

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

КОНЦЕНТРАТ ДАТОЛИТОВЫЙ

ТЕХНИЧЕСКИЕ УСЛОВИЯ ГОСТ 16108—80

Издание официальное

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

КОНЦЕНТРАТ ДАТОЛИТОВЫЙ

Технические условия

FOCT 16108—80

Concentrated datolite Specifications

OKII 21 1136

Срок действия

с 01.01.81 до 01.01.97

Несоблюдение стандарта преследуется по закону

Настоящий стандарт распространяется на датолитовый концентрат, получаемый обогащением датолитовых руд.

Датолитовый концентрат применяется как борсодержащее сырье в химической, стекольной, металлургической и других отраслях промышленности.

1. ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ

1.1. По физико-химическим показателям датолитовый концентрат должен соответствовать нормам, указанным в таблице.

Наименование показателя	Норма
1 Массовая доля борного ангидрида (B ₂ O ₃), %, не менее 2 Массовая доля углекислого кальция (CaCO ₃), %, не бо-	17,1
лее З Массовая доля углекислого кальция (СаССз), %, не об-	12,0
на Fe ₂ O ₃ , %, не более 4 Массовая доля воды, %, не более 5 Остаток на сите с сеткой № 016К (ГОСТ 6613—86), %,	2,5 2,0
не более	10,0

Примечание Нормы по показателям подпунктов 1, 2 и 3 таблицы даны из расчета на сухой продукт

(Измененная редакция, Изм. № 2).

2. ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

- 2.1. Датолитовый концентрат не токсичен, пожаро- и взрывобезопасен
- 22. При произведстве датолитового концентрата, при его погрузке и выгрузке в рабочих помещениях и на рабочих площадках образуется пыль, взвешенная в воздухе

Предельно допустимая кснцентрация датолитовой пыли для воздуха рабочей зоны производственных помещений равна 4 мг/м³, класс опасности 4 по ГОСТ 12.1.005—88.

(Измененная редакция, Изм. № 1).

2.3 Вентиляция рабочих помещений должна обеспечивать чистоту воздуха, содержание датолитового концентрата в нем не должно превышать установленную предельно допустимую концентрацию.

Работающие с продуктом должны быть обеспечены спецодеждой в соответствыи с типовыми отраслевыми нормами, утвержден-

ными в установленном порядке.

2.4. На рабочих местах с запыленностью воздуха выше нормы для защиты работающих следует применять противопылевые респираторы типа У-2К или типа «Лепесток».

3. ПРАВИЛА ПРИЕМКИ

3.1. Датолитовый концентрат принимают партиями. Партией считают количество продукта массой не более 500 т, сопровождаемое одним документом о качестве, содержащим:

наименование предприятия-изготовителя и его товарный знак; наименование продукта;

номер партии;

дату изготовления;

результаты проведенных анализов или подтверждение о соответствии продукта требованиям настоящего стандарта;

массу нетто;

штамп технического контроля;

обозначение настоящего стандарта.

(Измененная редакция, Изм. № 1, 2).

- 3.2. Для контроля качества датолитового концентрата отбирают каждый сороковой мешок или каждый контейнер. Допускается отбирать пробы с транспортерной ленты из расчета 500 г от 10 т продукта.
- 3.3. При получении неудовлетворительных результатов анализа хотя бы по одному из показателей проводят повторный анализ проб, отобранных от удвоенного количества мешков и двух точечных проб от контейнера продукции той же партии. Результаты повторного анализа распространяются на всю партию

4. МЕТОДЫ АНАЛИЗА

4.1. Отбор проб

4 1.1. Точечные пробы с транспортерной ленты отбирают в местах перепада потока механическим пробоотборником или вручную пересечением всего потока датолитового концентрата, через равные промежутки времени (t), рассчитанного по формуле

$$t = \frac{60 \ m}{W \cdot n} \ ,$$

где m — масса опробуемой партии, т;

W — производительность транспортера, т/ч;

n — количество точечных проб

Механический пробоотборник должен отвечать следующим требованиям.

- а) пересечение потока датолитового концентрата пробоотсекающим устройством должно проходить через равные интервалы времени;
- б) пробоотсекающее устройство должно пересекать поток датолитового концентрата с постоянной скоростью и охватывать за одно пересечение все сечение потока;
- в) скорость пересечения потока датолитового концентрата пробоотсекающим устройством должна быть рассчитана так, чтобы ударом не отбрасывался продукт, который должен попасть пробу;
- г) конструкция пробоотборника должна быть доступной очистки и проверки.

(Измененная редакция, Изм. № 1).

- 4 12 Точечные пробы от упакованного продукта отбирают щупом на максимально доступной глубине. Масса точечной пробы не менее 100 г
- 4 1 3 Отобранные точечные пробы соединяют, тщательно перемешивают, истирают до 0,071 мм и сокращаю методом квартования или делителем до средней пробы массой около 1,0 кг.

Полученную среднюю пробу тщател но перемешивают, делят на две равные части, помещают в ч стую сухув стеклянную или полиэти теновую банку либо полиэтиленовый па. ет, которые должны быть плотно закрыты.

Одну часть используют для проведения анализа, другую хранят в течение 6 мес для определения качества датолитового концентрата в случаях разногласий. (Измененная редакция, Изм. № 1, 2).

4 1 4 На банку или пакет должна быть наклеена или вложена во внутрь этикетка с указанием: наименования предприятия-изготовителя, наименования продукта, номера партии, даты и места отбора пробы и фамилии пробоотборщика.

4.2. Определение массовой доли борного ангидрида

4.2.1. Метод анализа

Определение массовой доли борного ангидрида в датолитовом концентрате в диапазоне от 15,0 до 20,0% проводят титриметрическим методом, основанным на отделении борной кислоты от примесей, титровании щелочью полученной сильнодиссоциированной маннитоборной кислоты и пересчете результата на массовую долю B_2O_3 .

4.2.2. Аппаратура, реактивы и растворы

Весы лабораторные общего назначения по ГОСТ 24104—88 2-го класса точности с наибольшим пределом взвешивания 200 г.

Набор гирь по ГОСТ 7328-82.

Бюретки 1—2—25—0,1 по ГОСТ 20292—74.

Пипетки 6—1—5 по ГОСТ 20292—74.

Мензурки 50, 1000 по ГОСТ 1770—74.

Колба Кн-2—250—24/29 по ГОСТ 25336—82.

Кислота соляная по ГОСТ 3118—77, ч. д. а., плотностью 1,19 г/см³, растворы концентрации c (HCl) = 0,1 моль/дм³ (0,1 н.) и концентрации c (HCl) = 3 моль/дм³ (3 н.); раствор с массовой долей соляной кислоты 10%.

Кальций углекислый по ГОСТ 4530 -76, х. ч. или барий угле-

кислый по ГОСТ 4158—80.

Натрия гидроксид по ГОСТ 4328—77, ч.д.а., растворы концентраций c (NaOH) = 0,1 моль/дм³ (0,1 н.) и c (NaOH) = 3 моль/дм³ (3 н.), не содержащие CO_2 , готовят по ГОСТ 4517—87.

Точную концентрацию раствора гидроксида натрия концентрации c (NaOH) = 0,1 моль/дм³ (0,1 н.) устанавливают по ГОСТ

257<u>9</u>4.1—83.

Водорода пероксид по ГОСТ 10929—76, ч.д.а., раствор с массо-

вой долей пероксида водорода 30%.

Метиловый оранжевый (индикатор), гстовят по ГОСТ 4919.1—77, водный раствор с массовой долей метилового оранжевого 0,1% или метиловый красный, спиртовой раствор с массовой долей метилового красного 0,1%.

Вода дистиллированная по ГОСТ 6709—72, не содержащая уг-

лекислоту, готовят по ГОСТ 4517—87.

Фенолфталеин (индикатор) спиртовой раствор с массовой долей 1%; готовят по ГОСТ 4919.1—77.

Спирт этиловый ректификованный, технический по ГОСТ 18300—87.

Бумага универсальная индикаторная.

Сахар-рафинад по ГОСТ 22-78.

Д (—) маннит по ГОСТ 8321—74, ч.д.а. или Д (—) сорбит; допускается заменять раствором инвертированного сахара, который готовят следующим образом: 650 г сахара-рафинада растворяют в 200 см³ свежепрокипяченной дистиллированной воды, ос-

торожно нагревают почти до кипения, прибавляют 5 см³ соляной кислоты концентрации c (HCl) = 3 моль/дм³ (3 н.), тщательно перемешивают, добавляют 300 см³ воды, к которой прибавляют 5 см³ раствора гидроксида натрия концентрации c (NaOH) = 3 моль/дм³ (3 н.) (масса гидроксида натрия должна быть эквивалентна массе прибавленной соляной кислоты), раствор хорошо перемешивают и после охлаждения проверяют кислотность с помощью универсальной индикаторной бумаги. Если раствор не имеет нейтральной реакции, то перед титрованием добавляют нужное количество растворов соляной кислоты или гидроксида натрия.

4.2.3. Проведение анализа

Навеску около 0,2500 г датолитового концентрата, высушенного при температуре $(105\pm5)^{\circ}$ С, растворяют при слабом кипении 5—10 мин в 40 см³ раствора соляной кислоты с массовой долей 10%, затем добавляют 1 с и³ раствора персксида водорода с массовой долей 30% и продолжают кипячение в течение 7—8 мин для разрушения пероксида водорода.

Навеску растворяют в конической колбе вместимостью 250 см³, закрытой пробкой с обратным воздушным холодильником. В качестве воздушного холодильника используют стеклянную трубку

длиной 600 мм с внутренним диаметром 8-10 мм

После охлаждения в колбу прибавляют небольшими порциями углекислый кальций (или углекислый барий) до полного прекращения выделения CO_2 , после этого добавляют небольшое количество углекислого кальция (бария)

Колбу вновь закрывают пробкой с обратным воздушным холодильником и содержимое ее кипятят в течение 10—15 мин.

Раствор из колбы отфильтровывают через бумажный фильтр, осадок на фильтре и колбу тщательно промывают 3—5 порциями по $15-20~{\rm cm}^3$ горячей воды. К фильтрату вместе с промывными водами прибавляют 0,3 ${\rm cm}^3$ индикатора метилового оранжевого (или метилового красного), подкисляют раствором соляной кислоты концентрации $c~({\rm HCl})=0,1~{\rm monb/дm}^3~(0,1~{\rm h.})$ до перехода окраски индикатора в красный цвет, добавляют избыток (0,3 ${\rm cm}^3$) раствора HCl конценграции $c~({\rm HCl})=0,1~{\rm monb/дm}^3~(0,1~{\rm h.})$, колбу закрывают обратным холодильником и кипятят в течение 15 мин для удаления углекислоты. Раствор охлаждают и нейтрализуют раствором гидроксида натрия концентрации $c~({\rm NaOH})=0,1~{\rm monb/дm}^3~(0,1~{\rm h})$ до перехода окраски индикатора в бледно-желтый цвет.

К раствору добавляют 1—1,5 г маннита (сорбита) или 20 см³ раствора инвертированного сахара, 5 капель фенолфталеина и титруют раствором гидроксида натрия концентрации с (NaOH) = =0,1 моль/дм³ (0,1 н.) до появления розовой окраски, добавляют еще 0,5—0,6 г манчита (сорбита) и при обесцвечивании раствора титрование продолжают. Прибавление маннита (сорбита) и тит-

рование продолжают до появления неисчезающей розовой окраски раствора.

Одновременно проводят контрольный опыт с тем же количест-

вом реактивов и воды, но без анализируемого продукта.

4.2.4. Обработка результатов

Массовую долю борного ангидрида (X) в процентах вычисляют ло формуле

$$X = \frac{(V_1 - V_2) \cdot 0,00348 \cdot 100}{m},$$

где V_1 — объем раствора гидроксида натрия концентрации точно c (NaOH) = 0,1 моль/дм³ (0,1 н.), израсходованный на титрование анализируемого раствора, см³;

 V_2 — объем раствора гидроксида натрия концентрации точно c (NaOH) = 0,1 моль/дм³ (0,1 н.), израсходованный

на тигрование контрольного раствора, см3;

0,00348 — масса борного ангидрида, соответствующая 1 см³ раствора гидроксида натрия концентрации точно c (NaOH) = 0,1 моль/дм³ (0,1 н.), г;

т — масса навески датолитового концентрата, г.

За результат анализа принимают среднее арифметическое результатов двух параллельных определений, допускаемое абсолютное расхождение между которыми не должно превышать 0.35%, при доверительной вероятности P=0.95.

Абсолютная суммарная погрешность результата анализа не

превышает $\pm 0.5\%$.

 43. Определение массовой доли углекислого кальция

4.3.1. Метод анализа

Определение массовой доли углекислого кальция в датолнтовом концентрате в диапазоне от 3,0 до 15,0% проводят комплексонометрическим методом, сснованным на титровании кальция трилоном Б и пересчете результата на массовую долю углекислого кальция.

4.3.2. Аппаратура, реактивы и растворы

Весы лабораторные общего назначения по ГОСТ 24104—88 2-го класса точности с наибольшим пределом взвешивания 200 г. Набор гирь по ГОСТ 7328—82.

Мешалка механическая (магнитная).

Бюретки 1—2—25—0,1 по ГОСТ 20292—74.

Пипетки 2-1-10 по ГОСТ 20292-74.

Мензурки 50, 100 по ГОСТ 1770-74.

Колба коническая Kн-2-250-24/29 по ГОСТ 25336-82.

Кислота уксусная по ГОСТ 61—75, х.ч., раствор с массовой долей CH₃COOH 0.5%. Калия гидроксид, ч.д.а., раствор концентрации c (KOH) = =5 моль/дм³ (5 н.).

Кі слота винная по ГОСТ 5817—77, ч.д.а., или калий-натрий виннокислый по ГОСТ 5845—79, ч.д.а.

Малахитовый зеленый (индикатор) водный раствор с массовой долей 0.1%.

Соль динатриевач этилендиамин—N, N, N', N'—тетрау ксусной кислоты, 2-водная (трилон Б) по ГОСТ 10652—73, ч.д.а., раствор концентрации c (1 / $_{2}$ трилон Б) =0,05 моль/дм 3 (0,05 н.). Точную концентрацию 0,05 моль/дм 3 (0,05 н.) раствора трилона Б устанавливают по ГОСТ 10398—76.

Кальцеин (флуорексон) — индикатор, ч.д.а., сухая смесь 1:100 (кальцеин+KCl).

Вода дистиллированная по ГОСТ 6709—72.

4.3.3. Проведение анализа

Навеску около 0,5000 г датолитового концентрата, высушенного при температуре (105±5)°С, помещают в коническую колбу вместимостью 250 см³. Навеску растворяют при постоянном перемешивании на механической мешалке в течение 12 мин в 60 см³ раствора с массовой долей СН₃СООН 0,5%.

Раствор из колбы отфильтровывают через фильтр «синяя лента», осадок на фильтре и колбу тщательно промывают 4—5 порциями по 15—20 см³ горячей воды.

К фильтрату вместе с промывными водами прибавляют 0,1-0,2 г винной каслоты или виннокислого калия—натрия, 2 капли индикатора малахитового зеленого и раствор гидроксида калия концентрации c (КОН) =5 моль/дм 3 (5 н.) до обесцвечивания раствора, а затем 10 см 3 избытка.

К раствору добавляют 20—30 мг сухой смеси (кальцеин+ KCl), титруют трилоном Б до резкого исчезновения зеленой флуоресценции и окрашивания раствора в розовый цвет. Одновременно проводят контрольный опыт.

4.3.4. Обработка результатов

Массовую долю углекислого кальция (X_1) в процентах вычисляют по формуле

$$X_1 = \frac{(V_1 - V_2) \ 0.00250 \cdot 100}{m}$$
 ,

где V_1 — объем раствора трилона Б концентрации точно c ($^1/_2$ трилона Б) = 0,05 моль/дм 3 (0,05 н.), израсходованный на титрование анализируемого раствора, см 3 ;

 V_2 — объем раствора трилона Б концентрации точно c ($^1/_2$ трилона Б) = 0,05 моль/дм³ (0,05н.), израсходованный на титрование контрольного раствора, см³;

0,0250 — масса СаСО3, соответствующая 1 см3 раствора три-

лона Б концентрации точно c ($^{1}/_{2}$ трилон Б) = 0,05 моль/дм 3 (0,05н.), Γ ;

т — масса навески датолитового концентрата, г.

За результат анализа принимают среднее арифметическое результатов двух параллельных определений, допускаемое абсолютное расхождение между которыми не должно превышать 0.3%, при доверительной вероятности P = 0.95.

Абсолютная суммарная погрешность результата анализа не

превышает $\pm 0,4\%$.

4.4. Определение массовой доли кислоторастворимого железа в пересчете на Fe₂O₃

4 4.1. Метод анализа

Определение массовой доли Fe_2O_3 в датолитовом концентрате в диапазоне от 1,0 до 3,0% проводят комплексонометрическим методом, основанным на титровании железа трилоном E0 в присутствии сульфосалициловой кислоты в качестве индикатора.

4.4.2. Аппаратура, реактивы и растворы

Весы лабораторные общего назначения по ГОСТ 24104—88 2-го класса точности с наибольшим пределом взвешивания 200 г. Набор гирь по ГОСТ 7328—82.

Бюретки 1-2-25-0,1 по ГОСТ 20292-74.

Пипетки 6—1—5 по ГОСТ 20292—74.

Мензурки 50 по ГОСТ 1770-74.

Кислота соляная по ГОСТ 3118—77, ч.д.а., раствор, разбавленный 1:1.

Аммиак водный по ГОСТ 3760—79, раствор с массовой долей аммиака 10%.

Кислота сульфосалициловая по ГОСТ 4478-78, ч.д.а., раст-

вор с массовой долей 10%.

Соль динатриевая этилендиамин — N, N, N', N' — тетрауксусной кислоты, 2-водная (трилон Б) по ГОСТ 10652—73, ч.д.а., раствор концентрации c ($\frac{1}{2}$ трилон Б) = 0,05 моль/дм³ (0,05 н.).

Точную концентрацию 0,05 моль/дм³ (0,05н.) растьора трилона Б устанавливают по ГОСТ 10398—76. Кислота азотная по ГОСТ 4461—77 или водорода пероксид по ГОСТ 10929—76, ч д.а., раствор с массовой долей 30%.

Вода дистиллированная по ГОСТ 6709—72.

4.4.3. Проведение анализа

Навеску около 0,5000 г датолитового концентрата, высущенного при температуре $(105\pm5)^{\circ}$ С, помещают в стакан вместимостью 350 см³, приливают 30 см³ раствора соляной кислоты и 2—3 см³ азотной кислоты (или пероксида водорода). Стакан закрывают часовым стеклом и его содержимое осторожно кипятят в течение 15 мин.

После разложения навески в стакан добавляют 50 см³ дистиллированной воды и осторожно нейтрализуют раствором аммиака

до рН 1,0 (проверку рН проводят по универсальной индикаторной бумаге). К раствору добавляют 1 см³ раствора сульфосалициловой кислоты, раствор нагревают до температуры $50-60^{\circ}$ С и титруют раствором трилона Б концентрации c (½ трилон Б) = 0,05 моль/дм³ (0,05н.).

Титрование проводят медленно, по каплям, при постоянном перемешивании до перехода окраски из красно-фиолетовой в блед-

но-желтую.

Одновременно проводят контрольный опыт с тем же количеством воды и реактивов, но без анализируемого продукта.

4.4 4. Обработка результатов

Массовую долю к аслоторастворимого железа в пересчете на ${\rm Fe_2O_3}$ (X_2) в процентах вычисляют по формуле

$$X_2 = \frac{(V_1 - V_2) \cdot 0.00199 \cdot 100}{m}$$
,

где V_1 — объем раствора трилона Б концентрации точно c ($^1/_2$ трилон Б) = 0,05 моль/дм³ (0,05н.), израсходованный на титрование анализируемого раствора, см³;

 V_2 — объем раствора трилона В концентрации точно c ($^1/_2$ трилон В) = 0,05 моль/дм³ (0,05н.), израсходованный на титрование контрольного раствора см³;

0,00199 — масса Fe_2O_3 , соответствующая 1 см³ гаствора трилолона Б концентрации точно c (½ трилон Б) = 0,05 моль/дм³ (0,05н.), г;

m — масса навески датолитового концентрата, г.

За результат анализа принимают среднее арифметическое результатов двух параллельных определений, допускаемое абсолютное расхождение между которыми не должно превышать 0,2%, при доверительной вероятности P = 0,95.

Абсолютная суммарная погрешность результата анализа не превышает $\pm 0.3\%$.

4.5. Определение массовой доли воды

4.5.1. Метод анализа

Определение массовой доли воды в датолитовом концентрате в диапазоне от 0,1 до 3,0% проводят гравиметрическим методом, основанным на измерении потери массы воды путем высушивания анализируемой пробы при заданной температуре до постоянной массы.

4.5.2. Аппаратура, реактивы и растворы

Весы лабораторные аналитические по ГОСТ 24104—88 2-го класса точности с наибольшим пределом взвешивания 200 г.

Набр гирь по ГОСТ 7328-82.

Сушильный электрошкаф типа СНОЛ 6,0.5,0.5,0/4,0 или аналогичный.

Эксикатор (исполнения 2 или 1) по ГОСТ 25336-82.

Стаканчики для взвешивания по ГОСТ 25336—82.

Силикагель по ГОСТ 3956-76.

Кальций хлористый.

4.5.3. Проведение анализа

Навеску около 10,000 г датолитового концентрата помещают в стаканчик, предварительно высушенный до постоянной массы. Стаканчик с навеской помещают в сушильный шкаф и сушат при температуре (105±5)°С до постоянной массы. Стаканчик с высушенной навеской охлаждают в эксикаторе над хлористым кальцием или силикагелем и взвешивают.

4.5.4. Обработка результатов

Массовую долю воды (X_3) в процентах вычисляют по формуле

$$X_3 = \frac{(m-m_1) \cdot 100}{m}$$
 ,

где m — масса пробы датолитового концентрата до высушивания, г;

 m_1 — масса пробы датолитового концентрата после высушивания, г.

За результат анализа принимают среднее арифметическое результатов двух параллельных определений, допускаемое абсолютное расхождение между которыми не должно превышать 0,15%, при доверительной вероятности P=0,95.

Абсолютная суммарная погрешность результата анализа не превышает $\pm 0.15\%$.

4.6. Определение остатка на сите

4.6.1. Метод анализа

Определение массовой доли остатка на сите с сеткой № 016К по отношению к массе исходной пробы датолитового концентрата в днапазоне от 7,0 до 13,0% (содержание других классов не регламентируется) заключается в просеивании пробы датолитового конценграга через стандартное сито с размером сторон ячеек в свету 0,16 мм для установления массовой доли остатка на этом сите в процентах по отношению к взятой пробе.

4.6.2. Аппаратура

Весы лабораторные общего назначения по ГОСТ 24104—88 2-го к тасса точности с наибо тышим преде том взвешивания 500 г.

Набор гирь по ГОСТ 7328—82.

Набор сит по ГОСТ 6613-86.

Чашки фарфоровые по ГОСТ 25336—82.

4.6.3. Проведение анализа

Навеску около 200,0 г датолитового концентрата, высушенного (по п. 4.5.3), переносят на сито с размером сторон ячеек в свету 0.16 мм.

Сито закрывают крышкой, ставят на поддон и встряхивают на вибрационном приборе в течение 10—15 мин. Допускается ручной рассев пробы.

По окончании встряхивания внутренние края сита обметают кистью и вновь встряхивают на вибрационном приборе в течение 3 мин.

Полученный остаток на сите количественно переносят на часовое стекло и взвешивают.

4.6.4. Обработка результатов

Остаток на сите (X_4) в процентах вычисляют по формуле

$$X_4 = \frac{m_1 \cdot 100}{m} ,$$

где m_1 — масса остатка на сите, г;

т — масса навески датолитового концентрата, г.

За результат анализа принимают среднее арифметическое результатов двух параллельных определений, допускаемое абсолютное расхождение между которыми не должно превышать 1,0%, при доверительной вероятности P=0,95.

Относительная суммарная погрешность результата анализа не превышает $\pm 8.0 \,\%$.

4.2—4.6.2. (Измененная редакция. Изм. **№ 2).**

5. УПАКОВКА, МАРКИРОВКА, ТРАНСПОРТИРОВАНИЕ И ХРАНЕНИЕ

5.1. Датолитовый концентрат упаковывают в два, вложенных один в другой, четырех-пятислойных бумажных мешка по ГОСТ 2226—88 или в специализированный мягкий контейнер типа МК-1, 5Л или МКР-1,0С, или МКР-1,0М.

Масса нетто мешков не более 50 кг, масса контейнера — не более 2000 кг.

Бумажные мешки сшивают машинным способом.

Датолитовый концентрат, предназначенный для экспорта, упаковывают в соответствии с требованиями внешнеэкономических организаций.

- 5.2. Транспортная маркировка по ГОСТ 14192—77.
- 5.3. На таре в свободном от транспортной маркировки месте указывают данные:

наименование предприятия-изготовителя или его товарный знак; наименование продукта;

номер партии;

дату изготовления;

обозначение настоящего стандарта.

5.4. Датолитовый концентрат транспортируют железнодорожным, автомобильным, морским транспортом в крытых транспортных средствах в соответствии с правилами перевозок грузов, действующими на транспорте данного вида.

C. 12 FOCT 16108-80

Мягкие контейнеры грузоподъемностью 1—2 т транспорти-

руют на открытом подвижном составе.

5.5. Датолитовый концентрат, упакованный в бумажные мешки, хранят на закрытых складах. Допускается хранить продукт, упакованный в специализированные мягкие контейнеры, на открытых площадках. Срок хранения продукта не ограничен.

Разд. 5. (Измененная редакция, Изм. № 2).

ИНФОРМАЦИОННЫЕ ДАННЫЕ

1. РАЗРАБОТАН И ВНЕСЕН Министерством химической промышленности

ИСПОЛНИТЕЛИ

- Б. И. Дунаев, Н. А. Рябцева, Р. Н. Моисеева, Л. А. Бондарева
- 2. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по стандартам от 05.02.80 № 561
- 3. Периодичность проверки 5 лет.
- 4. B3AMEH FOCT 16108-75
- 5. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

Обозначение НТД на который дана ссылка	Номер пункта подпункта
ГОСТ 12 1 005—88	2 2
ГОСТ 22—78	4 2 2
FOCT 61—75	4 3 2
FOCT 1770—74	422, 432, 442
FOCT 2226—88	51
ГОСТ 3118—77 ГОСТ 3760—79	4 2 2, 4 4 2
FOCT 3760—79	442
ГОСТ 4158—80	432
FOCT 4328—77	422
FOCT 4461—77	442
ΓΟCT 4478—78	442
FOCT 4517—87	4 2 2
ΓΟCT 4530—76	$4\overline{2}\overline{2}$
ГОСТ 4919 1—77	422
FOCT 5817—77	4 3 2
FOCT 5845—79	432
FOCT 6613—86	11,462
FOCT 6709—72	422, 432, 442
FOCT 7328—82	422, 432, 442, 452, 462
ГОСТ 8321—74 ГОСТ 10398—76	422
ΓΟCT 10596—76 ΓΟCT 10652—73	4 3 2, 4 4 2 4 3 2, 4 4 2
ΓΟCT 10032—73 ΓΟCT 10929—76	422, 442
ΓΟCT 14192—77	52
ГОСТ 18300—87	422
ГОСТ 20292—74	422, 432, 442
ΓΟCT 24104—88	422, 432, 442, 452
	462
ΓΟCT 25336—82	422, 432, 452, 462
ΓΟCT 25794 1—83	422

- 6. Срок действия продлен до 01.01.97 Постановлением Госстандарта СССР от 23.03.89 № 638
- 7. ПЕРЕИЗДАНИЕ (июль 1989 г.) с Изменениями № 1, 2, утвержденными в декабре 1984 г., марте 1989 г. (ИУС 4—85, 6—89).

Редактор *Н В Бобкова* Технический редактор *В Н Малькова* Корректор *Г И Чуйко*

С
Дано в наб 12 05 89 Подп в печ 19 07 89 10 усл п л 1,0 усл к
р овт 0 87 уч изд л Тир 6000 Цена 5 к