ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

СПЛАВЫ ПЛАТИНО-РОДИЕВЫЕ

ГОСТ 12556.1—82

Метод определения родия

Alloys platinum-rhodium.

Method for the determination of rhodium

Взамен ГОСТ 12556—67 в части разд. 2

Постановлением Государственного комитета СССР по стандартам от 30 сентября 1982 г. № 3865 срок действия установлен

<u>с 01.01.84</u> до 01.01.89

Несоблюдение стандарта преследуется по закону

Настоящий стандарт устанавливает спектрофотометрический метод определения родия в платино-родиевых сплавах (при массовой доле родия от 4.5 до 40.5%).

Метод основан на измерении светопоглошения комплексного хлорида родия в солянокислом растворе в присутствии восстановителя— солянокислого гидроксиламина.

1. ОБШИЕ ТРЕБОВАНИЯ

1.1. Общие требования к методу анализа-по ГОСТ 22864-77.

2. АППАРАТУРА, РЕАКТИВЫ И РАСТВОРЫ

Спектрофотометр УФ — видимый, типа СФ-16.

Электропечь индукционная плавильная по ГОСТ 10487—75.

Тигли фарфоровые № 4 по ГОСТ 9147—73.

Аргон газообразный по ГОСТ 10157—79.

Кислота соляная по ГОСТ 3118—77 и разбавленная 1:1, 1:6.

Кислота азотная по ГОСТ 4461-77.

Смесь азотной и соляной кислот в соотношении 1:3.

Гидроксиламин гидрохлорид по ГОСТ 5456—79, 10%-ный раствор.

Платина по ГОСТ 13498—79 марки Пл 99,93.

Издание официальное

Перепечатка воспрещена

Никель по ГОСТ 9722-79.

Родий по ГОСТ 13098-67 марки Рд 99,9.

Стандартный раствор родия: две пластины родия (длиной 100 мм, шириной 30—40 мм, толщиной 1 мм) взвешивают, закрепляют в зажимы установки для электролитического растворения и погружают в соляную кислоту (1:1).

Растворение ведут переменным током при напряжении 12—15 В, плотности тока 0,65 А/см² в течение 2 ч. Для сохранения первоначального объема (300 см³) в стакан периодически добавляют свежие порции соляной кислоты. После растворения ток выключают, пластины отвинчивают, промывают водой, просушивают и взвешивают. Раствор выпаривают до 150 см³, охлаждают и фильтруют в мерную колбу вместимостью 500 см³, доливают до метки водой и перемешивают.

Нерастворимый остаток прокаливают в тарированном тигле, восстанавливают в токе водорода и взвешивают.

Массу родия (X) в граммах, содержащуюся в 1 см 3 раствора, вычисляют по формуле

$$X = \frac{m - m_1 - m_2}{500}.$$

где m — масса пластин до растворения, r;

 m_1 — масса пластин после растворения, г;

 m_2 — масса нерастворимого остатка, г.

3. ПОДГОТОВКА К АНАЛИЗУ

3.1. Метод химического растворения сплава (при массовой доле родия до 15,0%)

Навеску сплава массой 2.5 г растворяют при нагревании в 100 см³ смеси кислот. Раствор выпаривают до ~ 5 см³ и переводят в солянокислый двукратным упариванием с 10 см³ соляной кислоты (1:1). Раствор переносят в мерную колбу вместимостью 100 см³, доводят до метки соляной кислотой (1:6) и перемешивают.

3.2. Метод переведения сплава в раствор сплавлением с никелем (при массовой доле родия свыше 15,0%)

Навеску сплава массой 1,0 г мелко нарезают, помещают в магнезитовый тигель и сплавляют в высокочастотной индукционной печи под защитой аргона с никелем (табл. 1) с последующей закалкой в воде.

Полученный королек тщательно очищают, промывают горячей водой, растворяют при нагревании в 100 см³ смеси кислот и далее проводят анализ по п. 3.1.

3.3. Приготовление стандартного раствора сплава

Навески платины и никеля (см. табл. 1) растворяют в 50-100 см³ смеси кислот, добавляют определенное количество стандартного раствора родия, соответствующее массе родия (см. табл. 1), упаривают до ~ 5 см³ и далее проводят анализ по п. 3.1.

Таблица 1

	Масса навески, г			
Массовая доля родия в сплаве, %	сплава	платины	родия	никеля
5,0 7,0	2,5 2,5	2,3750 2,3250	0,1250 0,1750	_
10,0 20,0 30,0 40,0	2,5 1,0 1,0 1,0	2,2500 0,8000 0,7000 0,6000	0,2500 0,2000 0,3000 0,4000	0,5 1,0 2,0

3.4. Приготовление растворов сравнения

3.4.1. Для сплавов с массовой долей родия до 15,0%

Навеску платины (см. табл. 1) растворяют в 50—100 см³ смеси кислот, упаривают до 5 см³ и далее проводят анализ по пп. 3.1 и 4.1.

3.4.2. Для сплавов с массовой долей родия свыше 15%

Навески платины и никеля (см. табл. 1) растворяют в 50—100 см³ смеси кислот, добавляют определенное количество стандартного раствора родия, соответствующее массе родия (табл. 2), упаривают до 5 см³ и далее проводят анализ по пп. 3.1 и 4.1.

Таблица 2

Массовая доля родия в сплаве, %	Масса родия в растворе сравнения, г
20,0	0,100
30,0	0,200
40,0	0,300

4. ПРОВЕДЕНИЕ АНАЛИЗА

4.1. В стаканы вместимостью 100 см^3 помещают аликвотные части (табл. 3) анализируемого и стандартного раствора сплава, нагревают до $60-70^{\circ}\text{C}$ и приливают 3 см³ раствора гидроксиламина для восстановления платины. Растворы выдерживают 1 ч, переводят в мерные колбы вместимостью 100 см^3 , доводят до

метки соляной кислотой (1:6) и перемешивают. Через 2 ч измеряют оптическую плотность раствора при длине волны 490 нм в кюветах с толщиной поглощающего свет слоя 2 см.

Раствором сравнения для сплавов с массовой долей родия до 15% служит раствор платины, проведенный через все стадии анализа (см. п. 3.4.1).

Раствором сравнения для сплавов с массовой долей родия свыше 15% служит раствор платины, никеля и родия, проведенный через все стадии анализа (см. п. 3.4.2).

Таблица 3

Массовая доля родия в сплаве, %	Аликвотная часть раствора, см ³	Массовая доля родия в сплаве, %	Аликвотная часть раствора, см ³
От 4,5 до 5,0	25	Св.15,0 до 20,0 , 20,0 , 30,0 , 40,5	20
Св. 5,0 " 10,0	20		15
" 10,0 " 15,0	15		10

5. ОБРАБОТКА РЕЗУЛЬТАТОВ

5.1. Массовую долю родия (X) в процентах вычисляют по формулам:

при массовой доле родия до 15%.

$$X = \frac{D_x \cdot m \cdot 100}{D_{ct} \cdot m_1};$$

при массовой доле родия свыше 15%

$$X = C_1 + \frac{D_x \cdot \Delta C \cdot 100}{D_{cr}},$$

где D_x — оптическая плотность анализируемого раствора;

 $D_{\rm cr}$ — оптическая плотность стандартного раствора;

m — масса родия в стандартном растворе, г;

 m_1 — масса сплава, соответствующая аликвотной части раствора, г;

 ΔC — разность между массой родия в стандартном растворе и растворе сравнения, г;

 C_1 — массовая доля родия в растворе сравнения, %.

5.2. Абсолютные допускаемые расхождения результатов параллельных определений при доверительной вероятности 0,95 не должны превышать значений, приведенных в табл. 4.

Таблица 4

Массовая доля родия, %	Абсолютные допускаемые расхождения, %
От 4,5 до 10,0	0,20
Св.10,0 "25,0	0,25
"25,0 "40,5	0,30

Изменение № 1 ГОСТ 12556.1—82 Сплавы платино-родиевые. Метод определения родия

Утверждено и введено в действие Постановлением Государственного комитета СССР по стандартам от 13.06.88 № 1730

Дата введения 01.01.89

Под наименованием стандарта проставить код: ОКСТУ 1709.

Пункт 1.1. Заменить ссылку: ГОСТ 22864—77 на ГОСТ 22864—83.

Раздел I дополнить пунктом — 1.2: «1.2. Числовое значение результата анализа должно оканчиваться цифрой того же разряда, что и нормируемый показатель марочного состава».

Раздел 2. Заменить слова и ссылку: «10 %-ный раствор» на «раствор массовой долей 10 %»; ГОСТ 9147—73 на ГОСТ 9147—80.

Пункт 5.1. Заменить обозначение: $D_{\rm x}$ на $A_{\rm x}$, $D_{\rm ct}$ на $A_{\rm ct}$ (2 раза).

Пункт 5.2 после слов «параллельных определений» дополнить словами: «(d- показатель сходимости)»;

таблицу 4 изложить в новой редакции:

Таблица 4

Массовая доля родия, %	d	D
От 4,5 до 10,0	0,20	0,30
Св. 10,0 » 25,0	0,25	0,40
» 25,0 » 40,5	0,30	0,45

(Продолжение см. с. 84)

дополнить абзацем: «Абсолютные расхождения средних результатов определений, полученных в двух различных лабораториях (D — показатель воспроизводимости), не должны превышать значений, указанных в табл. 4». Раздел 5 дополнить пунктом — 5.3: «5.3. Контроль правильности результа-

Раздел 5 дополнить пунктом — 5.3: «5.3. Контроль правильности результатов определения массовой доли родия проводится воспроизведением его массовой доли в искусственной смеси химического состава, близкого составу анали-

зируемого сплава, проведенной через весь ход анализа.

Результаты анализа проб считают правильными, если абсолютная разность максимального и минимального значений массовой доли родия в искусственной смеси не превышает 0,17 % при массовой доле родия от 4,5 до 10,0 %, 0,22 % при массовой доле родия свыше 10,0 до 25,0 % и 0,28 % при массовой доле родия свыше 25,0 до 40,5 %».

(ИУС № 9 1988 г.)