

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

ИНДИЙ

метод определения серы

ГОСТ 12645.10-86

Издание официальное

Изменение № 1 ГОСТ 12645.10—86 принято Межгосударственным Советом по стандартизации, метрологии и сертификации по переписке 15.04.94 (отчет Технического секретариата № 2)

За принятие проголосовали:

Наименование государства	Наименование национального органа по стандартизации
Республика Азербайджан Республика Белоруссия Республика Казахстан Республика Молдова Российская Федерания Туркменистан Республика Узбекистан Украина	Азгосстандарт Госстандарт Белоруссии Госстандарт Белоруссии Госстандарт Республики Казахстан Молдовастандарт Госстандарт России Главная государственная инспекция Туркменистана Узгосстандарт Госстандарт Госстандарт Украины

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

инлий

Метод определения серы

ГОСТ 12645.10—86*

Indium.

Method for determination of sulphur

ОКСТУ 1709

Постановлением Государственного комитета СССР по стандартам от 23.10.86 № 3188 дата введения установлена 01.01.88

Ограничение срока действия снято по протоколу Межгосударственного Совета по стандартизации, метрологии и сертификации (ИУС 2—93)

1а. Область применения

Настоящий стандарт устанавливает полярографический метод определения серы (при массовой доле серы от $5 \cdot 10^{-6}$ до $1 \cdot 10^{-4}$ %) в индии марки Ин 000.

Метод основан на восстановлении соединений серы до сероводорода, оттонке и поглощении его раствором щелочи в присутствии гидроксиламина и трилона Б и полярографировании раствора, содержащего сульфид-ионы.

(Измененная редакция, Изм. № 1).

1. ОБШИЕ ТРЕБОВАНИЯ

- 1.1. Общие требования к методам анализа по ГОСТ 22306—77 с дополнениями.
- 1.1.1. Массовую долю каждого элемента в индии определяют в двух параллельных навесках.
- 1.1.2. Контроль точности анализа осуществляют методом варьирования навесок или методом добавок. Контроль точности анализа проводят одновременно с анализом проб при смене реактивов, анпаратуры, а также после длительного перерыва в работе.
- 1.1.2.1. При контроле точности методом варьирования навесок анализ проводят по настоящей методике из навесок 1 и 2 г индия. Результат анализа считают правильным, если разность результатов анализов, полученных из разных навесок, не превышает допускаемых расхождений, приведенных в таблице.
 - 1.1.2.2. Контроль точности по методу добавок проводят в соответствии с ГОСТ 25086—87.
- В качестве добавки используют растворы серной кислоты, содержащие 0,1 и 1 мкг/см³ серы, приготовленные на бидистиллированной воде в день применения. Процедуру проводят как указано в разд. 5.

Для пробы с массовой долей серы $5\cdot10^{-6}$ % и более добавка должна быть не меньше массовой доли серы в пробе и не бельше удвоеннои массовой доли серы в пробе. Массовая доля серы в пробе с добавкой должна быть не менее чем $1\cdot10^{-5}$ % и не более чем $3\cdot10^{-4}$ %.

Величину добавки определяют по разности $\overline{C}_2 - \overline{C}_1$, где \overline{C}_1 и \overline{C}_2 — результаты анализа пробы C_1 и пробы с добавкой C_2 , рассчитанные как среднее арифметическое двух определений, расхождения между которыми не должны превышать допускаемой величины, указанной в стандарте.

Издание официальное

Перепечатка воспрещена

 \star

^{*}Переиздание (март 1998 г.) с Изменением № 1, утвержденным в июне 1996 г. (ИУС 9—96)

Результат анализа считают правильным, если найденная величина добавки \overline{C}_2 — \overline{C}_1 отличается от расчетного значения добавки на величину не более чем на $0.71 \cdot \sqrt{d_1^2 + d_2^2}$, где d_1 и d_2 — допускаемые расхождения результатов анализа серы в пробе C_1 и в пробе с добавкой C_2 .

1.1.1-1.1.2.2. (Измененная редакция, Изм. № 1).

2. ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

- 2.1. Требования безопасности по ГОСТ 12645.8—82 с дополнениями.
- 2.1.1. Индий (оксид) согласно ГОСТ 12 1.005—88 относится к веществам третьего класса опасности и имеет предельно допустимую концентрацию (ПДК) 4 мг/м³. Индий вызывает боли в суставах, костях, разрушение зубов, нервные и желудочно-кишечные расстройства, боль в области сердца и общую слабость.

Контроль за содержанием индия в воздухе рабочей зоны должен проводиться по методикам, разработанным в соответствии с ГОСТ 12.1.016—79 и утвержденным органами здравоохранения. Периодичность контроля устанавливается в соответствии с ГОСТ 12.1.005—88.

(Измененная редакция, Изм. № 1).

- 2.1.2 Выполнение анализов с использованием ртути проводят в соответствии с санитарными правилами проектирования, оборудования, эксплуатации и содержания производственных и лабораторных помещении, предназначенных для проведения работ с ртутью, ее соединениями и приборами со ртугным заполнением, утвержденными Минздравом СССР
- 2.1.3. При использовании газов в баллонах должны соблюдаться требования безопасности в соответствии с «Правилами по устройству и безопасной эксплуатации сосудов, работающих под давлением», утвержденными Госгортехнадзором СССР.
- 2 1 4. Пожарная безопасность лабораторных помещений должна обеспечиваться в соответствии с требованиями ГОСТ 12 1.004—91 Помещения химической лаборатории должны быть оснащены средствами огнетушения (огнетущитель с углекислотой, листовой асбест, песок).

3. АППАРАТУРА, МАТЕРИАЛЫ И РЕАКТИВЫ

Полярограф переменного гока типа ППТ-1 или универсальный полярограф ПУ-1.

Установка для восстановления соединении серы и отгонки сероводорода. (Допускается применение обратного холодильника и приемника любых конструкций, обеспечивающих полное поглощение сульфид-ионов)

Электроплитка по ГОСТ 14919 -83

Электролизер с внешним анодным стделением (анодное отделение над ртутью заполняют ежедневно насыщенным раствором хлористого калия).

Аргон по ГОСТ 10157-79

Чашка кварцевая по ГОСТ 19908—90 вместимостью 50 см³.

Кислога солчная по ГОСТ 3118 - 77

Кислота азотная по ГОСТ 4461--77, перегнанная.

Кислота серная по ГОСТ 4204 --77, разбавленная 1.6, и раствор 0,05 моль/дм³, приготовленный из стандарт-тигра

Кислота поды товодородная по ГОСТ 4200-77

Калии иодистый по ГОСТ 4232—74

Калия гидроокись по ГОСТ 24363-80.

Калии хлористыи по ГОСТ 4234 - 77, перекристаллизованный, насыщенный раствор.

Натрия гидроокись по I ОСТ 4328—77, растворы 100 и 250 г/дм³.

Медь двухлористая 2 водная по ГОСТ 4167—74.

Нагрии сернистый по ГОСТ 2053—77.

Натрий фосфорноватистокистыи по ГОСТ 200—76.

Калии фосфорноватистокислыи.

Гидроксиламина гидрохлорид по ГОСТ 5456—79, раствор. 69,5 г гидроксиламина гидрохлорида разовавляют бидистичлированной водой до 1 дм³

Солг динагриевая этилендиамин- N, N, N', N'-тетрауксусной кислоты 2-водная (трилон Б) по 1 ОСТ 10652 73

Pтугь по ГОС 1 4658 -73

Пирогалиол A, раствор 250 г/дм³ в растворе 250 г/дм³ гидроокиси натрия.

Вода дистиплированная по ГОСТ 6709 -72, дополнительно перегнанная в кварцевом аппарате с добавлением марганцовокислого калия

Калии марганцовокистыи по ГОС І 20490 75

Щелочная смесь, въдержанная не менее 2 суг, в мерную колбу вместимостью 1 дм³ приливают 600 см свежепрокипяченной и охлажденной бидистиллированной воды, прибавляют 112 г гидро скиси калия персмешивают до растворения раствор охлаждают и порциями прибавляют к нему 100 г три юна Б при перемешивании разбавляют до 1 дм³ свежепрокипяченной бидистиллированной водой, перемешивают и закрывают притертой пробкой

Полярографическии фон 120 см³ щелочнои смеси помещают в коническую колбу с притертои пробкои вместимостью 250 см³, приливают 25 см³ раствора гидроксиламина гидрохлорида, 100 см³ оидистиллированной воды и перемешивают. Фон может быть использован в течение 3 сут

Восстановительную смесь готовят двумя методами

Meron 1

В реакционную котоу приливают 730 см³ раствора соляной кислоты (1,2 1), прибавляют 444 г иодистого калия, 150 г фосфорне ватистокислого натрия (или 173 г фосфорноватистокислого калия), 250 мг двухлористой меди перемешивают устанавливают обратный холодильник и кипятят в течение 5 6 ч с продувкой аргоном со скеростью 20—25 пузырьков в 10 с. Аргон предварительно очищают пропусканием через три склянки Дрекселя с раствором пирогаллода 250 /дм³ в растворе гидроокиси калия 250 г/дм³. При охлаждении из восстановительной смеси должен выделяться осадок солей (отсутствие осадка свидетельствует о недостаточной концентрации соляной кислоты). Восстановительную смесь сливают с осадка солей и хранят в склянке с притертой пробкой в затемненном боксе.

Метол 2

Смешивают 300 см соляной 500 см иодистоводородной кислот, 150 г фосфорноватислокислого нагрия (или 173 г фосфорноватистокислого калия) 250 мг двухлористой меди приливают 200 см³ бидистиллированной воды и перемешивают. Очистку смеси от серы производят как указано выше

Стандартные растворы сульфатной серы

Раствор A 6.25 см раствора сернои кистоты 0.0^4 моль/дм помещают в мерную колбу вместимостью 100 см 3 толивают до метъ и свежепрокипяченной бидистиллированной водой и перемешивают

1 см3 раствора А содержит 100 мкг серы

Растьор Б 10 см³ раствор і А помещают в мерную колоу вместимостью 100 см³ доводяг о метки съсжепрокипяч наой бидисти эпореачной водой и перем чины в

1 см² раствора Б содержит 10 мкг серы

Раствор В 10 см. раствора Б помещают в мерную колбу вместимостью 100 см³ доливают, о метки свежепрокить ченной бидисти гированной водой и перемещивают.

1 см. раствора В содержит 1 мкг деры

Раствор B^1 10 \mathbb{R}^3 раствора B помещают в мерную колоу вместимостью 100 см. долива от до метки свежсирокано ченной бидистиллированной водой и перемещивают.

1 см³ раствора В¹ содержит 0.1 мы серы

Растворы Б В В¹ готова, в дене употребления

Стинатр инс., в эторы сутърианси серы

Раствор I 75 и кристаллического сернистого натрия помещают в мерикю колок мести ис илю 100 см³ при чивают полярографический фон до метки и перемешивают до растворени ссоли

1 см. раствора I содержит 100 мкг серы

Раствет Д 10 см раствор г I номещьют в мерную колбу вместимостью 100 см., то инвают то метки по вірографическим фоном и перемешивают

1 см3 раствора Д содержиг 10 мгл серы

(Измененная редакция, Изм. N. 1)

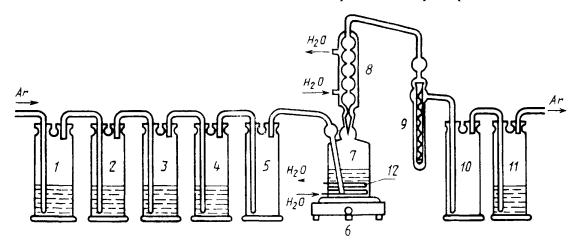
1 ПОДГОТОВКА К АНАЛИЗУ

11 Сборкі усліновки

Собирают установку для восстановления и отгонки серы в соответствии с ϵ_1 сжо 4. Затем в склянки Дрекселя в исслимостью 200 см 3 I=3 заливают по 150 см. щелочного раствор лирога пола в склянки мисслимостью 200 см. с дибистиллятом 4= раствор гидроокиси натрия -50 г. 64 в

склянку 11— дистиллированную воду, 5 и 10 предохранительные склянки. В приемник длиной 250 мм 9 заливают 5 см 3 фонового электролита. Штуцер манометра баллона с аргоном соединяют со склянкой 1 резиновым шлангом, предварительно прокипяченным в растворе гидроокиси натрия 100 г/дм^3 и промытым дистиллированной водой. Склянки 1-5, 10 и 11, реакционную колбу 7 и приемник 9 соединяют хлорвиниловыми шлангами. Обратный холодильник 8 соединяют с водопроводным краном эластичным резиновым шлангом.

4.2. Проверка герметичности установки


В реакционную колбу 7 заливают $150~{\rm cm}^3$ предварительно очишенной восстановительной смеси, а в приемник $9-5~{\rm cm}^3$ полярографического фона. Через установку пропускают поток аргона со скоростью 15-20 пузырьков в $10~{\rm c}$, предварительно пропустив холодную воду через обратный холодильник. О герметичности установки судят по совпадению скорости прохождения пузырьков аргона в склянке Дрекселя $1~{\rm u}$ в приемнике 9. Если шлифы негерметичны, их пришлифовывают тонким порошком абразива.

Затем через шлиф пробки реакционной колбы с помощью пипетки вводят $0.2~{\rm cm}^3$ стандартного раствора Б сульфатной серы. Сероводород отгоняют в течение $35-40~{\rm muh}$ с момента включения электроплитки.

Приемник серы отсоединяют от установки, содержимое приемника заливают в электролизер и регистрируют полярограмму раствора при катодной поляризации от минус 0,45 до минус 0,9 В (по отношению к насыщенному каломельному электроду).

Высоту пика серы на полярограмме раствора в приємнике сопоставляют с высотой пика стандартного раствора сульфидной серы Π (для получения этого раствора $0.2~{\rm cm}^3$ стандартного раствора сульфидной серы Π разбавляют полярографическим фоном до $5~{\rm cm}^3$).

Установка для восстановления соединений серы в отгонки сероводорода

Разность высот пиков обоих растворов не должна превышать 10 % отн. В противном случае проверяют герметичность установки и повторяют определение.

4.3. Проведение контрольного опыта

Реакционную колбу 7, обратный холодильник 8 и приемник для улавливания сероводорода 9 промывают соляной кислотой и свежепрокипяченной бидистиллированной водой, заливают $150~{\rm cm}^3$ восстановительной смеси. Закрепляют в горловину реакционной колбы холодильник. В приемник заливают $5~{\rm cm}^3$ полярографического фона, вставляют в приемник конус газоотводной трубки, соединяют тубус приемника с предохранительной склянкой 10 и пропускают через установку аргон со скоростью 30-35 пузырьков в $10~{\rm c}$. Подключают холодильник к водопроводу и, спустя $5-10~{\rm muh}$, включают электроплитку $6.~{\rm C}$ момента закипания отгонку продолжают $30~{\rm muh}$.

После окончания оттонки сероводорода приемник отсоединяют от установки, содержимое заливают в электролизер и снимают полярограмму раствора, как указано в п. 4.2.

В аналогичных условиях проводят полярографирование растворов, полученных восстановлением сульфатной серы, и вычисляют поправку контрольного опыта по формуле

$$m_{\rm K} = \frac{m \ H_{\rm K}}{H},$$

где m — масса серы в стандартном сульфатном растворе сравнения, мкг,

 $H_{\rm k}$ — высота пика серы в контрольном опыте, мм, H — высота пика серы в растворе сравнения, мм

Содержание серы в контрольном опыте должно быть меньше 0,05 мкт Если контрольный опыт больше — опыт по отгонке серы из той же порции восстановительнои смеси повторяют, предварительно промыв патрубок приемника и приемник свежепрокипяченной дистиллированной водои Значение контрольного опыта проверяют ежедневно перед началом работы и после каждого перехода от отгонки больших количеств серы к отгонке малых количеств серы

Порция восстановительной смеси 150 см³ может быть использована для анализа 6—8 проб индия (6-8 г)

5. ПРОВЕДЕНИЕ АНАЛИЗА

После проведения контрольного опыта промывают патрубок приемника 9 прокипяченной дистиллированной водой без отключения тока аргона Реакционную колбу 7 охлаждают, пропуская воду через змеевик 12, и заливают в приемник 9 5 см3 полярографического фона Затем в реакционную колбу помещают 1,000 г мелконарезанного индия (предварительно обрабатывают азотной кислотои (16) 30 с и ацетоном при комнатнои температуре в кварцевой чашке), присоеди няют обратный холодильник 8, приемник 9 с предохранительной склянкой 10, включают электроплитку 6 и вытесняют кислород аргоном из системы в течение 30 мин. При этом наблюдается выделение водорода, получающегося при растворении индия в восстановительнои смеси Скорость прохождения газов через приемник 20 пузырьков в 10 с. Ток аргона не прекращают до полного растворения индия в восстановительной смеси. После растворения индия раствор нагреваки до кипения и продолжают отгонку серы в течение 30 мин

Приемник серы отсоединяют от установки, содержимое заливают в электролизер и проводят полярографирование растворов как указано в п 42

Промывают патрубок и приемник два раза прокипяченнои дистиллированнои водои, охлаж дают реакционную колбу, в приемник заливают 5 см³ полярографического фона, вводят 0,5—5 0 см³ стандартного раствора B^1 или 0.5-1.0 см³ раствора B серы сульфатнои (в зависимости от содержания серы в анализируемой пробе) и проводят отгонку серы в виде сероводорода, как указано выше

Приемник отсоединяют от установки и проводят полярографирование полученного раствора сравнения как указано в п 42

(Измененная редакция, Изм № 1)

6 ОБРАБОТКА РЕЗУЛЬТАТОВ

6 1 Массовую долю серы (Х) в процентах вычисляют по формуле

$$X = \frac{m_1}{H_{cr}} \frac{(H_{np})}{m} \frac{H_{k}}{m} = 10^{-4},$$

где m_1 — масса серы в растворе сравнения, мкг,

 $H_{\rm np}^+$ — высота пика серы раствора пробы, мм, $H_{\rm k}^-$ — высота пика серы, полученного в контрольном опыте, мм, $(H_{\rm cl}^--H_{\rm k}^-)$ — высота пика серы раствора сравнения, мм,

m — масса навески анализируемой пробы, г

За результат анализа принимают среднее арифметическое значение результатов двух пара тле 1ьных определении

(Измененная редакция, Изм. № 1)

С. 6 ГОСТ 12645.10-86

6.2. Абсолютное допускаемое расхождение между результатами двух параллельных определений и результатами двух анализов при доверительной вероятности P=0,95 не должно превышать значений, указанных в таблице.

Массовая доля серы, %	Абсолютное допускаемое расхождение, %
5.10-6	3·10-6
1 10-5	3·10 ⁻⁶ 5·10 ⁻⁶
2 10-5	1.10-5
4.10-5	2.10-5
1.10-4	0,3·10-4

Допускаемые расхождения для промежуточных массовых долей серы рассчитывают методом линейной интерполяции.

Редактор В Н Копысов
Технический редактор ЛА Кузнецова
Корректор В Е Нестерова
Компьютерная верстка С В Рябовой

Изд лиц № 021007 от 10 08 95 Сдано в набор 23 02 98 Подписано в печать 01 04 98 Усл печл 0,93 Уч -издл 0,67 Гираж 117 экз С 360 Зак 241