56,1)			
0,05	6,07 (59,5)	0.05	6,86 (67,3)	6,39 (62,6)	6,09 (59,7)			
0,06	6,41 (62,9)	0,06	7,20 (70,7)	6,70 (65,8)	6,39 (62,7)			
0,07	6,71 (65,8)	0,07	7,49 (73,5)	6,97 (68,4)	6,65 (65,2)			
0,08	6,99 (68,5)	0,08	7,74 (75,9)	7,20 (70,7)	6,87 (67,3)			
0,09	7,24 (71,0)	0,09	7,95 (78,0)	7,40 (72,6)	7,05 (69,2)			
0,10	7,47 (73,3)	0,10	8,12 (79,7)	7,56 (74,2)	7,21 (70,7)			
0,12	7,89 (77,4)	0,12	8,40 (82,3)	7,82 (76,6)	-			
0,14	8,27 (81,1)	0,14	8,58 (84,1)	7,98 (78,3)				
0,16	8,60 (84,4)	0,16	8,68 (85,1)	8,08 (79,2)	_			
0,18	8,91 (87,4)	0,18	8,72 (85,5)	8,12 (79,6)	_			
0,20	9,20 (90,2)	0,20	8,71 (85,4)	8,11 (79,5)	_			
0,22	9,47 (92,8)	0,22	8,66 (84,9)		_			
0,24	9,72 (95,3)	0,24	8,56 (84,0)	-	-			
0,26	9,95 (97,6)	0,26	8,44 (82,8)	_	-			
0,28	10,2 (99,8)	0,28	8,29 (81,3)		-			
0,30	10,4 (101,9)	0,30	8.11 (79,6)	-	_			
0,32	10,6 (103,9)	-	-	_	_			
0,34	10,8 (105,8)		-	- !				

1. Коэффициент $f_{\rm c}$ для промежуточных значений $\dfrac{D_{
m w}}{D_{
m pw}}$, $\dfrac{D_{
m w}{
m cos}lpha}{D_{
m pw}}$ углов контакта lpha определяют линейной интерполяцией.

2. Коэффициент $f_{\rm C}$ действителен для подшипников, у которых радиус профиля желоба не превышает 0,54 $D_{\rm W}$.

 $\ \ \, {\rm T}\, {\rm a}\, {\rm f}\, {\rm \pi}\, {\rm u}\, {\rm u}\, {\rm a}\, \, 6 \\ \, {\rm Ko}{\rm э} {\rm ф} {\rm фициент}\, f_{\rm C}\, {\rm дл}{\rm g}\, {\rm pоликовы}\, {\rm p}\, {\rm a}{\rm диальны}\, {\rm u}\, {\rm p}\, {\rm a}{\rm диально} - {\rm y}\, {\rm n}{\rm o}{\rm p}\, {\rm н}{\rm h}{\rm i}\, {\rm x}\, {\rm n}\, {\rm d}\, {\rm d$

$D_{\text{we}}\cos \alpha$	j	c	$D_{\text{we}}\cos \alpha$	$f_{ m c}$		
D_{pw}	кгс/мм ^{50/27}	Н/мм ^{50/27}	D_{pw}	кгс/мм ^{50/27}	H/мм ^{50/27}	
0,01 0,02	5,31 6,20	(52,1) (60,8)	0,03 0,04	6,78 7,21	(66,5) (70,7)	

Продолжение табл. 6

$D_{\mathrm{we}}\cos \alpha$	ſ	Ĉ	$D_{\mathrm{we}}\cos\alpha$	$f_{\mathbf{c}}$		
$\overline{D_{\mathrm{pw}}}$			D_{pw}	кгс/мм ^{50/27}	Н/мм ^{50/27}	
0,05 0,06 0,07 0,08 0,09 0,10 0,12 0,14	7,55 7,84 8,07 8,28 8,44 8,58 8,81 8,94	(74,1) (76,9) (79,2) (81,2) (82,8) (84,2) (86,4) (87,7)	0,16 0,18 0,20 0,22 0,24 0,26 0,28 0,30	9,02 9,05 9,04 8,99 8,92 8,81 8,69 8,54	(88,5) (88,8) (88,7) (88,2) (87,5) (86,4) (85,2) (83,8)	

- 1. Коэффициент $f_{\rm c}$ для промежуточных значений определяют линейной интерполяцией.
- 2. В таблице приведены значения $f_{\mathbf{c}}$ для роликовых подшипников в таком исполнении, при котором контактное напряжение равномерно распределено вдоль наиболее нагруженной линии контакта ролика и дорожки качения.
- 3. Меньшие значения f_c применяют для роликовых подшипников таких исполнений, при которых в месте контакта ролика и дорожки качения возникает большая концентрация напряжений. Такая концентрация напряжений может возникать на краях ролика при линейном контакте в подшипнике в случаях, когда ролики не имеют точного направления, а также когда длина роликов в 2,5 раза и более превышает их диаметр.

Таблица 7 Коэффициент $f_{\mathbb{C}}$ для роликовых упорных и упорно-радиальных подшипников

	$f_{\rm c}$ при $\alpha=90^{\circ}$		$f_{ m c}$ при				
$\frac{D_{\mathrm{we}}}{D_{\mathrm{pw}}}$		D cos a	$\alpha = 50^{\circ}$ $(45^{\circ} < \alpha < 60^{\circ})$	$\alpha = 65^{\circ}$ $(60^{\circ} \le \alpha < 75^{\circ})$	$\alpha = 80^{\circ}$ $(75^{\circ} \le \alpha < 90^{\circ})$		
	$ m Krc/mm^{1,8}/\ (H/mm^{1,8})$ при $D_{ m W} \leqslant 25,4$ мм, $ m Krc/mm^{1,4}$ $(H/mm^{1,4})$ при $D_{ m W} > 25,4$ мм	$\frac{D_{\rm we}\cos a}{D_{\rm pw}}$		Н/мм ^{1,8}) при D_{χ} Н/мм ^{1,8}) при D_{χ}			
0,01 0,02 0,03 0,04	10,7 (105,4) 12,5 (122,9) 13,7 (134,5) 14,6 (143,4)	0,01 0,02 0,03 0,04	11,2 (109,7) 13,0 (127,8) 14,2 (139,5) 15,1 (148,3)	10,9 (107,1) 12,7 (124,7) 13,9 (136,2) 14,8 (144,7)	10,8 (105,6) 12,5 (123,0) 13,7 (134,3) 14,6 (142,8)		

			<i>f</i> _C при				
מ	<i>f</i> _C при α = 90°	$D_{ m we}$ cos $lpha$	$\alpha = 50^{\circ}$ $(45^{\circ} < \alpha < 60^{\circ})$	$\alpha = 65^{\circ}$ $(60^{\circ} \le \alpha < 75^{\circ})$	$\alpha = 80^{\circ}$ $(75^{\circ} \le \alpha < 90^{\circ})$		
$\frac{D_{\mathrm{we}}}{D_{\mathrm{pw}}}$	${ m Krc/mm^{1,8}}$ ${ m (H/mm^{1,6})}$ при $D_{ m W} \le 25,4$ мм, ${ m Krc/mm^{1,6}}$ ${ m (H/mm^{1,6})}$ при $D_{ m W} > 25,4$ мм	D _{pw}	кгс/мм 1,8 (Н/мм 1,8) при $D_{ m W}$ \leqslant 25,4 мм, кгс/мм 1,4 (Н/мм 1,4) при $D_{ m W}$ $>$ 25,4 мм				
0,05 0,06 0,07 0,08 0,09 0,10 0,12 0,14 0,16 0,18 0,20 0,22 0,24 0,26 0,28 0,30	15,4 (150,7) 16,0 (156,9) 16,6 (162,4) 17,0 (167,2) 17,5 (171,7) 17,9 (175,7) 18,7 (183,0) 19,3 (189,4) 19,9 (195,1) 20,4 (200,3) 20,9 (205,0) 21,3 (209,4) 21,8 (213,5) 22,5 (220,9) 22,9 (224,3)	0,05 0,06 0,07 0,08 0,09 0,10 0,12 0,14 0,16 0,18 0,20 0,22 0,24 0,26	15,8 (155,2) 16,4 (160,9) 16,9 (165,6) 17,3 (169,5) 17,6 (172,8) 17,9 (175,5) 18,3 (179,7) 18,6 (182,3) 18,7 (183,7) 18,8 (184,1) 18,7 (183,7) 18,6 (182,6) 18,4 (180,9) 18,2 (178,7)	15,4 (151,5) 16,0 (157,0) 16,5 (161,6) 16,9 (165,5) 17,2 (168,7) 17,5 (171,4) 17,9 (175,4) 18,1 (177,9) 18,3 (179,3) 18,3 (179,7) 18,3 (179,3)	15,2 (149,4) 15,8 (154,9) 16,2 (159,4) 16,6 (163,2) 17,0 (166,4) 17,2 (169,0) 17,6 (173,0) 17,9 (175,5) - - - - - -		

Примечание. Коэффициент $f_{
m c}$ для промежуточных значений $\dfrac{D_{
m we}}{D_{
m pw}}$ или

 $rac{D_{
m we}{
m cos}\,lpha}{D_{
m pw}}$ определяют линейной интерполяцией.

8. При расчете базовой динамической радиальной грузоподъемности и эквивалентной динамической радиальной нагрузки для двух одинаковых шариковых или роликовых радиально-упорных однорядных подшипников, установленных рядом на одном валу широкими или узкими торцами друг к другу и образующих один подшипниковый узел, пару подшипников рассматривают как один радиально-упорный двухрядный подшипник. При этом коэффициенты X и Y при определении эквивалентной нагрузки роликовых подшипников принимают по табл. 10 для двухрядных подшипников.

Таблица 8 Коэффициенты X и Y для шариковых радиальных и радиально-упорных подшипников

			X	Y	X	Y	X	Y	X	Y	
Конструктивная разновидность	α	Относитель- ная осевая	Для однорядного подшиника				для двухрядного подшипника при				e
подшипника		нагрузка			$\frac{F_{\rm a}}{VFr} \le e$ $\frac{F_{\rm a}}{VFr} > e$						
		$\frac{F_{\mathbf{a}}}{C_{\mathbf{or}}}$									
Радиальный подшипник	0°	0,014 0,028 0,056 0,084 0,110 0,170 0,280 0,420 0,560	1	0	0,56	2,30 1,99 1,71 1,55 1,45 1,31 1,15 1,04 1,00	1	0	0,56	2,30 1,99 1,71 1,55 1,45 1,31 1,15 1,04 1,00	0,19 0,22 0,26 0,28 0,30 0,34 0,38 0,42 0,44
Радиально- упорный под- шипник	5°		1	0	0,56	2,30 1,99 1,71 1,55 1,45 1,31 1,15 1,04 1,00	1	2,78 2,40 2,07 1,87 1,75 1,58 1,39 1,26 1,21	0,78	3,74 3,23 2,78 2,52 2,36 2,13 1,87 1,69 1,63	0,23 0,26 0,30 0,34 0,36 0,40 0,45 0,50 0,52

		,		,	·		,	<u>,</u>		11p00011111011	
			X	Y	X	Y	X	Y	X	Y	
Конструктивная разновидность	α	Относитель-		Для однорядного подшипника при				для двухрядного подшипника при			
подшининка	одшипника нагрузка		$\frac{F_a}{VFr} \le e$		$\frac{F_a}{VFr} > e$		$\frac{F_a}{VFr} \leq e$		$\frac{F_a}{VFr} > e$		e
		$\frac{iF_a}{C_{\rm or}}$									
Радиально-удар- ный подшипник	10°	0,014 0,029 0,057 0,086 0,110 0,170 0,290 0,430 0,570	1	0	0,46	1,88 1,71 1,52 1,41 1,34 1,23 1,10 1,01 1,01	1	2,18 1,98 1,76 1,63 1,55 1,42 1,27 1,17 1,16	0,75	3,06 2,78 2,47 2,29 2,18 2,00 1,79 1,64 1,63	0,29 0,32 0,36 0,38 0,40 0,44 0,49 0,54 0,54
	12°	0,014 0,029 0,057 0,086 0,110 0,170 0,290 0,430 0,570	1	0	0,45	1,81 1,62 1,46 1,34 1,22 1,13 1,04 1,01 1,00	1	2,08 1,84 1,69 1,52 1,39 1,30 1,20 1,16 1,16	0,74	2,94 2,63 2,37 2,18 1,98 1,84 1,69 1,64 1,62	0,30 0,34 0,37 0,41 0,45 0,48 0,52 0,54 0,54

Продолжение табл. 8

		Относитель- ная осевая нагрузка	X	Y	X	Y	X	Y	X	Y	
Конструктивная разновидность подшипника	α		для однорядного подшипника при			для двухрядного подшиника при				e	
			F VF	a r ≤ e	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	$\frac{F_a}{Fr} > e$		$\frac{F_a}{Fr} \leq e$		$\frac{r_a}{r_r} > e$	
		$\frac{iF_a}{C_{\rm or}}$									
Радиально- упорный под- шипник	15°	0,015 0,029 0,058 0,087 0,120 0,170 0,290 0,440 0,580	1	0	0,44	1,47 1,40 1,30 1,23 1,19 1,12 1,02 1,00 1,00	1	1,65 1,57 1,46 1,38 1,34 1,26 1,14 1,12	0,72	2,39 2,28 2,11 2,00 1,93 1,82 1,66 1,63 1,63	0,38 0,40 0,43 0,46 0,47 0,50 0,55 0,56
	18°, 19°, 20°	_			0,43	1,00		1,09	0,70	1,63	0,57
	24°, 25°, 26°	_	1	0	0,41	0,87	1	0,92	0,67	1,41	0,68
	30°	_			0,39	0,76		0,78	0,63	1,24	0,80

			X	Y	X	Y	X	Y	X	Y	
Конструктивная разновидность	α	Относитель- ная осевая нагрузка	для однорядного подшигника при				для двухрядного подши п ника при				
подшипника			$\frac{F_{\mathbf{a}}}{VFr} \leq e$			$\frac{F_{\mathbf{a}}}{Fr} > e$	$\frac{F_{\mathbf{a}}}{VFr} \leq e$		$\frac{F_a}{VFr} > e$		е
	35°, 36°	_	1	0	0,37	0,66	1	0,66	0,60	1,07	0,95
Радиально- упорный под- шипник	40°	_	1	0	0,35	0,57	1	0,55	0,57	0,93	1,14
	45°	-			0,33	0,50		0,47	0,54	0,81	1,34
Сферический подшипник	-	-	1	0	0,40	0,40 ctgα	1	0,42 ctgα	0,65	0,65 ctgα	1,5 tgα
		$\frac{iF_{\rm a}}{C_{\rm or}}$									
Радиальный однорядный со съемным наруж- ным кольцом	_	-	1	0	0,50	2,50	-		-	-	0,20

^{1.} Допустимое максимальное значение относительной осевой нагрузки зависит от конструкции подшипника (зазора в подшипнике и глубины желоба дорожки качения).

^{2.} Значения X, Y и e для промежуточных значений относительной осевой нагрузки или для угла контакта α определяют линейной интерполяцией.

Таблица 9

Коэффициенты X и Y для шариковых упорно-радиальных подшипнико	B
---	---

	X	Y	X	Y	X	Y		
	для одинарного подшипника $\dfrac{F_a}{F_r}\!>\!e$		для двойного подшипника при					
a			$\frac{F_{\rm a}}{F_{\rm r}} \le$	i e	$\frac{F_a}{F_r} > e$	e 		
45° 50 55 60 65 70 75 80 85	0,66 0,73 0,81 0,92 1,06 1,28 1,66 2,43 4,80	1	1,18 1,37 1,60 1,90 2,30 2,90 3,89 5,86 11,75	0,59 0,57 0,56 0,55 0,54 0,53 0,52 0,52 0,52	0,66 0,73 0,81 0,92 1,06 1,20 1,66 2,43 4,80	1	1,25 1,49 1,79 2,17 2,68 3,43 4,67 7,09 14,29	
α ≠ 90°	$1,25 \log \left(1-\frac{2}{3} \sin \alpha\right)$	1	$\frac{20}{13} \operatorname{tg} \alpha \left(1 - \frac{1}{3} \sin \alpha \right)$	$\frac{10}{13}\left(1-\frac{1}{3}\sin\alpha\right)$	$1,25 \mathrm{tg}\alpha \left(1 - \frac{2}{3} \mathrm{tg}\alpha\right)$	1	1,25 tgα	

Примечание. Значения $F_a = F_r \leqslant e$ для одинарных подшипников не применяют.

 $\begin{tabular}{ll} T a $ 6$ π и $ 4$ a $ 10 \end{tabular}$ Коэффициенты X и Y для роликовых радиально-упорных подшипников

	X	Y	X		
Конструктивная разновидность подшипника	при	$\frac{F_a}{VFr} \leqslant e$	при	e	
Однорядный Двухрядный	1 1	0 0,45 ctgα	0,40 0,67	0,4 ctgα 0,67 ctgα	1,5 tgα 1,5 tgα

Коэффициенты X и Y для роликовых упорно-радиальных подшипников

Таблина 11

	X	Y	Х	Y	-
Конструктивная разновидность подшипника	при $\frac{F_a}{Fr}$	-≤ e	при $\frac{F_{\alpha}}{Fr}$	е	
Одинарный Двойной	_ 1,5 tgα	_ 0,67	tgα tg a	1 1	1,5 1,5

П р и м е ч а н и е. Значения $\frac{F_{\rm a}}{F_{\rm r}} \leqslant e$ для роликовых упорно-радиальных одинарных подшипников не применяют.

9. Базовая динамическая радиальная грузоподъемность для двух или более одинаковых шариковых или роликовых радиально-упорных подшипников, установленных рядом на одном валу по схеме тандем и образующих общий подшипниковый узел, при равномерном распределении нагрузки равна динамической грузоподъемности одного однорядного подшипника, умноженной на число подшипников в степени $^{7}/_{10}$ для шариковых и в степени $^{7}/_{9}$ для роликовых подшипников, а при расчете эквивалентной динамической радиальной нагрузки используют коэффициенты X и Y для однорядного подшипника, причем значения F_{a} и F_{r} принимают в качестве общей нагрузки, действующей на весь комплект.

Для шариковых радиально-упорных однорядных подшипников относительную осевую нагрузку (по табл. 8) определяют при условии, что i=1, а значения F_a и $C_{\rm or}$ относятся только к одному подшипнику, несмотря на то, что значения $F_{\rm r}$ и F_a — общие нагрузки на весь комплект.

- 10. Базовая динамическая осевая грузоподъемность для двух или более одинаковых роликовых упорно-радиальных однорядных подшипников, установленных рядом на одном валу по схеме тандем и образующих общий подшипниковый узел, при равномерном распределении нагрузки должна быть равна динамической грузоподъемности одного однорядного подшипника, умноженной на число подшипников в степени ⁷/₉.
- 11. Для определения базовой долговечности двух и более однорядных подшипников, работающих как один подшипниковый узел, применяют расчетные формулы, приведенные в табл. 3.

В этом случае грузоподъемность $C_{\mathbf{r}}(C_{\mathbf{a}})$ определяют для всего комплекта и эквивалентную нагрузку $P_{\mathbf{r}}(P_{\mathbf{a}})$ определяют для действующей на него суммарной нагрузки.

12. Расчет скорректированной долговечности с учетом условий смазки, качества материала и повышенных требований к надежности приведен в приложении 2.

ПОЯСНЕНИЯ ТЕРМИНОВ, ИСПОЛЬЗУЕМЫХ В НАСТОЯЩЕМ СТАНДАРТЕ

- 1. Долговечность отдельного подшипника число оборотов, которое одно из колец подшипника делает относительно другого кольца до начала усталостного разрушения материала на одном из колец или тел качения.
- 2 Надежность группы подшипников одного типоразмера, конструкции и технологии изготовления в одинаковых условиях эксплуатации процент подшипников в данной группе, у которых предполагается достижение или превышение определенной долговечности.
- 3. Надежность отдельного подшипника качения вероятность того, что подшипник достигнет или превысит определенную долговечность.
- 4. Базовая долговечность отдельного подшипника качения или группы идентичных подшипников качения, работающих в одинаковых условиях эксплуатации долговечности при 90 %-ной надежности.
- 5. Базовая динамическая радиальная грузоподъемность постоянная радиальная нагрузка, которую подшипник качения может воспринимать при базовой долговечности, составляющей один миллион оборотов. Для однорядных радиально-упорных подшипников радиальная грузоподъемность соответствует радиальной составляющей нагрузки, которая вызывает чисто радиальное относительное смещение колец...
- 6. Базовая динамическая осевая грузоподъемность постоянная центральная осевая нагрузка, которую подшипник качения может воспринимать при базовой долговечности, составляющей один миллион оборотов.
- 7. Эквивалентная динамическая радиальная нагрузка постоянная радиальная нагрузка под действием которой подшипник качения будет иметь такую же долговечность, как и в условиях действительной нагрузки.
- 8. Эквивалентная динамическая осевая нагрузка постоянная центральная осевая нагрузка, под действием которой подшипник качения будет иметь такую же долговечность, как и в условиях действительной нагрузки.
 - 9. Диаметр ролика для расчета грузоподъемности по ГОСТ 18854-82.
 - 10. Длина ролика для расчета грузоподъемности по ГОСТ 18854-82.
 - 11. Номинальный угол контакта по ГОСТ 18854-82.

ПРИЛОЖЕНИЕ 2 Рекомендуемое

СКОРРЕКТИРОВАННАЯ РАСЧЕТНАЯ ДОЛГОВЕЧНОСТЬ

1. Обычный критерий оценки эксплуатационных свойств подшипника — базовая долговечность, рассчитываемая по настоящему стандарту. Эта долговечность соответствует 90 %-ной надежности. Однако, в некоторых случаях использования подшипников желательно рассчитывать долговечность при других уровнях надежности.

2. Скорректированную расчетную долговечность $L_{\rm n}$ в миллионах оборотов для надежности (100 – n) % определяют по формуле

$$L_n = a_1 L_{10}$$

где a_1 — коэффициент долговечности при надежности, отличной от 90 %.

Значения коэффициента а, приведены в таблице настоящего приложения.

- 3. Базовая долговечность распространяется на обычные подшипниковые стали при нормальных условиях эксплуатации (правильной установке подшипника, правильном способе смазки, защите от проникания инородных тел, в случае, когда подшипник находится под действием нормальной нагрузки и не подвергается воздействию экстремальных температур). Если в некоторых случаях свойства материала и условия эксплуатации отличаются от обычных, то необходимо учесть их влияние при расчете долговечности.
- 4. Скорректированную расчетную долговечность L_{10a} в миллионах оборотов для свойств материала и эксплуатационных условий, отличающихся от нормальных, определяют по формуле

$$L_{100} = a_2 a_3 L_{10}$$

где a_2 — коэффициент долговечности, учитывающий особые свойства материала; коэффициент долговечности, учитывающий особые условия эксплуата-

5. Скорректированную расчетную долговечность $L_{\rm na}$ в миллионах оборотов для свойств материала и условий эксплуатации, отличающихся от нормальных, при (100-n) %-ной надежности определяют по формуле

$$L_{\text{na}} = a_1 a_2 a_3 L_{10}$$
.

6. При расчете скорректированной расчетной долговечности и выборе размера подшипника следует учитывать:

максимальные допустимые отклонения подшипника;

минимальную прочность и жесткость вала и корпуса.

Если скорректированная расчетная долговечность превышает L_{10} , следует провести проверку влияния упомянутых факторов.

 Надежность, %
 Ln
 a₁

 90
 L10
 1,00

 95
 L5
 0,62

 96
 L4
 0,53

 97
 L3
 0,44

 98
 L2
 0,33

Коэффициент a_1

7. Коэффициент a_2 определяют по результатам испытаний и из опыта эксплуатации подшипников.

Значения коэффициента задает изготовитель подшипника.

8. Не следует изменять значения a_2 (принимать значения, отличные от единицы) только на основе анализа новых марок сталей. Значения a_2 , превышающие единицу, могут быть использованы лишь для подшипников, изготовленных из специальных сталей или из сталей с особенно низким содержанием неметаллических включений.

0,21

ΓΟCT 18855-82

- 9. На значение a_2 влияет также технология производства подшипников. Если, например, из-за понижения твердости в результате специальной термообработки сокращается долговечность, то изготовитель подшипника должен учитывать это уменьшением значения a_2 .
- 10. На долговечность подшипника влияют главным образом значения и направление нагрузки, принятые при вычислении эквивалентной динамической нагрузки по табл. 2 настоящего стандарта.
- 11. Следует учитывать также равномерность смазки (при эксплуатационных скоростях и температуре) и влияние условий эксплуатации на изменение свойств материала (например, высокая температура, вызывающия снижение твердости). Влияние вышеупомянутых условий следует учитывать в коэффициенте a_{3} .
- 12. Вычисление базовой динамической грузоподъемности и базовой долговечности действительно при условии, что долговечность подшипника лимитируется лишь усталостью подповерхностных слоев материала, т.е. тогда, когда тела качения и дорожки качения колец подшипников достаточно разделены пленкой смазки, в результате чего снижается вероятность возникновения признаков усталости материала на поверхности рабочих площадок подшипника. При выполнении этого требования коэффициент $a_3=1$, если условия эксплуатации не повлияли на свойства материала и значения a_3 не надо уменьшать.
- 13. Недостаток смазки не компенсируется использованием улучшенного материала. Если коэффициент a_3 меньше единицы из-за плохой смазки, обычно невозможно пользоваться значениями a_2 большими, чем единица.

Значения a_3 уменьшают, если вязкость смазки меньше чем 13 мм²/с для шариковых подшипников и меньше чем 20 мм²/с для роликовых подшипников при рабочей температуре и низкой скорости вращения — число об/мин, умноженное на $D_{\rm pw}$ меньше, чем 10000. Значения a_3 большие чем единица, могут быть приняты только при условии особенно благоприятной смазки.

СОДЕРЖАНИЕ

ΓOCT 24955-81	Подшипники качения. Термины и определения	3
(CT C3B 1473-78)	•	•
ГОСТ 25256-82	Подшипники качения. Допуски. Термины и определе-	
(CT C3B 1472-78)	ния	26
ΓOCT 4.479-87	Система показателей качества продукции. Подшипники	
	качения. Номенклатура показателей	40
ΓOCT 3395-75	Подшипники шариковые и роликовые. Типы и конст-	
	руктивные разновидности	48
ΓOCT 3189-75	Подшипники шариковые и роликовые. Система услов-	
	ных обозначений	79
ΓOCT 3478-79	Подшипники качения. Основные размеры	91
(CT CЭB 402-84,		
CT C 3 B 2795-80)		
ΓΟCT 520-89	Подшипники качения. Общие технические условия	138
(ИСО 492-86,		
исо 199-79,		
CT C ₃ B 774-85)		
ГОСТ 24810-81	Подшипники качения. Зазоры	210
(CT C3B 775-87)		
ΓOCT 3325-85	Подшипники качения. Поля допусков и технические	
(CT CЭВ 773-77)	требования к посадочным поверхностям валов и кор-	
	пусов. Посадки	235
ΓΟCT 20226-82	Подшипники качения. Заплечики для установки под-	
(CT C3B 2794-80)	шипников качения. Размеры	339
ΓOCT 18854-82	Подшипники качения. Расчет статической грузоподъем-	
(CT C3B 2792-80)	ности и эквивалентной статической нагрузки	382
ΓOCT 18855-82	Подшипники качения. Расчет динамической грузоподъем-	
(CT C3B 2793-80)	ности, эквивалентной динамической нагрузки и долго-	
·	вечности	388
ΓOCT 20918-75	Подшипники качения. Метод расчета предельной частоты	
	вращения	407
ΓOCT 2893-82	Подшипники качения. Канавки под упорные пружинные	
(CT C3B 2796-80)	кольца. Кольца упорные пружинные. Размеры	410
FOCT 8338-75	Подшипники шариковые радиальные однорядные. Ос-	
(CT C3B 3795-82)	новные размеры	422

Редактор Р.Г. Говердовская Технический редактор О.Ю. Захарова Корректор Л.А. Пономарева, А.М. Трофимова

Сдано в наб. 19.12.88. Подп. к печ. 31.05.89. 27,5 усл. печ. л., 27,30 усл. кр.-отт., 28,26 уч.-иэд. л. Тираж 40000 экз. Изд. № 10335/02 Цена 1 р. 40 к. Заказ № 1443

Ордена "Знак Почета" Издательство стандартов, 123840, Москва, ГСП, Новопресненский пер., 3

Набрано в Издательстве стандартов на НПУ

Вильнюсская типография Издательства стандартов, Вильнюсс, ул. Даряус и Гирено, 39.