ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

ФЕРРОСИЛИКОЦИРКОНИЙ Методы определения меди

ГОСТ 17001.7—86

Ferrosilicozirconium. Methods for determination of copper

Взамен ГОСТ 17001.7—71

ОКСТУ 0809

Постановлением Государственного комитета СССР по стандартам от 24 ноября 1986 г. № 3512 срок действия установлен

с 01.61.88 до 01.01.98

Несоблюдение стандарта преследуется по закону

Настоящий стандарт устанавливает фотометрический и атомно-абсорбционный методы определения меди в ферросиликоцирконии при массовой доле ее от 0,1 до 4,0 %.

1. ОБЩИЕ ТРЕБОВАНИЯ

- 1.1. Общие требования к методам анализа по ГОСТ 13020.0—75.
- 1.2. Лабораторная проба должна быть приготовлена в виде тонкого порошка с размером частиц, проходящих через сито с сеткой № 016 по ГОСТ 6613—73.

2. ФОТОМЕТРИЧЕСКИЙ МЕТОД

2.1. Сущность метода

Метод основан на реакции взаимодействия меди с диэтилдитиокарбаматом натрия с образованием окрашенного в желтовато-коричневый цвет комплексного соединения и последующем измерении его оптической плотности. Влияние мешающих компонентов — циркония, титана, алюминия, железа и других устраняют связыванием их в тартратный комплекс.

2.2. Аппаратура, реактивы и растворы

Спектрофотометр или фотоэлектроколориметр.

Аммиак водный по ГОСТ 3760—79.

Кислота азотная по ГОСТ 4461—77 и разбавленная 1:1.

Кислота серная по ГОСТ 4204-77, разбавленная 1:1.

Кислота фтористоводородная по ГОСТ 10484—78.

Калий-натрий виннокислый 4-водный по ГОСТ 5845—79, раствор с массовой концентрацией 500 г/дм³.

Натрия N, N, — диэтилдитиокарбамат по ГОСТ 8864—71, вод-

ный раствор с массовой концентрацией 1 г/дм3.

Желатин по ГОСТ 23058—78, раствор с массовой концентрацией 5 г/дм³: 0,5 г желатина помещают в стакан вместимостью 300 см³, прибавляют 30—40 см³ воды и оставляют на 1 ч при комнатной температуре, периодически перемешивая. Затем стакан помещают в нагретую до кипения воду и при перемешивании растворяют желатин, после чего доливают водой до 100 см³ и вновь перемешивают. Применяют свежеприготовленный раствор.

Лакмусовая индикаторная бумага.

Медь по ГОСТ 859—78.

Стандартные растворы меди

Раствор А: 0,1000 г меди помещают в стакан вместимостью 300 см³ и растворяют в 10 см³ разбавленной азотной кислоты. Затем прибавляют 10 см³ разбавленной серной кислоты и выпаривают раствор до появления паров серной кислоты. Соли растворяют в 100 см³ воды. Раствор переносят в мерную колбу вместимостью 1 дм³, охлаждают, доливают до метки водой и перемешивают.

Массовая концентрация меди в растворе А равна 0,0001 г/см³. Раствор Б: 25 см³ раствора А помещают в мерную колбу вместимостью 100 см³, доливают до метки водой и перемешивают.

Массовая концентрация меди в растворе Б равна 0,000025 г/см³.

- 2.3. Проведение анализа
- 2.3.1. Навеску ферросиликоциркония массой, установленной в зависимости от массовой доли меди по табл. 1, помещают в платиновую чашку или чашку из стеклоуглерода, прибавляют 10 см³ разбавленной серной кислоты, 7—10 см³ фтористоводородной кислоты, 5 см³ азотной кислоты и выпаривают раствор до появления паров серной кислоты.

Таблина 1

Массовая доля меди, %	Навеска, г	Объем кол- бы, см ³	Аликвотная часть, см ³	Масса меди в аликвотной части, мг
От 0,1 до 0,5	0,5	100	1 0	0,05—0,25
Св. 0,5 » 2,0	0,2	100	5	0,05—0,20
» 2,0 » 4,0	0,1	100	5	0,10—0,20

Остаток в чашке охлаждают, стенки чашки обмывают холодной водой и вновь выпаривают содержимое до появления обильных паров серной кислоты. После охлаждения приливают 20 см³ воды и нагревают до растворения солей. Раствор охлаждают и переносят в мерную колбу вместимостью 100 см3. Раствор в колбе доливают до метки водой и перемешивают. При необходимости раствор фильтруют.

Аликвотную часть, взятую в соответствии с табл. 1, помещают в мерную колбу вместимостью 100 см³, прибавляют 5 см³ раствора виннокислого калия-натрия, 5 см³ раствора желатина, раствор аммиака до изменения окраски индикаторной бумаги в синий цвет и затем еще 2 см³ раствора аммиака в избыток. Раствор охлаждают, прибавляют 4 см3 водного раствора диэтилдитиокарбамата натрия, доводят до метки водой и перемешивают.

Оптическую плотность раствора измеряют на фотоэлектроколориметре в области светопропускания от 420 до 470 нм или на спектрофотометре при длине волны 453 нм. Раствором сравнения служит вторая аликвотная часть исследуемого раствора, к которой прибавляют все реактивы за исключением раствора диэтилдитиокарбамата натрия.

Массу меди находят по градуировочному графику после вычитания значения оптической плотности раствора контрольного опыта из значения оптической плотности раствора пробы или методом сравнения со стандартными образцами ферросиликоциркония, близкими по составу к анализируемому ферросиликоцирконию и проведенными через все стадии анализа.

2.3.2. Построение градуировочного графика

В пять колб из шести вместимостью по 100 см3 помещают 2,0; 4,0; 6,0; 8,0 и 10,0 см3 стандартного раствора Б, что соответствует 0,00005; 0,0001; 0,00015; 0,0002 и 0,00025 г меди.

Во все колбы приливают все необходимые для фотометрирования реактивы в той же последовательности и в тех же количествах как указано в п. 2.3.1.

В качестве раствора сравнения применяют раствор шестой колбы, не содержащий стандартного раствора Б, с добавлением всех реактивов за исключением диэтилдитиокарбамата натрия.

2.4. Обработка результатов 2.4.1. Массовую долю меди (X) в процентах, определенную методом градуировочного графика, вычисляют по формуле

$$X=\frac{m}{m}\cdot 100,$$

где m_1 — масса меди в анализируемом растворе, найденная по градуировочному графику, г;

m — масса навески, соответствующая аликвотной части, г.

2.4.2. Массовую долю меди (X_1) в процентах, определенную методом сравнения, вычисляют по формуле

$$X_1 = \frac{C (D-D_2)}{D_1-D_2}$$
,

гле C — массовая доля меди в стандартном образце, %;

D — оптическая плотность анализируемого раствора ферросиликоциркония;

 D_1 — оптическая плотность раствора стандартного образца;

 D_{2} — оптическая плотность раствора контрольного опыта.

2.4.3. Абсолютные расхождения результатов параллельных превышать допускаемых определений не должны указанных в табл. 2.

T	а	б	Л	И	Ц	а	2
---	---	---	---	---	---	---	---

Массовая доля меди, %	Абсолютные допускаемые расхождения, %		
От 0,10 до 0,20 включ.	0,03		
Св. 0,20 » 0,50 »	0,04		
> 0,50 » 1,00 »	0,06		
> 1,00 » 2,00 »	0,08		
» 2,00 » 4,00 »	0,10		

3. АТОМНО-АБСОРБЦИОННЫЙ МЕТОД

3.1. Сущность метода

Метод основан на измерении атомной абсорбции меди в пламени воздух — ацетилен при длине волны 324,8 нм с предварительным растворением пробы в смеси кислот: серной, фтористоводородной, азотной.

3.2. Аппаратура, реактивы и растворы

Атомно-абсорбционный спектрофотометр любого типа со всеми принадлежностями.

Ацетилен растворенный и технический по ГОСТ 5457—75.

Кислота серная по ГОСТ 4204—77, разбавленная 1:1. Кислота азотная по ГОСТ 4461—77 и разбавленная 1:1.

Кислота фтористоводородная по ГОСТ 10484-78.

Медь по ГОСТ 859—78.

Стандартные растворы меди

Раствор A: 0,2500 г меди растворяют в 10 см³ разбавленной азотной кислоты, затем приливают 5 см3 разбавленной серной кислоты и выпаривают раствор до появления паров серной кислоты. Соли растворяют в 100 см3 воды. Раствор переносят в мерную колбу вместимостью 500 см³, доливают до метки водой и перемешивают.

Массовая концентрация меди в растворе A равна 0,0005 г/см³. Раствор Б: 20 см³ раствора A помещают в мерную колбу вместимостью 100 см³, доливают до метки водой и перемешилают.

Массовая концентрация меди в растворе Б равна 0,0001 г/см³.

- 3.3. Проведение анализа
- 3.3.1. Навеску ферросиликоциркония массой 0,2 г помещают в платиновую чашку или чашку из стеклоуглерода, приливают 10 см³ разбавленной серной кислоты, 10 см³ фтористоводородной кислоты, 5 см³ азотной кислоты и выпаривают раствор до появления паров серной кислоты. Соли растворяют в 20 см³ воды. Раствор охлаждают и переносят в мерную колбу вместимостью 100 см³, доливают водой до метки и перемешивают.
 - 3.3.2. Построение градуировочного графика

В семь из восьми колб вместимостью по $100~{\rm cm^3}$ помещают стандартные растворы меди в количествах, соответствующих указанным в табл. 3.

Таблица 3

Массовая доля меди, %	Стандартный раствор	Объем стандартного раствора, см³
От 0,1 до 1,0	Б	1,5; 3,0; 5,0; 8,0; 10,0; 15,0; 20,0
Св. 1,0 » 4,0	А	4,0; 6,0; 8,0; 10,0; 12,0; 14,0; 16,0

В восьмую колбу стандартные растворы меди не помещают. Во все восемь колб приливают по 10 см³ разбавленной серной кислоты и далее анализ проводят как указано в п. 3.3.1.

3.3.3. Атомную абсорбцию меди измеряют последовательно в растворе пробы, контрольного опыта, в растворах для построения градуировочного графика и растворе стандартного образца при длине волны 324,8 нм в пламени воздух — ацетилен.

Градуировочный график строят по результатам, полученным после вычитания значения абсорбции раствора, не содержащего стандартный раствор меди, из значений абсорбции растворов, содержащих стандартный раствор, и соответствующему им содержанию меди.

После вычитания значения атомной абсорбции раствора контрольного опыта из значения атомной абсорбции раствора пробы находят массу меди в растворе пробы по градуировочному графику или методом сравнения со стандартными образцами ферросиликоциркония, близкими по составу к анализируемой пробе и проведенными через весь ход анализа.

3.4. Обработка результатов

3.4.1. Массовую долю меди (X) в процентах, определенную методом градуировочного графика, вычисляют по формуле

$$X = \frac{c \ V}{m} = 100$$

где c — массовая концентрация меди в растворе пробы, найденная по градуировочному графику, г/см³;

V — объем раствора пробы, см3;

т — масса навески, г.

3.4.2. Массовую долю меди (X_1) в процентах, определенную методом сравнения, вычисляют по формуле

$$X_1 = \frac{C (D-D_2)}{D_1-D_2}$$

где C — массовая доля меди в стандартном образце, %;

D — оптическая плотность анализируемого раствора пробы;

 D_1 — оптическая плотность раствора стандартного образца; D_2 — оптическая плотность раствора контрольного опыта.

3.4.3. Абсолютные расхождения результатов параллельных определений не должны превышать допускаемых значений, указанных в табл. 2.