ОЛОВО

методы определения меди

Издание официальное

межгосударственный стандарт

олово

Методы определения меди

ГОСТ 15483.4—78 (СТ СЭВ 4809—84)

Tin. Methods for determination of copper

OKCTY 1709

Дата введения 01.01.80

Настоящий стандарт устанавливает фотометрический (при массовой доле меди от 0,002 до 0,12 %) и атомно-абсорбционный (при массовой доле меди от 0,005 до 0,12 %) методы определения меди в олове всех марок, кроме олова высокой чистоты.

Стандарт полностью соответствует СТ СЭВ 4809.

(Измененная редакция, Изм. № 1, 2).

1. ОБШИЕ ТРЕБОВАНИЯ

1.1 Общие требования к методам анализа и требования безопасности — по ГОСТ 15483.0. (Измененная редакция, Изм. № 1).

2. ФОТОМЕТРИЧЕСКИЙ МЕТОД

2.1 Сущность метода

Метод основан на растворении пробы в смеси соляной и азотной кислот, связывании олова в комплекс с винной кислотой и фотометрическом определении извлеченного в слой хлороформа комплексного соединения меди с диэтилдитиокарбаматом свинца на спектрофотометре при длине волны 436 нм или фотоэлектроколориметре в интервале длин волн от 400 до 450 нм.

(Измененная редакция, Изм. № 2).

2.2 Аппаратура, реактивы и растворы

Фотоэлектроколориметр или спектрофотометр.

Воронки делительные вместимостью 500 и 50 см³.

Цилиндры или пробирки с притертыми пробками.

Кислота азотная по ГОСТ 4461 и разбавленная 1:2.

Кислота соляная по ГОСТ 3118.

Смесь соляной и азотной кислот для растворения в соотношении 3:1, свежеприготовленная.

Аммиак водный по ГОСТ 3760.

Кислота винная по ГОСТ 5817, раствор: 40 г винной кислоты растворяют в 100 см³ воды.

Хлороформ (трихлорметан).

Свинец уксуснокислый по ГОСТ 1027.

Натрия N. N-диэтилдитиокарбамат по ГОСТ 8864.

Диэтилдитиокарбаминат свинца, раствор в хлороформе: 0,4 г уксуснокислого свинца растворяют в 50 см³ воды и 0,4 г диэтилдитиокарбамата натрия растворяют в 50 см³ воды. Растворы при перемешивании сливают в делительную воронку вместимостью 500 см³ и образовавшийся белый осадок диэтилдитиокарбамината свинца растворяют в 250 см³ хлороформа встряхиванием содержимого воронки в течение 1 мин. Слой хлороформа переносят в другую делительную воронку и промывают 150—200 см³ воды, встряхивая содержимое воронки. После разделения жидкостей слой хлороформа сливают через сухой беззольный фильтр в темную сухую склянку с притертой пробкой.

Медь электролитическая по ГОСТ 859.

Растворы меди стандартные.

Издание официальное ★ Перепечатка воспрещена

© Издательство стандартов, 1978 © ИПК Издательство стандартов, 1999 Переиздание с Изменениями

C. 2 FOCT 15483.4-78

Раствор А: 0,1000 г меди растворяют в 10 см 3 азотной кислоты, разбавленной 1:2, и кипятят до удаления окислов азота. Затем раствор охлаждают, переносят в мерную колбу вместимостью 1 дм 3 , доливают до метки водой и перемещивают.

 1 см^3 раствора A содержит $1 \cdot 10^{-4}$ г меди.

Раствор Б; готовят в день применения: 10,0 см³ раствора А переносят в мерную колбу вместимостью 100 см³, доводят до метки водой и перемешивают.

 1 см^3 раствора Б содержит $1 \cdot 10^{-5}$ г меди.

(Измененная редакция, Изм. № 1, 2).

2.3 Проведение анализа

2.3.1. Навеску олова массой 0,5 г помещают в стакан вместимостью 100 см³ и растворяют в 10 см³ смеси кислот для растворения. Раствор выпаривают до 2—3 см³, приливают 3 см³ концентрированной соляной кислоты, 10 см³ раствора винной кислоты и подогревают до растворения солей, охлаждают.

При массовой доле меди до 0,01 % анализ проводят, используя весь раствор. При более высоком содержании меди раствор переносят в мерную колбу вместимостью 50 см³, доводят до метки водой, перемешивают и отбирают аликвотную часть раствора, как указано в табл. 1.

	1 аблица 1	
Массовая доля меди, %	Аликвотная часть раствора, см ³	
До 0,01	Весь раствор	
CB. 0,01 » 0,03	10,0	
» 0,03 » 0,12	5,0	

Аликвотную часть раствора помещают в стакан вместимостью 50 см³ и раствор доводят до 10 см³ водой (в случае если на анализ взято 5,0 см³ раствора).

Раствор нейтрализуют аммиаком до $pH \approx 1$ по универсальной индикаторной бумаге, переводят в делительную воронку вместимостью 50 см^3 и обмывают стакан 10 см^3 воды в три приема. К раствору приливают точно отмеренные $10,0 \text{ см}^3$ раствора диэтилдитиокарбамата свинца в хлороформе и встряхивают 2 мин. После расслаивания жидкостей органический слой сливают в сухой цилиндр или пробирку с притертой пробкой.

Оптическую плотность раствора измеряют на спектрофотометре при длине волны 436 нм или на фотоэлектроколориметре, пользуясь светофильтром с областью светопропускания в интервале длин волн от 430 до 450 нм и кюветами с оптимальной толщиной слоя.

Раствором сравнения служит раствор диэтилдитиокарбамата свинца в хлороформе.

Из значения оптической плотности раствора пробы вычитают значение оптической плотности раствора контрольного опыта и по градуировочному графику находят массу меди в растворе.

(Измененная редакция, Изм. № 1, 2, 3).

2.3.2. Для построения градуировочного графика в семь из восьми стаканов вместимостью $50~{\rm cm}^3$ отмеряют 0.5;~1.0;~2.0;~3.0;~4.0;~5.0 и $6.0~{\rm cm}^3$ стандартного раствора ${\bf Б}$, что соответствует 0.005;~0.01;~0.02;~0.03;~0.04;~0.05 и $0.06~{\rm mr}$ меди. Во все стаканы приливают по ${\bf 3}~{\rm cm}^3$ соляной кислоты, нейтрализуют аммиаком до ${\bf pH}=1$ и далее анализ проводят как в п. ${\bf 2.3.1.}$ Раствором сравнения служит раствор, не содержащий стандартного раствора меди. По полученным значениям оптической плотности и соответствующим им массовым долям меди строят градуировочный график.

(Измененная редакция, Изм. № 2). 2.4 Обработка результатов

2.4.1. Массовую долю меди (X) в процентах вычисляют по формуле

$$X=\frac{m_1\cdot 100}{m}\,,$$

где m_1 — масса меди, найденная по градуировочному графику, г;

m — масса навески олова, соответствующая взятой аликвотной части раствора, г.

2.4.2. Абсолютные допускаемые расхождения результатов параллельных определений при доверительной вероятности P = 0.95 не должны превышать значений, указанных в табл. 2.

Таблица 2

Массовая доля меди, %	Абсолютное допускаемое расхождение, %	Массовая доля меди, %	Абсолютное допускаемое расхождение, %
От 0,002 до 0,006 Св. 0,006 » 0,01 » 0,01 » 0,03	0,0015 0,0025 0,005	Св. 0,03 до 0,05 » 0,05 » 0,12	0,01 0,02

3. АТОМНО-АБСОРБШИОННЫЙ МЕТОЛ

3.1 Сущность метода

Метол основан на растворении пробы в смеси фтористоводородной и азотной кислот с водой и измерении атомной абсорбшии мели в пламени апстилен-возлух при ллине волны 324.7 нм.

(Измененная редакция, Изм. № 2).

3.2 Аппаратура, реактивы и растворы

Спектрометр атомно-абсорбционный.

Стаканы из фторопласта вместимостью 50 см³ или чашки платиновые вместимостью не менее 50 cm^3 .

Кислота азотная по ГОСТ 4461 и разбавленная 1:2.

Кислота фтористоводородная по ГОСТ 10484.

Олово высокой чистоты по ГОСТ 860.

Смесь для растворения; готовят по ГОСТ 15483.2.

Мель по ГОСТ 859.

Раствор меди стандартный: 0.1000 г меди растворяют в 20 см³ азотной кислоты, разбавленной 1:2, и кипятят до удаления окислов азота. Раствор охлаждают, переносят в мерную колбу вместимостью 1000 см³, доливают до метки водой и перемешивают.

 1 см^3 раствора содержит $1 \cdot 10^{-4}$ г меди.

(Измененная редакция, Изм. № 1, 2).

3.3 Проведение анализа

3.3.1. В зависимости от массовой доли меди навеску олова массой в соответствии с табл. 3 помещают в стакан из фторопласта вместимостью 50 см3 или платиновую чашку и приливают небольшими порциями 10 см³ смеси для растворения. Далее анализ ведут, как указано в ГОСТ 15483.2.

Таблина 3

Массовая доля меди, %	Масса навески, г
От 0,005 до 0,02 Св. 0,02 » 0,12	1 0,5

Фотометрирование проводят при длине волны 324,7 нм в условиях, указанных в ГОСТ 15483.2. Концентрацию меди устанавливают по градуировочному графику, фотометрируя одновременно с анализируемыми растворами серию растворов с известным содержанием меди и контрольного опыта.

(Измененная редакция, Изм. 1, 2).

3.3.2. Для построения градуировочного графика в шесть стаканов из фторопласта или платиновые чашки помещают навеску олова высокой чистоты в соответствии с табл. 3, далее растворяют в 10 см³ смеси для растворения, следя за тем, чтобы реакция не протекала бурно. По окончании растворения содержимое стакана нагревают в течение 1-2 мин, не доводя до кипения, и охлаждают.

Полученные растворы переносят в мерную колбу вместимостью 50 см³. В пять из них отмеряют 0.4; 1.0; 1.5; 2.0 и 2.5 см³ стандартного раствора меди, что соответствует 0.04; 0.1; 0.15; 0.2 и 0.25 мг меди, доводят водой до метки и перемещивают.

Фотометрируют растворы, как указано в п. 3.3.1.

По полученным средним значениям абсорбции и известным концентрациям меди строят градуировочный график.

(Измененная редакция, Изм. № 2).

3.4 Обработка результатов

3.4.1. Массовую долю меди (Х) в процентах вычисляют по формуле

$$X = \frac{(C_1 - C_2) \cdot V \cdot 100}{m},$$

где C_1 — концентрация фотометрируемого раствора, г/см³; C_2 — концентрация меди в растворе контрольного опыта, найденная по градуировочному графику, $\Gamma/\text{см}^3$;

V — объем фотометрируемого раствора, см³;

т — масса навески олова, г.

3.4.2. Абсолютные допускаемые расхождения результатов параллельных определений при доверительной вероятности P = 0.95 не должны превышать значений, указанных в табл. 2.

3.4.1, 3.4.2. (Измененная редакция, Изм. № 2).

информационные данные

1. РАЗРАБОТАН И ВНЕСЕН Министерством цветной металлургии СССР

РАЗРАБОТЧИКИ

- В.С. Баев, Т.П. Алманова, В.М. Власова, В.С. Мещкова, Л.В. Мищенко, Л.Д. Савилова, Р.Л. Тресницкая
- 2. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по стандартам от 13.12.78 № 3300
- 3. Стандарт полностью соответствует СТ СЭВ 4809-84
- 4. B3AMEH FOCT 15483.4-70
- 5. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

Обозначение НТД, на который дана ссылка	Номер пункта	
ГОСТ 859—78	2.2; 3.2	
ΓΟCT 860-75	3.2	
ГОСТ 1027—67	2.2	
ΓΟCT 3118—77	2.2	
ГОСТ 3760—79	2.2	
ΓOCT 4461—77	2.2; 3.2	
ΓΟCT 5817—77	2.2	
ΓΟCT 886471	2.2	
ΓΟCT 10484—78	3.2	
ΓΟCT 15483.0—78	1.1	
ΓΟCT 15483.2—78	3.2; 3.3.1	

- 6. Ограничение срока действия снято по протоколу № 4—93 Межгосударственного Совета по стандартизации, метрологии и сертификации (ЙУС 4—94)
- 7. ПЕРЕИЗДАНИЕ (апрель 1999 г.) с Изменениями № 1, 2, 3, утвержденными в августе 1984 г., октябре 1985 г., июне 1989 г. (ИУС 12—84, 1—86, 10—89)

Редактор Л.И. Нахимова
Технический редактор В.Н. Прусакова
Корректор В.И. Варенцова
Компьютерная верстка А.Н. Золотаревой

Изд. лиц. № 021007 от 10.08.95. Сдано в набор 26.04.99. Подписано в печать 28.05.99. Усл.печ.л. 0,93. Уч.-изд.л. 0,47. Тираж 131 экз. С 2905. Зак. 456.