ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

ФЕРРОНИОБИЙ

ΓΟCT 15933.13—70

Метод определения содержания висмута

Ferromobium Method for the determination of bismuth content

Постановлением Комитета стандартов, мер и измерительных приборов при Совете Министров СССР от 6/V 1970 г. № 626 срок введения установлен <u>с 1/VII 1971 г.</u>

Несоблюдение стандарта преспедуется по закону

Настоящий стандарт распространяется на феррониобий и устанавливает фотоколориметрический метод определения содержания висмута (при содержании висмута от 0,002 до 0,10%).

Метод основан на образовании желтого комплексного соединения висмута с йодистым калием. От основных элементов висмут отделяют едким натром в присутствии перекиси водорода. Для восстановления железа применяют сульфит натрия.

Применение метода предусматривается в стандартах и технических условиях, устанавливающих технические требования на феррониобий.

1. ОБЩИЕ ТРЕБОВАНИЯ

1.1. Общие требования к методу анализа — по ГОСТ 15933.0—70.

2. АППАРАТУРА, РЕАКТИВЫ И РАСТВОРЫ

Фотоэлектроколориметр.

Кислота фтористоводородная (плавиковая кислота) по ГОСТ 10484—63.

Кислота азотная по ГОСТ 4461—67 и разбавленная 1:1.

Кислота серная по ГОСТ 4204—66 и разбавленная 1:1, 1:4 и 1 9.

Водорода перекись (пергидроль) по ГОСТ 10929—64.

Натрия гидрат окиси (натр едкий) по ГОСТ 4328—66, 50 и 1%-ный раствор.

Издание официально€

Кислота соляная по ГОСТ 3118—67 и разбавленная 1 : 1. Калий йодистый по ГОСТ 4232—65, 10%-ный раствор.

Натрий сернистокислый (сульфит натрия) кристаллический по ГОСТ 429—66, 10%-ный раствор.

Стандартные растворы висмута.

Раствор А; готовят следующим образом: 0,1 г чистого висмута растворяют в 10 мл разбавленной 1:1 азотной кислоты в конической колбе вместимостью 100 мл. После растворения приливают 10 мл разбавленной 1:1 серной кислоты и выпаривают раствор до выделения паров серной кислоты. Затем раствор охлаждают, приливают 5 мл воды и повторяют выпаривание до появления паров серной кислоты, после чего снова охлаждают, приливают 100 мл разбавленной 1:9 серной кислоты, переливают раствор в мерную колбу вместимостью 1 л, доливают до метки разбавленной 1:9 серной кислотой и тщательно перемещивают.

1 мл раствора А содержит 0,1 мг висмута.

Раствор Б; готовят десятикратным разбавлением раствора А разбавленной 1:9 серной кислотой.

1 *мл* раствора Б содержит 0,01 *ма* висмута. Чашка платиновая № 5 по ГОСТ 6563—58.

3. ПРОВЕДЕНИЕ АНАЛИЗА

Навеску феррониобия 0,5 г помещают в платиновую чашку, смачивают водой, приливают 5-7 мл фтористоводородной кислоты и осторожно по каплям приливают концентрированную азотную кислоту до полного растворения пробы, избегая бурного вспенивания и избытка кислоты. Затем приливают 15 мл концентрированной серной кислоты и выпаривают раствор до начала выделения паров серной кислоты. После охлаждения содержимое чашки сливают в стакан вместимостью 150-200 мл, тщательно обмывают чашку водой и приливают 3—5 мл 30%-ного раствора перекиси водорода. В прозрачный раствор при перемешивании приливают 50%-ный раствор едкого натра до образования осадка и в избыток 15-20 мл, после чего раствор кипятят 3-5 мин и дают отстояться. Фильтруют осадок на фильтр «белая лента» и промывают 5-6 раз горячим 1%-ным раствором едкого натра. При этом большая часть ниобия, олова, сурьмы и частично свинец переходят в раствор, а висмут и железо остаются в осадке. Осадок на фильтре растворяют горячей разбавленной 1:1 соляной кислотой, собирая раствор в тот же стакан, в котором производилось осаждение едким натром. Фильтр промывают 8—10 раз горячей водой. К раствору приливают 5—7 мл 30%-ного раствора перекиси водорода и вторично производят осаждение едким натром. Затем раствор кипягят 3—5 мин, дают отстояться, после чего осадок отфильтровывают на фильтр «белая лента» и промывают 6—8 раз горячим 1%-ным раствором едкого натра. Снова растворяют осадок на фильтре горячей, разбавленной 1:1 соляной кислотой, промывают фильтр 6-8 раз горячей водой и выпаривают раствор до 8-10 мл. Раствор переливают в мерную колбу вместимостью 100 мл (если раствор мутный, то его фильтруют и фильтр промывают водой), приливают 5 мл 10%-ного раствора йодистого калия и осторожно по каплям прибавляют 10%-ный раствор сульфита натрия до обесцвечивания раствора. Затем доливают раствор водой до метки и фотометрируют на фотоэлектроколориметре с синим светофильтром (область светопропускания 450 нм) в кювете с толщиной слоя 50 мм. Комплекс висмута с йодистым калием развивается очень быстро, поэтому фотометрировать можно сразу, тем более, что при стоянии растворы мутнеют. Если перед фотометрированием появится муть, то ее необходимо отфильтровать через сухой фильтр в сухую колбу.

Раствором сравнения служит вода. Одновременно через все стадии анализа проводят контрольный опыт на содержание висмута в реактивах.

3.1. Построение калибровочного графика

В мерные колбы вместимостью по 100 мл пипеткой отмеривают 0,5; 1,0; 2,0; 3,0; 4,0 и 5,0 мл стандартного раствора Б, что соответствует 5, 10, 20, 30, 40 и 50 мкг висмута, приливают 15—20 мл воды, 5 мл разбавленной 1:4 серной кислоты, 10 мл 10%-ного раствора йодистого калия, одну каплю 10%-ного раствора сульфита натрия, доливают до метки водой и перемешивают.

Оптическую плотность раствора измеряют на фотоэлектроколориметре с синим светофильтром (область светопропускания 450 нм) в кювете с толщиной слоя 50 мм. В качестве раствора сравнения применяют воду. По полученным значениям оптических плотностей и соответствующим им концентрациям висмута строят калибровочный график.

4. ПОДСЧЕТ РЕЗУЛЬТАТОВ АНАЛИЗА

4.1. Содержание висмута в феррониобии (X) в процентах вычисляют по формулам:

при построении калибровочного графика

$$X = \frac{g \cdot 100}{G \cdot 1000},$$

где:

g — количество висмута, найденное по калибровочному графику, в $\emph{мг};$

67

G — навеска, соответствующая аликвотной части раствора, взятой для колориметрирования, в ε , при сравнении со стандартным раствором висмута

$$X = \frac{c(D - D_1) \cdot 100}{(D_2 - D_1) \cdot G},$$

где

c — содержание висмута в стандартном растворе, близком по оптической плотности к анализируемому раствору, в ϵ ,

D — оптическая плотность анализируемого раствора

 D_1 — оптическая плотность раствора контрольного опыта

 D_2 — оптическая плотность стандартного раствора;

G — навеска, соответствующая колориметрируемой части раствора, в ε

4.2. Допускаемые расхождения между результатами анализа не должны превышать величин, указанных в таблице.

Содержание висмута в %	Допускаемые расхождения между крайними результатами анализа в абс %
От 0,002 до 0,005	0,0003
Св. 0,005 " 0,010	0,0005
" 0,010 " 0,020	0,0010
" 0,020 " 0,030	0,0020
" 0,030 " 0,050	0,0035
" 0,050 " 0,10	0,0050