

ГОСУДАРСТВЕННЫЕ СТАНДАРТЫ СОЮЗА ССР

СПЛАВЫ ПЛАТИНО-РУТЕНИЕВЫЕ

МЕТОДЫ АНАЛИЗА

FOCT 12554.1-83, FOCT 12554.2-83

Издание официальное

РАЗРАБОТАНЫ Министерством цветной металлургии СССР ИСПОЛНИТЕЛИ

А. А. Куранов, Г. С. Хаяк, Н. С. Степанова, Н. Д. Сергиенко, Т. И. Беляева

ВНЕСЕНЫ Министерством цветной металлургии СССР

Член Коллегии А. П. Снурников

УТВЕРЖДЕНЫ И ВВЕДЕНЫ В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по стандартам от 25 марта 1983 г. № 1372

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА

СПЛАВЫ ПЛАТИНО-РУТЕНИЕВЫЕ

Метод определения рутения 12554.1-83

Platinum-ruthenium allovs. Method for the determination of ruthenium

Взамен **FOCT 12554-67** в части разд. 2

FOCT

OKΠ 17 5000

Постановлением Государственного комитета СССР по стандартам от 25 марта 1983 г. № 1372 срок действия установлен

> c 01.07, 84 до 01.07. 89

Несоблюдение стандарта преследуется по закону

Настоящий стандарт устанавливает фотоколориметрический метод определения рутения в платино-рутениевых сплавах (при массовой доле рутения до 12,0 %).

Метод основан на измерении светопоглощения окрашенного комплексного соединения рутения с тиомочевиной в солянокислой среде в присутствии платины.

1. ОБЩИЕ ТРЕБОВАНИЯ

1.1. Общие требования анализа — по ГОСТ к методу 22864 - 77.

2. АППАРАТУРА, РЕАКТИВЫ И РАСТВОРЫ

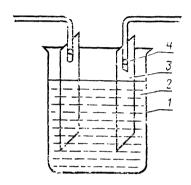
Фотоэлектроколориметр ФЭК-56М.

Установка для электролитического растворения (чертеж).

Электрододержатели из сплава платины с 25 % иридия.

Трансформатор.

Весы лабораторные общего назначения и образцовые по ГОСТ 24104-80.


Кислота соляная по ГОСТ 3118—77, 6 М и 0,4 М растворы.

Тиомочевина по ГОСТ 6344-75, 1 М раствор.

Спирт этиловый технический по ГОСТ 17299—78.

Колбы мерные лабораторные по ГОСТ 1770—74, вместимостью 100. 250 см³.

Стаканы стеклянные по ГОСТ 25336-82, вместимостью 100, 200 см^3 .

1—стеклянный стакан; 2—раствор электролита (6 М раствор соляной кислоты); 3—электроды; 4—зажимы (электрододержатели)

3. ПОДГОТОВКА К АНАЛИЗУ

Образцы анализируемого и стандартного сплава должны быть в виде пластин длиной 80 мм, шириной 30—40 мм и толщиной 0,3 мм. Поверхность пластин для удаления поверхностных загрязнений протирают спиртом.

В качестве стандартного используют многократно проанализированный гравиметрическим методом сплав, близкий по содержанию компонентов к анализируемому.

Две пластины анализируемого или стандартного сплава взвешивают, закрепляют в зажимы установки для электролитического растворения (см. чертеж) и погружают в стакан с 200 см³ 6 М раствора соляной кислоты. Растворение ведут переменным током при напряжении 12—15 В, плотности тока 0,65 А/см² в течение 20—25 мин.

После растворения ток выключают, пластины отвинчивают, промывают водой, просушивают и взвешивают.

Растворы анализируемого и стандартного сплава переносят в мерные колбы вместимостью 250 см³, доводят до метки водой и тщательно перемешивают.

Массу сплава (X) в 1 см 3 основного раствора вычисляют по формуле

$$X=\frac{m_1-m_2}{250},$$

где m_1 — масса пластин до растворения, г;

 m_2 — масса пластин после растворения, г.

Из основных растворов анализируемого и стандартного сплава готовят по 100 см³ разбавленных растворов с содержанием сплава $1 \cdot 10^{-3}$ г/см³. Необходимую для этого аликвотную часть основного раствора (X_1) вычисляют по формуле

$$X_1 = \frac{0.001 \cdot 100}{m},$$

где m — масса сплава в 1 см 3 основного раствора, г.

Рассчитанную аликвотную часть основного раствора помещают в мерную колбу вместимостью 100 см3, доводят до метки 0,4 М раствором соляной кислоты и тщательно перемешивают.

4. ПРОВЕДЕНИЕ АНАЛИЗА

В стаканы вместимостью 100 см3 берут аликвотные части по 20 см³ разбавленных растворов анализируемого и стандартного сплава (что соответствует массе сплава 0,02 г).

В эти растворы добавляют по 40 см3 0,4 М раствора соляной кислоты, по 10 см3 1 М раствора тиомочевины и нагревают на водяной бане при 50-60 °C в течение 15 мин.

Охлажденные растворы переносят в мерные колбы вместимостью 100 см³, доводят до метки 0,4 М раствором соляной кислоты, тщательно перемешивают и измеряют оптическую плотность на фотоэлектроколориметре при длине волны $\lambda = 600$ нм в кюветах с толщиной поглощающего слоя 5—10 мм по сравнению с нулевым раствором, которым служит 0,4 М раствор соляной кислоты.

5. ОБРАБОТКА РЕЗУЛЬТАТОВ

5.1. Массовую долю рутения (Х) в процентах вычисляют по формуле

$$X=\frac{A_1\cdot C}{A_2},$$

где A_1 — оптическая плотность раствора анализируемого сплава;

- A_2 оптическая плотность раствора стандартного сплава; C массовая доля рутения в растворе стандартного сплава,
- 5.2. Абсолютные допускаемые расхождения результатов наибольшего и наименьшего параллельных определений при доверительной вероятности P = 0.95 не должны превышать 0.20 %.

Группа В59

Изменение № 1 ГОСТ 12554.1—83 Сплавы платино-рутениевые. Метод определения рутения

Утверждено и введено в действие Постановлением Государственного комитета СССР по стандартам от 21.09.88 № 3212

Дата введения 01.07.89

Под наименованием стандарта проставить код: ОКСТУ 1709. Пункт 1.1. Заменить ссылку: ГОСТ 22864—77 на ГОСТ 22864—83. Раздел 1 дополнить пунктом — 1.2: «1.2. Числовое значение результата внализа должно оканчиваться цифрой того же разряда, что и допускаемые расжождения».

(Продолжение см. с. 78)

(Продолжение изменения к ГОСТ 12554.1-83)

Раздел 2. Заменить слова и ссылку: «6М и 0,4М растворы» на «растворы концентрации 6 и 0,4 моль/дм³», «1М раствор» на «раствор концентрации 1 моль/дм³», ГОСТ 6344—75 на ГОСТ 6344—73.

Раздел 3. Третий абзац. Заменить слова: «6М раствора» на «раствора кон-

центрации 6 моль/дм³»;

восьмой абзац. Заменить слова: «0,4М раствором» на «раствором концент-

рации 0,4 моль/дм³».

Раздел 4. Заменить слова: «0,4М раствора» на «раствора концентрации 0,4 моль/дм³» (3 раза), «1М раствора» на «раствора концентрации 1 моль/дм³». Пункт 5.2 изложить в новой редакции: «5.2. Разность между наибольшим и наименьшим результатами параллельных определений при доверительной вероятности P = 0,95 не должна превышать абсолютного значения допускаемого расхождения d = 0,20 %.

(Продолжение см. с. 79)

78

(Продолжение изменения к ГОСТ 12554.1-83)

Разность двух результатов анализа одной и той же пробы, полученных в разных лабораториях, не должна превышать абсолютного значения допускаемого расхождения D=0.32~%».

Раздел 5 дополнить пунктом — 5.3: «5.3. Контроль точности результатов определения массовой доли рутения проводится воспроизведением его массовой

(Продолжение см. с. 80).

(Продолжение изменения к ГОСТ 12554.1—83)

доли в искусственной смеси химического состава, близкого составу анализируе-мого сплава, проведенной через весь ход анализа. Результаты анализа проб считаются точными, если абсолютная разность наибольшего и наименьшего значений массовой доли рутения в искусственной смеси не превышает 0,16 %».

(ИУС № 1 1989 г.)